
Appendix M:

TheAppendixofMatrices

Overview:

Before we can start talking about regression, we need
to cover the necessary mathematical background. For
this book, I expect that you have successfully complete
a course in matrix algebra.

This means that you can add and multiply matri-
ces, that you understand matrices are linear transfor-
mations, that you have worked with eigenvalues and
eigenvectors, and that you can calculate the rank and
the trace of a matrix.

All of these topics are important in better under-
standing the mathematics underlying linear models.
Thus, this appendix reviews some of the important parts
from your matrix algebra class, and adds some items
that you may not have had.
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The purpose of this appendix is to provide the necessary matrix background
for this book. Everything here is important at some point in this test. There
will be new things here, in which case you need to learn them. If nothing
here is new, then you merely need to review them to keep them fresh in your
mind.

You should treat this appendix as necessary background knowledge.
Gain it now, if necessary. At the very least, know what is here so that you can
refer to it as you work through the main part of the text.

M.1: Matrix Basics

A matrix is just a rectangular array of scalars. It is used to simplify manymatrix
mathematical calculations. Throughout this book, I will use it in such a
sense. The following is an example of a matrix:

A =
[
3 5 2
a 1 18

]
(M.1)

Because a matrix is a rectangular array, it has a dimension. The matrix Asize
above has dimension 2×3 because there are 2 rows and 3 columns. We could
also write this as

A ∈M2×3 (M.2)

This can be read as “A is a matrix with dimension 2×3” or as “A is an element
of the set of 2×3 matrices.” Note that the symbol ∈means “is an element of”
andM2×3 is “the set of all matrices of dimension 2× 3.”
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Also note that the dimension order is very important and is always
written as rows × columns. M2×3 and M2×3 are entirely different sets of
matrices.

A matrix is square if the number of rows equals the number of columns. square
That is, B is square if

B ∈Mn×n (M.3)

for some number n ∈Z+. If a matrix is square, the set is often denoted simply
byMn. The matrix A above is not square because the number of rows does
not equal the number of columns.

M.1.1 Representation The next sections cover the algebra of matrices.
To ease the notation, let me show you two ways of representing matrices.
First, here is matrix A written out.

A =



a11 a12 a13 · · · a1c
a21 a22 a23 · · · a2c
a31 a32 a33 · · · a3c
...

...
...

. . .
...

ar1 ar2 ar3 · · · arc


(M.4)

Note that the subscripts can also use a comma to separate the values. That
is only done, however, when you get to double digits and ambiguity ensues.
For instance, does a242 represent a2,42 or a24,2? Perhaps it actually represents
a2,4,2 in a tensor. Who knows when ambiguity enuses?

When we stick to single digits for the indices, commas are dropped.

Note that every element in the A matrix is represented by a lowercase
a and its r, c position in the matrix. This allows us to simplify representation
at times:

A =
[
aij

]
(M.5)

Here, i is the row index and j is the column index.

Now, with these two representations, we can enter the realm of the
algebra of matrices.
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M.2: Addition

Matrix addition is closed. This means that the sum of two matrices will al-
ways give you another matrix. . . as long as it makes sense to add two matri-
ces. Two matrices are can be added if they have the same dimension.1

Let A ∈ Mr×c and B ∈ Mr×c for some values of r and c. A and B are
commensurate and can be summed. Matrix addition is element-by-element
(elementwise) addition. Thus,elementwise

A + B =



a11 + b11 a12 + b12 a13 + b13 · · · a1c + b1c
a21 + b21 a22 + b22 a23 + b23 · · · a2c + b2c
a31 + b31 a32 + b32 a33 + b33 · · · a3c + b3c

...
...

...
. . .

...
ar1 + br1 ar2 + br2 ar3 + br3 · · · arc + brc


(M.6)

This can also be symbolized (shortened) as

A + B =
[
aij + bij

]
(M.7)

Matrix addition has a zero (additive identity). It is the commensurate matrixzero
with all elements equal to zero:

0 =
[
0ij

]
(M.8)

How does it work in addition? Just as you would expect:

A + 0 =



a11 + 0 a12 + 0 a13 + 0 · · · a1c + 0
a21 + 0 a22 + 0 a23 + 0 · · · a2c + 0
a31 + 0 a32 + 0 a33 + 0 · · · a3c + 0
...

...
...

