APPENDIX R:

EXPERIMENTINGWITHR

P) A ¥
J ; J" h= %) -

OVERVIEW:

One of the keys to gaining a better understanding of
statistics and randomness is to experiment with them.
This chapter shows how to utilize the R Statistical Envi-
ronment to perform simulations that allow you a glimpse
into the wonder that is statistics.

| Ry &
Forsberg, Ole J. (10 DEC 2024). “Experimenting with R.” In Lin- 'l . & i
ear Models and Rurita Kralovstvi. Version 0.7044421(a). i

Chapter Contents

R.1
R.2
R.3
R.4

Installing R .
R Packages .
R Functions.

Programming Practice .

The purpose of this appendix is to

2 U7 U 8

508

. 509
. 510
. 512
. 517

R.1: Installing R

The first step in using R is to install it on your computer. The process is relatively
straight-forward. You download the installation program, then run the installation
program.

You can find the installation program at the CRAN website:
https://cran.r-project.org/

Once there, download the appropriate installation program for your specific type of
computer. Once it is downloaded, find the installation program and run it. Selecting
all of the default options is fine. It’s what I do.

The specifics are dependent on the type of computer operating system, so I
will not get into the specifics. Let me point you in the direction of an Internet search
engine and/or a site with a lot of videos. Learning how to access the information in
these sites is a skill in itself.

So, enjoy the exploration and the learning.

Some prefer to install both R and and integrated developer environment (IDE) called
R Studio. I do not. Except when doing certain niche projects, none of which we are
doing in this book, R Studio just provides nothing (at best) or worse.

509

R.2: R Packages

While the base R that you installed has many statistical features, it is important to
learn how to extend that base R installation. One way to do this is to install and load
packages.

This book relies heavily on these packages:

* car

e lawstat

* Imtest

* MASS

* randtests
* snpar

Note that this book is not a part of the so-called tidyverse. Perhaps a future
edition will be, but not now.

I R.2.1 InstarLING Packages The overall scheme for installing packages is the
same for each operating system. The specifics are slightly different to take advantage
of what the operating systems allow. That scheme is

1. Run the install.packages function

2. Select a place to download the package from

3. 2?22

4. Profit

For instance, if I want to install the car package, I would run the following code in
the Console window

“ install.packages ("car")

Running this will download the car package from the Internet (the mirror site you
selected) and install it on your computer. [If you have already specified the mirror
site, then step two will not happen.]

It will also download all packages that are needed to run the car functions
(called “dependencies”). You can see what other packages are installed by watching
the Console window.!

I The script window is where you type your analysis script. .. it is where you “show your work.”
The Console window is used for the quick work that is not a part of your analysis. Things like
help queries and one-time-only work is done in the Console window.

510

I R.2.2 LoapinG Packages The installation needs to be done just once for your
computer. However, if you need to use the package in a script, you will need to load
it into the working memory. Since this is something tied to the script, you should
have this line in your script if you are using the car package:

|| library("car")

Once that line is run, R is able to access all functions (and/or data) in the package.
Usually, there are a lot of functions in a package. To see what is available in the
package, run this in the Console window:

” help (paCkage:"carn)

After running this, a page will pop up showing all available functions and links to
their help pages. This particular package has a lot of functions associated with it.
Some other packages have just a couple. The number of functions depends on the
purpose of the package.

511

R.3: R Functions

There are a plethora of functions available in R. The key is to use functions to become
familiar with them. Also, because you will always need to use new functions, it is
very important to be familiar with the R help files for the functions.

IR.3.1 Basic Funcrions
frequently.
* source
* head
e tail
* length
* seq
* summary
* mean
* median
* sum
e sd

® var

The following are basic functions in R. You will use these

run external R script
show top 6 elements
show last 6 elements
number of elements
sequence of numbers
six-number summary
arithmetic average
median

sum

standard deviation

variance

Please know what each does. If necessary, use the help file for the given function.
The more you familiarize yourself with the help files, the more they will tell you.

