CHAPTER 15:

NOMINAL AND ORDINAL DEPENDENT VARIABLES

OVERVIEW:

A RN A O W R T T PR D o e i

This chapter finishes our time examining various types
of dependent variables. In this chapter, we examine de-
pendent variables that are categorical — both nominal
and ordinal response variables are covered in this chap-
ter.

This could be variables with an ordering (like a Lik-

ert scale) or without (pet type). The type of regression
used needs to take into consideration the characteris- _
tics of the dependent variable. Thus, this chapter starts ! R R T i T
with modeling nominal variables (no ordering) and pro- Sl s i VLA T R A
ceeds to ordinal variables an ordering).
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One of the most pervasive research questions in Political Science is to predict a per-
son’s vote based on demographic information. In other words, if you know a person’s
age, gender, income, education, and religion, how well can you predict how that in-
dividual will vote in the upcoming parliamentary election?

At first glance, this question appears to be a binary dependent variable prob-
lem. After all, there are only two parties, right? Well, even if you ignore third par-
ties, there is a third option: abstention. In each Ruritanian parliamentary election, a
sizable number of registered voters decide not to vote. For instance, in the 2016 elec-
tion, while Kuznécov (of the royalist Kral a Zemé party) received 48% of the vote cast
and Ivanovi¢ (of the republican Republikadnska Strana) received 46%, a full 45.3%
of the eligible voters did not vote. Thus, the distribution of votes in this election
is 26.3% Kuznécov, 25.2% Ivanovi¢, 3.2% other, and 45.3% none of the above. As
such, conclusions based on those models that assume a binary outcome have definite
issues with generalization to the voting public at large. They are ignoring important
information.

A better alternative is to specifically add in ‘abstention” and model the three
possible outcomes at once (or ‘abstention’ and ‘other’ and model the four). Such a
regression model is called a nominal regression model or a multinomial regression
model, because there is no inherent ordering among the levels of the dependent
variable.

There is a second type of dependent variable that is closely related to the
nominal case — the ordinal dependent variable. The difference between the nominal
and the ordinal is that the ordinal has more information contained in it. There is no
ordering in the nominal case, whereas there is an implicit ordering in the ordinal
case.! Examples of ordinal variables include ratings and indices.

If we just use our logistic regression methods (Chapter 12), we come up with
some odd results. If we force a nominal variable into just two categories, we lose
information in the data. If we treat ordinal dependent variables simply as nominal,

10rdinal is actually a portmanteau for “ordered nominal.”
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information is also lost. If we treat them as continuous, our conclusions may not
match reality.

Thus, both nominal and ordinal dependent variables need their own mod-
eling methods. This chapter examines how to model both the nominal dependent
variable and the ordinal dependent variable more properly.?

Note: This chapter sits uneasily here. From the standpoint of the dependent

variable type, this is its proper place. However, these are not generalized lin-

ear models (GLMs). They are particular expansions to the GLM paradigm. As paradigm
such, if you are looking at the GLM modeling method as being the unifying

theme to this part of the book, this chapter should not exist.

But, it does.

2The study of statistics emphasizes both estimating the value (expected value) and the variance
of that estimate (confidence interval).
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15.1: Nominal Dependent Variable

A nominal variable is a categorical variable where there does not exist a meaningful
ordering in the categories. Examples may include job type, presidential vote (and
non-vote), and beer brand choice. These variables are categorical — not numeric
— and the categories have no inherent ordering. White Collar is not ‘greater than’
Professional. Voting monarcista is not ‘more than’ voting republikdn. Widmer is not
‘more than’ Coors.?> How do we model such dependent variables?

There are a couple of ways of doing this. The first, easiest, and most un-
derstandable is to model the variable as a series of binary dependent variables. We
already understand how this works, the testing of the model is already conceptually
understood, and it works (not really, but close?).* There are just a couple things to
clarify.