. . .
...

ar1 + 0 ar2 + 0 ar3 + 0 · · · arc + 0


= A (M.9)

This can also be symbolized (shortened) as

A + 0 =
[
aij + 0

]
=

[
aij

]
(M.10)

I leave it as an exercise to prove A + 0 = 0 + A = A.exercise

1When the matrices have the correct dimension to perform the mathematical operation, they
are called “commensurate.” For addition, commensurate matrices have the same dimension.
For multiplication, the requirement is much different (see M.3).
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Matrices also have an additive inverse.As with scalar arithmetic, a ma-
trix plus its additive inverse equals the zero matrix; that is, if B is the additive
inverse of A, then A + B = 0.

Two things about the additive inverse: First, it is commensurate with
the original matrix. Second, it is unique (just as in scalar arithmetic).

To calculate the additive inverse of A, just negate each element of A.
Thus, if B =

[
−aij

]
then B is the additive inverse of A.

Finally, as with all elementwise operations, matrix addition is both
commutative and associative:

• A + B = B + A

• (A + B) + C = A + (B + C)

In summation, matrix addition behaves like scalar addition, as long as the
matrices are commensurate. commensurate

M.3: Multiplication

There are many, many, many types of multiplication with matrices. The one
selected depends on the intention (the need). They include scalar product,
matrix product, Hadamard product (a.k.a. Schur product), and Kronecker
product. As only the first two are typically seen in an undergraduate linear
models course, we will only discuss those two here.

M.3.1 Scalar Product As in arithmetic, the scalar product arose from
needing to repeatedly add a matrix to itself. Thus, instead of writing A +
A + A + A + A + A + A + A, one could write 8A, where 8 is a scalar. This was
quickly generalized to non-integer values for the scalar multiple, just as 3×a
was quickly generalized to things like 4.25× a.

Scalar multiplication is defined as

cA =
[
caij

]
(M.11)

Scalar products are commutative. That is, if c is a scalar and A is a matrix, commutative
then cA = Ac. This will come in handy later, so be aware of it. Note that c
does not need to be a natural number.
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Figure M.1: A schematic designed to illustrate commensurability with matrix multipli-
cation. Note that the “inner” dimensions of the factors must be equal and that the product
dimension is the “outers” of the two factors.

Scalar products are also associative. That is, if c is a scalar, then theassociative
following are equivalent:

• cAB

• (cA)B

• c (AB)

• AcB = ABc

Scalar multiplication is also distributive over matrix addition. Thus, c (A + B) =distributive
cA + cB.

M.3.2 Matrix Product The matrix product is the multiplication that is
(usually) meant when one just says “matrix multiplication.” Its definition
arises from linear algebra and repeated linear transformations. It has many
nice properties. Calculation is not one of them.

Let us define two matrices A and B such that the number of columns
of A equals the number of rows of B. Their product is defined as

AB =
[
abij

]
=

∑
k

aikbkj

 (M.12)

where k ranges between 1 and the number of columns of A. The dimension
of the product is the number of rows of A by the number of columns of B.
That is, let A ∈ Mr1×c1 and B ∈ Mr2×c2. Then, one can multiply A and B if
c1 = r2. The dimension of the product is r1× c2. Figure M.1 illustrates this.
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Example 13.1: Here is an example of matrix multiplication. Let us define our
two matrices as

A =
[
1 2 3
4 5 6

]
(M.13)

and

B =


a b c
d e f
g h m

 (M.14)

Let us find the product AB. •

Solution: The first step is to check that multiplying these matrices can be
done. Do the number of columns of A equal the number of rows of B? Note commensurate
that A ∈ M2×3 and B ∈ M3×3. Because the “inners” of AB are equal to each
other, the matrix multiplication AB makes sense.

Second, we determine the dimension of the product. It is the number
of rows of A by the number of columns of B: 2× 3, the “outers.”

Third, since we know the dimension of the product, we just have to
fill in the blanks in the matrix:

AB =
[
− − −
− − −

]
(M.15)

The top-right element in the product matrix is element 1,1. Thus, by our
definition, it equals

ab11 =

∑
k

a1kbk1

 (M.16)

= [a11b11 + a12b21 + a13b31] (M.17)

= [1a+ 2d + 3g] (M.18)
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The top-middle element, ab12, is

ab12 =

∑
k

a1kbk2

 (M.19)

= [a11b12 + a12b22 + a13b32] (M.20)

= [1b+ 2e+ 3h] (M.21)

Note what is happening here. The elements of the “top-right” cell is the inner
product of the top row and the right column. Similarly, the bottom-centerinner product
element is the inner product of the bottom row and the center column.