512

IR.3.2 MarTtrix FuNncTiONs R can also do arithmetic on matrices. Since the internal
computer calculations are all based on matrices, it is important to be familiar with
matrix operations to make sure you know what R is doing (can check the output).

ELEMENT-wiSE FUNCTIONS:

o + usual matrix addition
o Hadamard product (element-wise multiplication)
* A element-wise exponentiation

ADDITIONAL MATRIX FUNCTIONS:

¢ %% usual matrix product
LR matrix transpose
* solve matrix inverse

I R.3.3 ProsasiLity FuncTions At the core of statistics is probability and proba-
bility distributions. These will be important in helping you better understand the
effects of randomness on the estimates... and the effects of violating procedure re-
quirements on those estimates.

* set.seed specify random number seed

* sample random sample from a vector

513

ProsasiLiTy Function NaminG Logic: Each probability function in R can be parsed
into two parts, the stem and the prefix. The stem specifies the probability distribu-
tion, whereas the prefix specifies what aspect of the distribution you wish to access.

This is an exhaustive list of the prefixes:

d
specifies the likelihood value. If the distribution is discrete, then this will also
be the probability, otherwise it is the density.

P
specifies the cumulative probability, P [X < x]. This prefix will rarely be avail-
able for multivariate functions.

q
specifies the quantile, the value of x that produces the probability. This prefix

will rarely be available for multivariate functions.

r
specifies a random variate. In simulation, this is the most important prefix, as
it produces a random sample of a given size from the specified distribution.

The second part is the stem. This specifies the distribution involved. Here is a list of
some of the more interesting stems available:

binom
Binomial distribution. One needs to specify the number of trials, size, and
the success probability, prob.

cauchy
Cauchy distribution. Optionally, one can specify the location and the spread.
The default is the standard Cauchy with location of 0 and scale of 1.

exp
Exponential distribution. One needs to specify the rate, A.

f
Snedecor’s F distribution. One needs to specify both degrees of freedom, with
the numerator preceding the denominator degrees of freedom, df1 and df2.

gamma
Gamma distribution. One needs to specify the shape parameter, @. The rate
parameter has a default value of 0 = 1.

norm

Normal (Gaussian) distribution. Optionally, one can specify the mean m and
standard deviation s of the Normal. The default is mean 0 and standard de-
viation 1.

pois
Poisson distribution. One needs to specify the expected value, 1ambda.

514

IR.3.4 TesTING FUuNcTIONS Because R is a statistical program, it is able to perform
all of the basic statistical tests and procedures. These are the related functions.

t

Student’s t distribution. One needs to also specify the number of degrees of

freedom, df.

unif

Continuous Uniform distribution. Optionally, one can specify the minimum
and maximum value. The default is the standard Uniform with min of 0 and
max of 1.

aov
1m
summary.lm
summary.aov
residuals
confint
predict
runs.test
hetero.test
fligner.test

bptest

Analysis of Variance procedure

OLS regression

summary of a linear model

summary of an ANOVA

calculated residuals from a model
confidence interval for estimated parameters
estimation and prediction of a value

the runs test

univariate test of heteroskedasticity

test of heteroskedasticity across groups

Breusch-Pagan test of heteroskedasticity

I R.3.5 ConrtroL FuncriONS

IR.3.6 Graraicat Funcrions R is a full-fledged graphical system. In fact, this is
what set R apart from its competitors (and still does!). Every pixel of a graphic can
be modified in RThs book relies on the basic R graphic engine. There are two other
graphical engines (metaphors): grid and ggplot2. Base-R graphics will always
serve you. ggplot?2 is the modern graphics engine for Rt serves as a wrapper for

for
if

numeric

for-loops
if-then logic

creates a vector in memory

the basic graphics, making some graphics much easier to create.