I 15.1.1 MatHEMATICAL MODEL As with the simply binary dependent variable
case, let us layout the mathematical background to the nominal dependent vari-
able case. As in the binary dependent variables case, we are actually modeling the
underlying probabilities of each of the outcomes. Also, as in the binary case, there
are five requirements for the random variable to follow a Multinomial distribution
(cf, Section 13.1):

. the number of trials, #, is known;

. each trial has ] possible outcomes;

1
2
3. the success probability for each trial, {nl, T(o,.. .,n]}, is constant;
4. each trial is independent from the others; and

5

. the random variable is the number of each type of outcome in those # trials.

Thus, if we let 7t; be the probability that category j is selected, then the fol-
lowing two conditions must hold:

0<mj<1 forauje{l,z,...,]} (15.1)
]
Z =1 (15.2)
j=1

30f course, there may be a time when you are predicting republikédn vote by examining an
underlying level of conservatism. In such a case, monarcista—republikdn would be ordered.
Thus, it really depends on what you are predicting (as always).

4Usually. Nothing in statistics always is best. As you have seen by now, there are always
methods that work better, but with trade-offs. The science here is to be aware of the strengths
with the weaknesses and balance them to get closer to the true process you are trying to
model.

442



Condition (15.1) must hold because we are dealing with probabilities bounded by
0 and 1, and Condition (15.2) holds because one of the | possible outcomes must
happen. In the binary case, our two probabilities were 1t and 1 — 7, which satisfies
the second condition by default and the first because it makes no sense to study
phenomena that always or never occurs.

When we generalize the binary case, we need to select an appropriate proba-
bility distribution — one that can model | possible outcomes with | different prob-
abilities. That distribution is called the multinomial distribution.’ The probability
density function for the multinomial distribution in the general case is

n!
't n}q (15.3)

fx(X) =

xplxpl - xg!

Here, x; are non-negative integers and }_x; = n. The expected value of this distribu-
tion for a specified outcome is
m[xj] = nm; (15.4)

and the covariance between two outcomes is

Cov [Xi,X]-] = —nTT; (15.5)

Be aware that X is a vector. So, if n =1 and | = 4, the following could be outcomes
from the Multinomial distribution:

0
|
0

In the first example, a 2 came up; in the second, a 1; in the third, a 3. Note that in
each case, the sum of the entries is n and the number of entries is J.

O O O
o = O O

Now, if n =4 and | = 3, the following could be outcomes from a Multinomial
distribution:
0 2 0
x:[?)]; x:[l]; x=|0
1 1 4

In the first example, three 2s and a 3 came up; in the second, two 1s, a 2, and a 3
came up; in the last, four 3s came up.

Note: Be aware that the sum of the entries in each outcome vector is n and
that the number of entries is J.

SRecall that the distribution in the binary case was the binomial distribution.
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If the random variable X follows a Multinomial distribution with n = 3 and « =
[0.1,0.5,0.4], then we could write it as

[ 0.1
X~ Multiln=3, t=| 0.5 (15.6)
| 0.4

and the expected value of X would be

0.3 ]
1.5 (15.7)
1.2 |

E[X] =

The expected value of X3 would be E[X3] =1.2.

Note: Make sure you see that this is just an extension of the binomial distri-
bution, where '
_ n X(1 _ . \H=X
fx(x) = o= " (1-m) (15.8)

with

x:[ x ] and n:[ T ] (15.9)
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Example 1

Let us illustrate the multinomial distribution with a typical “rolling a die
example.” Assuming that the die is fair, then the probability of rolling each
of the six outcomes is %. If we roll a fair die 3 times, what is the probability
the outcome is [1,0,1,0,0,1]’ (thatis,a 1, a 3, and a 6 come up)? What is the

expected value of X?