I leave it as an exercise for you to finish the multiplication. Here is theexercise
final product:

AB =
[
1a+ 2d + 3g 1b+ 2e+ 3h 1c+ 2f + 3m
4a+ 5d + 6g 4b+ 5e+ 6h 4c+ 5f + 6m

]
(M.22)

�

In scalar arithmetic, we have a multiplicative identity, multiplicative inverse,
and multiplication is commutative, associative, and distributes over addi-
tion. All of these hold for matrix multiplication — except commutativity. Inexcept
general, AB , BA, even when the multiplications both make sense.

The multiplicative identity, which we will symbolize by I, has theidentity
property that AI = IA = A.2 Note that I is a square matrix.

If a multiplicative identity exists, then a multiplicative inverse also
exists. The inverse of a matrix A, denoted A−1, is a matrix that satisfies theseinverse
two requirements:

AA−1 = A−1A = I (M.23)

Not all matrices have inverses. Those that do not are called singular. Those
that do are called invertible.invertible

Only square matrices can be invertible. However, not all square ma-
trices are invertible. From linear algebra, a matrix is invertible if and only if
it is square and is of full rank.full rank

2Technically, this statement is only true if A is square. If it is not square, then the two I matrices
will have different dimension. We will restrict ourselves to square matrices. The “generalized
inverse” is beyond the scope of this text.

428



A consequence of this is that a matrix is invertible if its determinant
is non-zero. In general, the calculation of the determinant and the inverse determinant
are computationally intensive. However, they are rather straight-forward for
2× 2 matrices.

Let A ∈ M2×2. Then, the determinant of A is detA = a11a22 − a12a21.
Note that the determinant is a scalar, not a matrix.

Theorem M.1. The inverse of A is

A−1 =
1

detA

[
a22 −a12
−a21 a11

]
(M.24)

Proof. To prove this, we will show AA−1 = I and A−1A = I.

AA−1 =
[
a11 a12
a21 a22

]
1

detA

[
a22 −a12
−a21 a11

]
(M.25)

=
1

detA

[
a11 a12
a21 a22

][
a22 −a12
−a21 a11

]
(M.26)

=
1

a11a22 − a12a21

a11a22 − a12a21 −a11a12 + a11a12

a21a22 − a21a22 −a12a21 + a11a22

 (M.27)

=
1

a11a22 − a12a21

a11a22 − a12a21 0

0 −a12a21 + a11a22

 (M.28)

=
[
1 0
0 1

]
(M.29)

= I (M.30)

Thus, we have shown that AA−1 = I. This is one-half of the proof. I leave it
as an exercise for you to prove the second half: A−1A = I. exercise

Note: The reason I provide the mathematics for 2 × 2 matrices is that in
our study of simple linear regression, many of the important calculations
will be done with 2× 2 matrices. See Chapter 2.
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Note: Formulas exist for 3 × 3 matrices, too. However, once we move
beyond that, hand calculations are time-prohibitive. At the end of this
section, I provide some examples of performing these calculations in R.

Now that we have a mechanism to calculate a multiplicative inverse, let us
see that not all square matrices have one.

Example 13.2: Let A ∈M2×2 be defined as

A =
[
1 3
2 6

]
(M.31)

Calculate A−1. •

Solution: Let us calculate A−1 using our formula,

A−1 =
1

detA

[
a22 −a12
−a21 a11

]
(M.32)

Applying this formula is straight-forward:

A−1 =
1
0

[
6 −3
−2 1

]
(M.33)

Yes, the determinant of A is detA = 1× 6− 3× 2 = 6− 6 = 0. Since the deter-
minant is 0, the inverse does not exist (one cannot divide by 0). �singular

Note: What is it about the A matrix that makes it singular? Note that
the second column is just 3 times the first column (or the second row is
twice the first). This means the matrix is not full rank. The columns are
not linearly independent. When we get to using these matrices with realindependent
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data, we will see this as the second column gives us no knowledge about
the world that is not already contained in the first column. The second
column is redundant. redundant

§ § §

So far, we have seen the multiplicative identity and the multiplicative in-
verse. It is time to note that matrix multiplication is not commutative.

Theorem M.2. Matrix multiplication is not commutative. That is, there exist A
and B such that AB , BA.

Note: If A and B are not square with the same dimension, then this state-
ment is trivially true.

Proof. The proof is simple. It is simply a counter-example. Let

A =
[
3 1
2 7

]
(M.34)

and

B =
[
1 1
1 1

]
(M.35)

Note that AB , BA.