515

ggnorm
ggline
barplot
boxplot
hist
histogram
overlay
plot

par
plot.new
plot.window
axis

title

lines

points

Q-Q plot for a Normal target

plots the diagonal line in a Q-Q plot

bar chart

box plot

histogram

histogram that can be more easily modified
histogram with a overlaid density function
basic scatter plot

specifies a graphical parameter

starts a new plot

specifies the viewing window

draws an axis

writes a title on the graphic

draws lines

draws points

516

R.4: Programming Practice

This section provides a series of practical examples to help you apply statistical
concepts using the RStatistical Environment, one of the most versatile programming
languages for statistical analysis and data visualization. Ris particularly well-suited
for solving a wide range of statistical problems, from basic descriptive statistics to
advanced modeling techniques. As you progress through these examples, you will
gain hands-on experience with R’s powerful functions, libraries, and data structures,
enabling you to approach statistical challenges with confidence.

I designed each example in this section to demonstrate the practical appli-
cation of key statistical methods while also showcasing the capabilities of R. To help
you fully understand the solutions, each example includes clear explanations, an-
notated code snippets, and discussions of the outputs. Even if you are new to R, the
examples are structured to quickly build your proficiency with the language.

By working through these examples, you will not only deepen your under-
standing of statistical methods but also start developing a toolkit of practical Rskills.
Whether you aim to analyze data for research, business, or personal projects, these
examples will equip you with the knowledge and techniques needed to leverage
Reffectively. Take your time to experiment with the code, explore variations, and
see how the results change — this active learning approach will enhance both your
statistical intuition and your programming expertise.

Note that there is a lot of white space in this section. It is there so that you
can take notes directly on the examples.

Example 1

Produce a basic density plot of a Cauchy distribution between -3 and +3,
where the Cauchy is centered at x = 2 and has an IQR of 3.

Solution: Since we are working with a probability distribution, let us refer to Sec-
tion R.3.3. The function to calculate the density of the Cauchy centered at 2 with
IQR 3is dcauchy (x,2,1.5). Thus, some code to produce a basic plot between -3
and +3 is

x = seq(-3,3,1length=1000)

y = dcauchy(x, locataion=2, scale=1.5)
plot (x,v)

517

With a little bit of work, you can make a graphic like Figure R.1. The fill color is the
green in a pallette of three colors designed to be safe for those with the usual color
blindness, #1b9e77. When possible, it is best to accommodate those with color
blindness and those who print out the graphic in shades of grey. ¢

The three safe colors are Green (#1b9e77), Orange (#495£02), and Blue (#7570b3).
These colors are from the colorbrewer?2. org site.

Extension: Plot the pdf of a standard Normal distribution from -3 to +3 on the same
graphic as a standard Cauchy. Looking at the two distributions, which has a higher
variance?

-3 -2 -1 0 1 2 3
X

Figure R.1: The probability density function (pdf) of a Cauchy(2,1.5) distribution.

518

Example 2

Estimate a density graph of the volume of a cylinder with radius following a
standard Uniform distribution and a height following a Normal distribution
with mean 10 and standard deviation 0.1.

Solution: Since we are working with a probability distribution, I again refer you to
Section R.3.3.

radius runif (n=1e6)
height rnorm(n=1le6, m=10, s=0.1)
volume = pi * radius”2 * height

hist (volume)

This is an example where using simulation easily obtains the approximate distribu-
tion. After using my R skills, I obtained the histogram in Figure R.2. See how close
you can come to this. ¢

0 5 10 15 20 25 30 35
Volume [m3]

Figure R.2: The estimated probability density function (pdf) of the volume of a cylinder.

519

Example 3

Determine the effect of rounding on the appropriateness of the one-sample
t-test.

Rounding can significantly affect statistical decisions because it alters the precision
of numerical data (the inputs), which can lead to changes in calculated values such
as means, variances, or p-values (the outputs). In hypothesis testing, for instance,
rounding may cause a test statistic to fall on the border of a critical value, poten-
tially shifting the conclusion about rejecting or failing to reject the null hypothesis.
Similarly, in regression analysis, rounding predictor or response variables can affect
the accuracy (and precision) of parameter estimates and the overall model fit.