Solution: This is a multinomial experiment. There are a fixed number of possible
outcomes (six), the probabilities of each outcome are constant (they do not change as
we roll the die), and the probabilities sum to one. As such, we know the probability

mass function is

K= x3!39!c4! x5! xg! (%)x1 (%)xz (%)XS (%)m (%)XS (%)x6

e () (0 ) (21 (2

_0 O = O -

" 36

Thinking through the problem should get us to the same point.
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robustness

Finally, we know the expected value is

1/6 0.5

1/6 0.5

e | o5
E[X]=nw=3 176 171 05 (15.14)

1/6 0.5

1/6 0.5

As we have a formula for our expected value, we have our mechanism for estimating
the several ji in an experiment (or set of data), count the number of times outcome
j occurred and divide by the total number of trials (or records). This is actually the
maximum likelihood estimator for ust Thus, our linear predictor is

logit(nj) =Bjo+Bjix1+Bj2xa+ -+ BjkXk (15.15)

Notice that this linear predictor has k + 1 parameters to estimate for each of the j
categories. Thus, you will need more than j(k + 1) pieces of data to fit it. There are
ways to reduce the dimensionality of the problem (reduce the number of parameters
in need of estimation); however, these are beyond the scope of this book.

We need the logit link (or something just like it) to force our linear predic-
tions to be in the range 7; € (0,1). As any link that maps g : R — (0, 1) is acceptable,
we could use the log-log link, the complementary log-log link, the probit link, or
any of an infinite number of others... in theory. As before, the choice of the link
function is largely a matter of tradition. If you deviate from tradition, the burden
of proof is on you to justify the selection. Furthermore, the differences are usually
slight. If the differences are large, then there is something wrong with your research
model. Because of this, it would behoove you to fit your research model using a cou-
ple different (appropriate) link functions to help determine the stability (robustness)
of your results.
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Note: Thus, there are two things that you need to take away from this dis-
cussion: First, we are able to fit the entire model at once because we have
a distribution that can produce the necessary nominal results. Second, we
model the underlying probabilities (like in the binary case), not the actual
outcomes, as usual.

To see this in action, let us look at an extended example.

Example 2

The General Social Survey (GSS) at the University of Chicago conducts an
extensive survey of adult Americans every year. The data is freely available
from NORC. In this small subset of the data, gssocc, I would like to pre-
dict a person’s occupation category (occ) based on race (white), years of
education (ed), and years of experience (exper).

Before getting started, let us examine the variables involved.® The race variable is
binary, with a ‘1’ representing the person identifying as ‘white’ and a ‘0’ otherwise.
As a side note, this is a race variable, not an ethnicity variable. Thus, Hispanics may
self-identify as either white or non-white. Also note that this is a self-identification
variable; that is, the individual being surveyed decided his or her reported race.
Looking at a frequency count, a full 91.69% of the respondents stated they were
white. This is significantly higher than the population at large, where approximately
80% of Americans were white when the survey was conducted. When we do the final
analysis, we need to keep this in mind, as it is not necessarily representative of the
nation as a whole.

The median number of years of education in the sample is 12 years, which
corresponds to graduating from high school. The mean number of years is 13.09,
which indicates the sample is right skewed (the Hildebrand ratio is +0.37). Further-
more, it is interesting to note that 51.0% of the sample only graduated from high
school. Additionally, 23.4% of the sample received a bachelor’s degree or more,
which is close to the population (27% have received a bachelor’s degree or higher).
Finally, 18.7% of the sample did not graduate from high school, which is close to
the 15% estimate of the population. From this, it appears as though the sample is
representative of the population in terms of educational attainment.

The third independent variable is the years of experience in the job. There
are no general statistics for the population, so we will have to make a large assump-

6The raw — and current — data can be accessed from http://www.norc.uchicago.edu/
GSS+Website/.
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White  Education Experience

White 1.0000 0.0243 -0.0794
Education 0.0243 1.0000 -0.2740
Experience -0.0794 -0.2740 1.0000

Table 15.1: Correlation matrix for the three independent variables in the example, from
gssocc data.

tion that the sample represents the population.” In the sample, the years of experi-
ence varies widely, from 2 to 66 years. The median is 17 years and the mean is 20.5
years. Thus, the sample is also right skewed. This makes sense as this is a count
variable. Count variables tend to be right skewed as they cannot take on negative
values. In fact, there is nothing in the distribution of the experience variable that
looks wrong. With that said, however, one still needs to mention the caveat.