Since we have found a counter-example, we have shown that matrix
multiplication is not commutative, in general.

While technically correct, this proof leaves us feeling a little empty. So we
found one counter-example. Cool beans. But we learned precious little about
commutativity with matrix multiplication. Let us explore a bit and see if we
can determine when matrix multiplication is commutative. We may learn
something interesting.
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First, let us assume A and B are square and commensurate. This en-
sures that AB and BA can be calculated. For instance, let both be 2×2 matri-
ces. Then, AB is

AB =
[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
(M.36)

=

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

 (M.37)

and BA is

BA =
[
b11 b12
b21 b22

][
a11 a12
a21 a22

]
(M.38)

=

b11a11 + b12a21 b11a12 + b12a22

b21a11 + b22a21 b21a12 + b22a22

 (M.39)

=

a11b11 + a21b12 a12b11 + a22b12

a11b21 + a21b22 a12b21 + a22b22

 (M.40)

By comparing the two product matrices, AB and BA, we can determine an
instance where multiplication is commutative.

For instance, if a12 = a21 = 0 and b12 = b21 = 0, then the two product
matrices are the same. In other words, if both A and B are diagonal matrices,
multiplication will be commutative. That’s an interesting consequence we
would have missed if we just stopped with our proof.

In fact, it can be proven that multiplication of diagonal matrices is
commutative in general. Kewl!Cool beans!

Theorem M.3. Let A and B be diagonal matrices of the same size. The product is
commutative; that is, AB = BA.

Proof. Since A and B are diagonal and of the same shape, they can be repre-
sented as

A =



a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 0
...

...
. . .

...
0 0 0 · · · an


(M.41)
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and

B =



b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 0
...

...
. . .

...
0 0 0 · · · bn


(M.42)

Their product is

AB =



a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 0
...

...
. . .

...
0 0 0 · · · an





b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 0
...

...
. . .

...
0 0 0 · · · bn


(M.43)

=



a1b1 0 0 · · · 0
0 a2b2 0 · · · 0
0 0 a3b3 0
...

...
. . .

...
0 0 0 · · · anbn


(M.44)

Similarly, the product BA is

BA =



b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 0
...

...
. . .

...
0 0 0 · · · bn





a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 0
...

...
. . .

...
0 0 0 · · · an


(M.45)

=



b1a1 0 0 · · · 0
0 b2a2 0 · · · 0
0 0 b3a3 0
...

...
. . .

...
0 0 0 · · · bnan


(M.46)

Since scalar multiplication (in the cells) is commutative, we have

=



a1b1 0 0 · · · 0
0 a2b2 0 · · · 0
0 0 a3b3 0
...

...
. . .

...
0 0 0 · · · anbn


(M.47)
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= AB (M.48)

Thus, we have shown AB = BA for two diagonal matrices of the same size.

§ § §

Finally, I leave it as an exercise for you to prove that matrix multiplicationexercise
is associative (when the multiplication can be done). That is, if ABC can be
calculated, then it can be calculated as either (AB)C or as A (BC).

M.4: Other Matrix Terms

There exist other helpful operations on matrices. Already, we have come
across the determinant as being especially helpful in determining if a matrix
is invertible or singular.

Another useful function is the trace. It is just the sum of the diagonaltrace
elements. That is:

tr A =
r∑
i=1

aii (M.49)

The formula is simple. . . deceptively so. In fact, one may wonder what the
trace actually tells us about a matrix. Well, in general, you will need to revisit
your matrix algebra class notes. In linear models, however, the trace is used
to calculate the number of degrees of freedom (see Section 2.3).

The transpose of a matrix is just the matrix where the rows and columnstranspose
are switched. Thus, if B is the transpose of A, then bij = aji . In symbols, we
indicate the transpose as

B = A′ (M.50)

In all cases, A′A and AA′ both exist and are symmetric. Also, the rank of
A′A = rankAA′.

A matrix is symmetric if it is equal to its transpose, A = A′.symmetric [
aij

]
=

[
aji

]
(M.51)

Note that only square matrices can be symmetric. Symmetric matrices have
some nice properties with respect to calculations.