These impacts are particularly pronounced in datasets with small sample
sizes or values that are close to decision thresholds. Therefore, careful consideration
of rounding practices is essential to ensure that statistical conclusions remain valid
and reliable. This example explores the effects of rounding on the one-sample t-test.

Solution: This leaves a lot of decisions to us. The one-sample t-test requires data
being generated from Normal distribution. So, let’s generate data from a N (5,1)
distribution. We need to round the data, so we will need to use the round function.
Finally, we will need to determine if the distribution of the resulting p-values is
standard Uniform (Section S.6.1).

The following code does this.
pval = numeric()

for(i in 1:1e4) {

x = rnorm(10, m=5, s=1)

\% round (x)

pval[i] = t.test(y, mu=5)S$p.value
}

ks.test (pval, "punif")
binom.test (sum(pval<0.05), n=length(pval), p=0.05)

The Kolmogorov-Smirnov test indicates that the distribution of the p-values is not
standard Uniform. Thus, rounding in this situation breaks the t-test. Note that if we
only care about a = 0.05, we would use the Binomial test results. Given that p-value,
I would still conclude that I should not use the t-test in this situation.

What about increasing the sample size from 10 to 50? The Kolmogorov-
Smirnov test still indicates that the test is no longer acceptable. Note that if all we

520

care about is @ = 0.05, then the t-test does appear to be appropriate under these
conditions.

What about increasing the variability in the data? Having a wider spread to
the data may make the rounding less important. Let’s change the standard deviation
from 1 to 10 (and return the sample size to 10). From my run, the distribution of
the p-value is still not standard Uniform, but the rejection rate for @ = 0.05 is close
enough to 0.05.

What if we increase the sample size back to 50? In this situation, the distri-
bution of the p-values is close enough to standard Uniform that the rounding does
not affect the quality of the t-test conclusions. ¢

521

Example 4

If the inter-arrival time is Exponentially distributed with average time of 20
minutes, then what is the distribution of people who show up in an 8 hour
period?

Algorithmic thinking is crucial in statistics as it enables a structured approach to
solving complex problems by breaking them into smaller, logical steps. This mind-
set is particularly valuable when designing workflows for data analysis, from data
preprocessing and visualization to modeling and interpretation. By thinking al-
gorithmically, statisticians can systematically address challenges such as cleaning
messy data, optimizing computational efficiency, or automating repetitive tasks.

Moreover, algorithmic thinking facilitates the translation of statistical con-
cepts into code, allowing for reproducibility, scalability, and adaptability in analysis.
In a field increasingly reliant on computational tools, developing this skill ensures
that statisticians can efficiently tackle problems and adapt to new methods or tech-
nologies. This example illustrates algorithmic thinking to arrive at an interesting
result.

Solution: This is a tough question but let’s break it down into its parts, then simulate
it.

The inter-arrival time is the time between arrivals.

” iat = rexp (100, rate=3) ### ’iat’ is in hours

The total time between the first and 20th arrival would be the sum of 20 of those
inter-arrival times.

iat = rexp (100, rate=3)
sum(iat[1:20])

On the other hand, the number of arrivals in an hour would be

iat = rexp (100, rate=3)
iatCS = cumsum(iat)
max (which(iatCs <= 1))

So, the number of arrivals in eight hours would be

iat = rexp (100, rate=3)
iatCS = cumsum(iat)

522

|| max (which (iatCs <= 8))

To get the distribution of those “number of arrivals in eight hours,” you just need to
repeat the code many times, saving the number of arrivals each time:

arrNum = numeric/()

for(i in 1:1e6) {
iat = rexp(100, rate=3)
iatCS = cumsum(iat)
arrNum([i] = max(which(iatCsS <= 8))

The histogram (Figure R.3) shows the estimated distribution of the number of cus-
tomers arriving in those 8 hours.