Looking at the correlations amongst the independent variables can help us
avoid any unpleasantness and surprises due to collinearity and multicollinearity.
The correlation matrix (Table 15.1) does not show any hint of multicollinearity. In
fact, this correlation matrix suggests that these three variables are effectively inde-
pendent of each other.?

Finally, let us note that there may be an inherent ordering in some of the jobs
(White Collar greater than Blue Collar), but not for all five of the categories. As
such, this is definitely a candidate for nominal regression.

7This was a safe assumption with respect to the education variable, but not with respect to the
white variable. As such, it needs to be mentioned that you are unable to check the represen-
tativeness of the experience variable.

8Pearson’s product-moment correlation test indicates that the correlation between education
and experience is statistically significant at the a = 0.05 level (t = =5.2152,df = 335,p <
0.0001). However, the coefficient of -0.2740 is a low level of correlation.
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Estimate  Std. Error z-value p-value

Intercept 3.1036 1.0110 3.07  0.0021
White 0.7090 0.6213 1.14  0.2538
Years of education -0.3721 0.0640 -5.81  0.0000
Years of experience -0.0259 0.0113 -2.30  0.0215

Table 15.2: Results from the GLM (using the binomial family and the logit link) predict-
ing whether or not a person is a blue collar worker. The AIC for this model is 304.75.

NoMINAL REGRESSION: Now, let us model the outcome variable with the three inde-
pendent variables. Actually, we need to step back and really think about what we
mean by ‘model the outcome’. Do I want to predict the probability that a person
will be Blue Collar given the input variables? Or: Do I want to predict the job cate-
gory given the input variables? These are different questions. They require slightly
different methods.

The first question actually asks a binary question: What is the probability
that a person will be Blue Collar (compared to all of the other job categories)? This
is very much like the questions asked in Chapter 12. Here, the dependent variable
takes on values 1 (Blue Collar) and 0 (not Blue Collar).

To answer this question, we need to create a variable called bluecol as an
indicator variable for Blue Collared-ness. Thus, the model we fit will be

bluecol ~ white+ed+exper

We would fit it using a generalized linear model, a binomial family, and a logit link.
The results of the regression are in Table 15.2. From this model, we can perform all
of the goodness of fit measures from Chapter 12.

Looking at the results from running the model, we see that greater levels of
education and greater levels of experience are associated with a lower probability
of being a blue collar worker. For Bob, an individual who responded that he was
white, had 20 years of education, and 10 years of experience in their current job, the
probability of being a blue collar worker is approximately 2% (as compared to not
being a blue collar worker).

Note: This last part is subtle, but extremely important. Here is why: What
is the probability that Bob is a white collar worker? If we do the same steps
above, we get that the probability that Bob is a white collar worker (as com-
pared to not being a white collar worker) is 13.1%. Similarly, if we continue
performing separate logistic regressions, the probability that Bob is a profes-
sional is 96.9%; menial, 2.3%; and craft, 7.9%.

Note that all of these probabilities add up to more than 100%. There
is something wrong here, since the probability that Bob holds one of these
five job types cannot be greater than 100%.
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moral of the story

the lesson

The problem is that we kept changing the base category. In Chap-
ter 12, we never mentioned the need to specify the base category since it
always defaulted to the opposite of what we were modeling. In other words,
we were actually measuring the probability of an event as compared to the
probability of ‘not the event’ (a.k.a. the odds of the event). This ensured that
the probabilities always added up to 100%. Within each of the above five re-
gressions, if we added the probability of the event that Bob holds job type X
with the probability that Bob holds job type not X, we always get 100%.