Also note that one can “symmetrize” any square matrix. That is, onesymmetrize
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can form symmetric matrix X from a square matrix A as

X =
A + A′

2
(M.52)

I leave it as an exercise to prove that X is symmetric. exercise

One important feature of symmetric matrices is that they can be trans-
formed into a diagonal matrix. If A is symmetric, then there exists a Q such
that AQ is diagonal. Why is this helpful? First, remember that multiplica-
tion of diagonal matrices is commutative. Second, as you will see in the text,
diagonal covariance matrices indicate independence.

This means that any set of variables can be linearly transformed into
a set of independent variables. This fact is the basis for a procedure called
“principal component analysis.”

The j vector is a vector of 1s. It is used to calculate row sums (if pre- j vector
multiplying) or column sums (if post-multiplying). The matrix J is a matrix
of 1s. It does what j does, but puts the sums in a matrix.

The ei vector is a vector of 0s, with a 1 in the ith position. It is used in ei vector
proofs, as it can be used to select an individual row, column, or element of a
matrix.

The eigenvalues of a matrix A are those values λ that solve the equa- eigenvalue
tion Av = λv. The vectors v corresponding to each of the eigenvalues are
called the eigenvectors.

A matrix A is idempotent if AA = A. The trace of an idempotent ma- idempotent
trix equals its rank. This is rather important in studying linear models, since
the rank is also the degrees of freedom.

Matrices A and B are orthogonal, A ⊥ B, if A′B = 0. That is, if the
inner products of the columns of A and B are orthogonal, then the matrices
themselves are orthogonal.

A matrix P is a projection matrix if it is idempotent. The purpose projection matrix
of projection matrices is to project a higher space onto a subspace. If P is
also symmetric, it is called an orthogonal projection matrix. This means it
projects the larger space orthogonally (perpendicularly) onto the subspace.
Think of shining a flashlight on a plant. If you put the flashlight directly over
the plant, it will project the plant orthogonally onto the floor. If you do it at
an angle, then the projection is called oblique. oblique projection

The key in both instances is that you are simplifying a complicated
reality (3-D object) onto a simpler model (2-D shadow).
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M.4.1 Positive Definite Matrices A matrix A is a positive definite (pd)positive definite
if q′Aq > 0 for all non-zero vectors q. It is usually difficult to determine if a
matrix is positive definite (pd). However, once you know it is, there are some
important properties, which we look at in the next section (Sections M.5 and
M.5.1).

M.5: Consequences

With these definitions, there are a lot of consequences. Many of which are
important in the study of linear models. This section covers many of them.

First, when taking the transpose of a product, you switch the order of
the multiplication: (AB)′ = B′A′. A similar result holds with inverses. The
only difference is that all three inverses must exist: (AB)−1 = B−1A−1.

Lemma M.4. For any matrix X, the matrix X′X is symmetric.

If you know the determinant of a matrix, you can easily calculate the deter-
minant of a scalar multiple of that matrix.

Lemma M.5. If c ∈R and A ∈Mn, then detcA = cndetA.

There is a similar result with the trace of a matrix.

Lemma M.6. If c ∈R and A ∈Mn, then tr cA = c tr A.

M.5.1 Positive Definite Matrices There are a lot of interesting prop-
erties of positive definite matrices. So, let us break these into a separatepd
subsection.

Lemma M.7. The diagonal elements of a pd matrix are all positive. That is, let
A ∈Mn be positive definite, then aii > 0, ∀i ∈

{
1,2, . . . ,n

}
.

This can easily be shown by letting the q′ row vector be ei. The quadratic
form q′Aq would therefore equal the diagonal element at position i. Since A
is positive definite, that element must be greater than 0.

Note that the converse is not true. Just because the diagonal elements
are all positive does not mean that the matrix is positive definite. For an
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example, note

A =
[
1 1
1 1

]
(M.53)

is not positive definite. To see this, let q′ be the vector [1 − 1]. Then

q′Aq = [1 − 1]
[
1 1
1 1

] [
1
1

]
(M.54)

= [0 0]
[
1
1

]
(M.55)

= 0 (M.56)

Since this is not greater than 0, A is not positive definite.

Note that the determinant of this A is 0. This suggests a second conse-
quence: The determinant of a positive definite matrix is positive. This means
all pd matrices are invertible. Similarly:

Lemma M.8. The inverse of a pd matrix is also pd. That is, if A is positive
definite, then so is A−1.

To see this, ask yourself: What is the determinant of the inverse of a thoughts
matrix? How can you use that to show that the inverse of a positive definite
matrix is also positive definite?

Since the determinant of a pd matrix is positive, all of the eigenvalues
are positive. And, since all of the diagonal elements of a pd matrix are posi-
tive, then the trace is positive. Since the trace is used to calculate the degrees
of freedom, the matrix must be positive definite.