Closely examining the histogram and deeply thinking about the distributions
you should have already learned, it is clear that the number of arrivals in 8 hours
follows this distribution

Number of Arrivals ~ P(A = 24) (R.1)

To make it even more manifest, overlaying the histogram with a graph of that Pois-
son distribution illustrates this, Figure R.3.

hist (arrNum, freg=FALSE, breaks=seq(l,50)-0.5)
points(1:50, dpois(1:50, lambda=24), pch=16)

Again, I used some R programming skills to obtain the graphic at the bottom. ¢

Note that this is not proof of the relationship between the two distributions. It
merely suggests the relationship. Your probability theory course will give you the
tools to actually prove the relationship.

523

Extension 1: Change all of the time measurements in the previous example from
hours to minutes. Make sure that the conclusions are the same.

Extension 2: Change the inter-arrival time to 10 minutes. What is the distribution
of the number of arrivals in three hours? Show it using the histogram.

0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Customers

Figure R.3: The estimated probability mass function (pmf) of the number of customers
arriving in eight hours. Note that it closely follows the P(A = 24) distribution. Using the
techniques of probability theory, one can prove this relationship.

524

Example 5

A flashlight uses five batteries. The lifetime of each battery is independent
and follows a Gamma distribution with mean 50 days and standard devia-
tion 5 days (shape = 100, scale = 0.5). The flashlight will show light until
the first battery dies.

What is the expected time the flashlight will work after receiving five
new batteries?

If we know the distribution of the lifetimes of each component, does this mean we
know the distribution of the minimum lifetime? Sometimes. Note that sometimes
we may be curious about the distribution of a function of random variables. .. which
is also a random variable.

But, it goes beyond simple curiosity. Calculating the distribution of func-
tions of random variables is essential because it allows us to understand how trans-
formations or combinations of random variables behave and how their uncertainty
propagates. This knowledge is fundamental in many applications, such as deriv-
ing the sampling distribution of an estimator, which forms the basis for hypothesis
testing and constructing confidence intervals. Additionally, understanding the dis-
tribution of these functions enables probabilistic modeling in scenarios where direct
distributions are unavailable, such as in operations research or risk management. It
also helps in determining the likelihood of complex events, optimizing decision-
making, and evaluating reliability in systems involving random inputs. By study-
ing these distributions, statisticians can make more accurate predictions and draw
meaningful inferences in both theoretical and applied contexts.

Solution: This is a great place for you to think through the problem (algorithmic
thinking). What is the first step modeling this physical event? What is the second?
Etc.? Use the next page to write out the steps... and the code. If done correctly, you
will obtain the graphic at the bottom of the page, Figure R.4.

525

The question actually asked for the expected lifetime of the flashlight. The expected
lifetime (mean) of the flashlight is 44.3 days, with a standard deviation of 3.1 days

(sd). It is nice to know that 90% of the flashlights survive between 39.1 and 49.2
days (quantile).

30 35 40 45 50
Days of Life
Figure R.4: The estimated probability density function (pdf) of the lifetime of a flashlight.

55 60

526

Example 6

A sample n = 10 counts is drawn from a population with unknown distri-
butional characteristics. From the collected data, estimate a 95% confidence
interval for the population mean.

4,3,4,5,4,4,1,4,9,8,3

The bootstrap is a powerful and versatile tool in statistics because it provides a non-
parametric method for estimating the sampling distribution of a statistic without
requiring strong assumptions about the underlying population distribution. By re-
peatedly resampling with replacement from the observed data, the bootstrap allows
statisticians to approximate the variability of estimators, construct confidence inter-
vals, and conduct hypothesis tests.

This approach is especially valuable when theoretical distributions are diffi-
cult to derive, such as with complex estimators or small sample sizes. Furthermore,
the bootstrap is widely applicable across diverse statistical methods, making it a
critical tool for robustness and flexibility in real-world data analysis. Its ability to
leverage computational power to provide insights where traditional methods may
falter has made the bootstrap indispensable in modern statistics.

Solution: Note that the sample size is small in this example. As such, we cannot rely
on the Central Limit Theorem to assume the sample mean is Normally distributed.
We do not even know if the population has a finite variance. The only thing we know
is that we collected that particular sample. Thus, we will use the bootstrap.