The lesson: Comparing probabilities of events is not as easy as when we were only
working in the binary realm. It is doable — easily so, with one small change. We
need to select a base category that does not change throughout our analysis. The
choice is up to you, as all choices are equally acceptable from a statistics standpoint.

Since we can select any job type as our base, let us select Blue Collar, since it
is the first level according to the alphabet. (We will see again shortly how to switch
between the bases.)

To perform this modeling, you will have to load the nnet package. Since this
comes with your base distribution of R, there is no need to install it. Once loaded
with the 1ibrary (nnet) command, to fit the better model, use the R command

” multinom(occ ~ white + ed + exper)

Because of the large amount of output, the regression table is structured slightly
different. The coefficients (in logit units) and the standard errors are still presented.
The statistical significance is not. However, a quick rule of thumb is that the variable
is statistically significant (at the @ = 0.05 level) if the parameter estimate is more
than twice the standard error. Table 15.3 presents the output from modeling the
data in the form given in the output.

Note that one of the five job types is missing: Blue Collar. This is because all
of the probabilities are measured with respect to Blue Collar. Thus, these percentages
are directly comparable (after transforming from logit units).

R is nice in that if you predict on a multinomial model, it will give you the
category with the highest probability, by default. Thus, according to this model,
Bob will most likely be a Professional (which was our conclusion above). If we
want the probabilities for each of the possible job types for Bob, we need to add
a type="probs" parameter to our function call:

|| predict (model.mnl, newdata=BOB, type="probs")

Such a call gives us the following probabilities (which sum to one, as they should):
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Coefficients:

Constant Term  White  Education Level Experience
Craft -1.8328 -0.7642 0.1933 0.0230
Menial -0.7412 -1.2365 0.0994 -0.0074
Prof -12.2595 0.5376 0.8783 0.0309
WhiteCol -6.9800 0.3349 0.4526 0.0299
Std. Errors:

Constant Term  White  Education Level Experience
Craft 1.1861 0.6324 0.0775 0.0126
Menial 1.5195 0.1996 0.1023 0.0174
Prof 1.6681 0.7996 0.1005 0.0144
WhiteCol 1.7144 0.9340 0.1023 0.0153

Table 15.3: Results of the multinomial regression. Note that the p-values are not pro-
vided. To determine which independent variables are statistically significant for predict-
ing the dependent variable levels, divide the coefficient estimate by the standard error. If
that ratio is greater than 2, then the variable is statistically significant at the a = 0.05

level.

BlueCol

Craft

Menial

Prof

WhiteCol

0.0020

0.0091

0.0020

0.9565

0.0304
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Base switching: If you wish to switch your base category, there are two options.
First, you can subtract the parameter estimates of the new base from all the other
bases. Thus, if we want to change the base from Blue Collar to Professional, we
would subtract the Professional parameter estimates from the other parameter esti-
mates. So, for example, the White Color estimates with Professional as the base will
be —6.9800—-12.2595 = 5.2795. Unfortunately, the standard errors are not so easily
calculated — or at all reasonably calculable by hand.

Also unfortunately, most statistical programs require you to physically re-
order the data to select a different base; most programs use the level of the first
data point as the base category. R does allow you to switch among the bases without
having to physically alter the data. Unfortunately, the method is rather arcane. For-
tunately, the RE'S package has a function, set .base that allows you to change the
bases much more easily.

Thus, to set craft as the base, we would use the command

” occ = set.base(occ, base="craft", data=gssocc)

I leave it as an exercise to rerun the analysis with craft as the base. Check that the
parameter estimates follow the above observation.

InTERPRETATION: The interpretation of the coefficients (parameter estimates) is the
same as for the binary dependent variable case. Just remember that the coefficients
are in logit units. In R, however, this library does not require you to back-transform
your predictions. To remember this, just look at the output — it is in proportions
already (a quick check is that they sum to one).