If X is a full rank matrix, even if not square, X′X is positive definite.

The converses of the above statements also require that the matrix is
symmetric. Thus, if A is symmetric and all of its eigenvalues are positive,
then A is positive definite.

And, most importantly, the covariance matrix is positive definite if the covariance
design matrix, X, is full rank. Otherwise, it is positive semi-definite and has
a determinant of zero.
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M.6: Statistics in Matrices

In this section, we rewrite some of the equations you learned in your previ-
ous statistics course in terms of matrices. This section is useful for matrix
practice. In all of the following, let Y be a column vector of length n.

Lemma M.9. The sample mean using matrices: Y = 1
n j′Y.

Proof.

1
n

j′Y =
1
n

[1 1 1 · · · 1 ]



Y1
Y2
Y3
...
Yn


(M.57)

=
1
n

(1Y1 + 1Y2 + 1Y3 + · · ·+ 1Yn) (M.58)

=
1
n

n∑
i=1

Yi (M.59)

= Y (M.60)

Lemma M.10. The sum of squared values using matrices: Y′Y.

Proof.

Y′Y = [y1 y2 y3 · · · yn ]


y1
y2

y3
...

yn

 (M.61)

= (y1y1 + y2y2 + y3y3 + · · ·+ ynyn) (M.62)

=
n∑
i=1

y2
i (M.63)
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Lemma M.11. The sample variance using matrices: s2y = 1
n−1 (Y− y j)′ (Y− y j).

Proof.

1
n− 1

(Y− y j)′ (Y− y j) (M.64)

=
1

n− 1
[y1 − y , y2 − y , y3 − y , · · · , yn − y , ]


y1 − y
y2 − y
y3 − y
· · ·

yn − y

 (M.65)

=
1

n− 1
(y1 − y )(y1 − y ) + (y2 − y )(y2 − y ) + · · ·+ (yn − y )(yn − y ) (M.66)

=
1

n− 1

n∑
i=1

(yi − y )2 (M.67)

Lemma M.12. The sample covariance using matrices: sxy = 1
n−1 (Y− y j)′ (X− x j).

Proof. This proof echoes the previous proof.

1
n− 1

(Y− y j)′ (X− x j) (M.68)

=
1

n− 1
[y1 − y , y2 − y , y3 − y , · · · , yn − y , ]


x1 − x
x2 − x
x3 − x
· · ·

xn − x

 (M.69)

=
1

n− 1
(y1 − y )(x1 − x ) + (y2 − y )(x2 − x ) + · · ·+ (yn − y )(xn − x ) (M.70)

=
1

n− 1

n∑
i=1

(yi − y )(xi − x ) (M.71)

Note that this notation leads to the synonym s2y = syy . It also leads to a nice synonym
proof that the covariance matrix is symmetric.

Definition M.13. Let Y be a random vector (a column vector whose elements are
random variables). The quantity V [Y] is called the variance-covariance matrix of
Y. It is often called just the covariance matrix of Y.
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Lemma M.14. Let Y ∈ Mr,c. If Y′ = [Y1, Y2, Y3, · · · ,Yr], then the elements
of V [Y] are

[
σij

]
, where σij is the covariance between Yi and Yj and σi,i is the

variance of Yi .

Lemma M.15. Covariance matrices are symmetric.

Lemma M.16. If Y is a random vector and X is not, then V [X′Y] = X′V [Y]X,
assuming the multiplication makes sense (the matrices are commensurate).
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M.7: End-of-Appendix Materials

M.7.1 Exercises

1. Prove A + 0 = 0 + A = A.

2. Prove matrix addition is commutative.

3. Prove matrix addition is associative.

4. Prove that scalar multiplication is associative.

5. Prove that scalar multiplication is distributive over addition.

6. Using a counterexample, prove that matrix multiplication is not com-
mutative when only one of the matrices is diagonal (thus showing that
both must be diagonal).

7. Let A be any square matrix. Show that 1
2 (A + A′) is symmetric.

8. Determine the determinant of J10.

9. Determine the rank of J10.

10. Prove that j10 j′10 is not positive definite.

11. Prove that j′10 j10 is positive definite.

12. Prove Lemma M.4.

13. Prove Lemma M.5.

14. Prove Lemma M.6.

15. Prove Lemma M.14.

16. Prove Lemma M.15.

17. Prove Lemma M.16.
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