That is, we will treat the sample as being representative of the population.
Without this assumption, there is absolutely nothing we can do. With that assump-
tion, we can effectively (or essentially) “recreate” the population as being an infinite
repetition of this data. Then, to estimate the variability in the population, we simply
redraw a sample of the same size from that population.

This is called the non-parametric bootstrap because it does not assume a
specific (named) distribution of the data.

527

Here is the code to accomplish this once.
theData = c(4, 3, 4, 5, 4, 4, 1, 4, 9, 8, 3)

newData = sample(theData, replace=TRUE)
mean (newData)

This will give us one more sample mean. It takes thousands of them to understand
the distribution (centers and variabilities). Thus, the non-parametric bootstrapping
code will be

theData = c(4, 3, 4, 5, 4, 4, 1, 4, 9, 8, 3)
newMeans = numeric/()

for(i in 1:1e6) {
newData = sample(theData, replace=TRUE)
newMeans[i] = mean (newData)

}

mean (newMeans)
sd (newMeans)
quantile (newMeans, c(0.025,0.975))

From this code, I estimate the population mean is 4.45, with an estimated 95% con-
fidence interval from 3.27 to 5.82. ¢

The non-parametric bootstrap is used when all you know about the population is
that you randomly selected the sample. It is a very flexible procedure that should be
a part of your statistical toolbox.

However, statistically, it tends to be of low power (confidence intervals are
too wide; p-values are too high). The reason for this lower power is that you are
making fewer assumptions on the population. If you know more about the popu-
lation and are able to use it, then that procedure will have higher power (all things
being equal).

Figure R.5 shows the histogram of the sample means from the simulation.
The triangle on the x-axis represents the mean of these sample means. The thick bar
along the axis represents the estimated 95% confidence interval.

528

0 1 2 3 4 5 6 7 8 9 10
Number of Whatever

Figure R.5: The estimated probability density function (pdf) of the sample means from
the unknown population. The mean of the sample means is denoted by the triangle on the
axis; the 95% confidence intervals, thick bar on the axis.

529

Example 7

How good is the non-parametric bootstrap in terms of covering the pop-
ulation mean? For this investigation, let’s assume the population really is
standard Normal.

Solution: The first step is to draw a sample of size n = 10 from that population, then
do the non-parametric bootstrap, then determine how frequently the population
mean is in the confidence interval. It should happen 95% of the time.

Here is the code:

estLCL
estUCL

numeric ()
numeric ()

for(j in 1:1e6) { # The loop testing the NPB

theData = rnorm(10)
newMeans = numeric()

for(i in 1:1e6) {
newData = sample(theData, replace=TRUE)
newMeans [i1] = mean (newData)

}

estLCL[7]
estUCL[]]
}

quantile (newMeans, 0.025)
quantile (newMeans, 0.975)

Note that this will take quite some time to run. There are a total of 1,000,000,000,000
iterations taking place. On a new laptop, one should probably expect it to run
overnight. On an older one, it may take an entire day. However, the results will
be rather precise.

Let me take this opportunity to (re-) introduce you to a measure of the qual-
ity of a confidence interval: coverage. Coverage is defined as the proportion of the
time that the confidence interval contains the true mean.

For our example, the true mean is 0. So, the coverage will be the proportion
of the time that 0 is between the two estimated confidence bounds.

I mean(0>estLCL & O<estUCL)

530

When I run this, I obtain 0.896, which is quite different from the hoped-for 0.95. It
means | am rejecting at a rate of 10.4% instead of the claimed 5%. This is not good.

U

Having too low of a coverage (as here) is problematic because it increases the risk
that the true parameter value lies outside the confidence interval or prediction range.
Coverage probability reflects the proportion of intervals that, over repeated sam-
pling, are expected to contain the true value. If the coverage is too low, it means that
the interval is overly narrow or poorly calibrated, leading to an underestimation of
uncertainty. This can result in overconfidence in statistical conclusions, which may
cause critical errors in decision-making or policy formulation, particularly in fields
like medicine, finance, or engineering where risks are high.

531