Goobpness oF riT:  The first check of the goodness of the model is the relative ac-
curacy (see also Section 12.5). The accuracy is the number of correct predictions
divided by the number of cases. The relative accuracy divides this number by the
accuracy of always selecting the modal category (the null model). For this dataset,
the modal category is Professional, with 140 out of 337 cases belonging to Profes-
sionals. Thus, the relative accuracy is %/% = 1.207. Thus, this model improves

accuracy by 21% over the null model. Is this good? It depends on your other models.

As Maximum Likelihood Estimation is used, the Akaike Information Criteria
score is also reported. For this model, AIC = 885. Is this good? Again, it depends on
your other models. In other words, model comparison needs another model. I leave
it as an exercise to see that the null model has AIC =1027. Thus, our model is much
better than the null model.

Now that we have looked at our model, let us look at the parameter estimates.
According to our model, Whites have a higher probability of being Professionals and
White Collar workers than they are to be Craft or Menial laborers. As for education,
higher levels of education are associated with higher odds of being a Professional or
a White Collar worker (both of these are statistically significant) than being a Blue
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Collar worker. Finally, years of experience are not a statistically significant predic-
tor of job type, as none of the coefficients are statistically significant (coefficient /
standard error > 2).°

So, we have a picture of Professionals and White Collar workers, when com-
pared to Blue Collar workers: they are White and well educated. Not an earth-
shattering conclusion, but it is encouraging to see that our conclusions do seem to
reflect reality.

9This rule of thumb comes from the fact that in a Normal distribution, the ratio needs to
exceed 1.96 to be statistically significant at the @ = 0.05 level. These parameter estimates
are not guaranteed to be Normally distributed. As such, the rule of thumb is to be more
conservative. Even with the rule of thumb, do not bet the farm.
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15.2: Ordinal Dependent Variable

Another variety of categorical dependent variables is ordinal. A variable is ordinal
if it is categorical and the categories have an underlying order to them. Examples
include movie ratings (number of stars), hurricane intensity, and so forth.

There are actually at least four ways of handling ordinal dependent vari-
ables:

1. Treat them as nominal. This allows us to fit ordinal data using previous tech-
niques. Unfortunately, it is inefficient as it ignores important aspects of the
data itself.

2. Treat their cumulative level as nominal. If the ordinal variable takes on values
1 -5, then create nominal variables corresponding to Level 1, Levels 1 and 2,
Levels 1-3, Levels 1-4, and Levels 1-5. This preserves much of the underlying
information and allows us to fit it using a previous method.

3. Assume that there is an underlying continuous process that you wish to fit.
The ordinal nature is just several threshold values along the possible values.
This reduces to a pseudo-OLS, where you also need to fit the threshold values,
not just the slopes and intercepts. Using Maximum Likelihood methods, this
is trivial to solve.

4. Pretend that the ordinal values are continuous and fit it using ordinary least
squares or one of its offsprings. This has the advantage of being easily fit.

Three of these ways have already been discussed, and you are quite adept at using
them (Options 1, 2, and 4). Only the third option is completely new to you. This
chapter focuses on how to fit Option Three.
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I 15.2.1 OprioN THREE Let us assume that there is an underlying continuous pro-
cess. We only experience (observe) this process through the ordinal variable. This
is very similar to how we first looked at binary variables: underlying process exhib-
ited only in the 0/1 outcomes (see Figure 12.2). Here, there is more than just the
one threshold (which traditionally defaulted to 0.500). Thus, we have two sets of
parameters to fit. The first is the parameters which describe the process (the Bs).
The second is the position of those threshold values (the ts).

Without going into the details, we will use Maximum Likelihood Estimation
as our fitting method because it has many nice properties. Thus, our underlying
process is

1= Bo+ PrX1 + Poxy+ oo+ PrXi (15.16)

Our thresholding process is illustrated in Figure 15.1. The line represents the under-
lying continuous process that you are trying to model. The A, B, C, and D represent
the observed ordinal values. The threshold values, 71, 7;, and 73 are the values of
that separate the observed ordinal values.

This model is very straight forward and understandable. Using R to obtain
the fitting is also straight forward. The results presented are also relatively straight
forward.

Thresholds Outcomes

/ D
3

T

— A

X

Figure 15.1: Schematic diagram of the thresholding process. The line represents the linear
continuous process. The ts represent the threshold values. A, B, C, and D represent the
ordinal outcomes.
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Variables: Value Std. Error t-value

Woman 0.743 0.078 9.50
White -0.400 0.118 -3.39
Age -0.020 0.0024 -8.17
Years of Education 0.098 0.013 7.52
Thresholds:

SD—D -1.700 0.237 -7.18

D—A 0.111 0.233 0.48

A —SA 1.979 0.236 8.37

Table 15.4: Result of ordinal regression in R. Note that the women tend to view President
Obama in a more favorable light; whites, less; older, less; and higher educated, more. All
of these agree with multiple surveys throughout his tenure as President.

Example 3

Let us use some more data from the GSS. This data explores the ‘warmth
of feeling’ the respondent has for President Obama. The demographic in-
formation is the gender (male), the race (white), the age, and the number
of years of education (ed). The response variable has four ordered levels:
Strongly Disagree (SD), Disagree (D), Agree (A), and Strongly Agree (SA).
Our goal is to explain a person’s feelings toward the president based solely
on demographic information.

Solution: Let us fit this data with ordinal regression. The function in R is polr,
which stands for “proportional odds logistic regression” (although the probit is an
option as a link function). This function requires the MASS package. Thankfully,
since MASS also comes with the base distribution of R, there is no need to install it,
only to load it via the 1ibrary (MASS) command.

The actual command to fit this model using ordinal regression is

” polr ( warm ~ male + white + age + ed )

This command will give the coefficients of the underlying linear regression and the
threshold values separating the four categories. From Table 15.4, we see that the
equation for the underlying linear process is

1 =0.743 xWoman +—0.400 x white +-0.020 x age + 0.098 x ed
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The thresholds are also listed. The threshold between Strongly Disagree and Dis-
agree is at 7y = —1.700. The threshold between Disagree and Agree is 7, = 0.111.
The threshold between Agree and Strongly Agree is 73 = 1.979. Thus, to calculate
our prediction, we calculate the prediction based on the linear model, #, and com-
pare that value to the intervals described by the thresholds. Thus, for Bob, who is
Male, White, 40 years old and has 20 years of education, we have

171 =0.740x0+-0.400x1+-0.020 x40+ 0.098 x 20 = 0.76

As 1 = 0.76, we have our prediction that Bob agrees with the president. If we actu-
ally want probabilities that Bob Strongly Disagrees, Disagrees, Agrees, or Strongly
Agrees, we would have to back-transform using the inverse of the logit function and
calculate each probability using integral calculus... or we could just ask the com-
puter to do it for us:

BOB = data.frame(male="Men", white="White", age=40, ed=20)
predict (model.oll, newdata=BOB, type="probs")

This gives the probabilities as

SD D A SA
0.0785 0.263 0.429 0.229

Thus, it is far from certain that Bob agrees (or strongly agrees) with the president,
although that probability is rather high: 0.429 + 0.229 = 0.658. ¢

Accuracy: Finally, let us look at the accuracy of the model. I leave it as an exercise
to show that the relative accuracy is 1.105, which indicates that the model is about
10.5% better than the null model (the modal category is “Agree”). This is not a
fantastic increase in accuracy, but we do know how certain demographics feel about
the president: Whites tend to disagree, Males tend to disagree, older people tend to
disagree, and lesser educated people tend to disagree.

Of course, we could have added in a quadratic education term to the model
to see if both the more-educated and the less-educated both support the president.
I also leave this as an exercise to show that there is no evidence of this. Thus, we
have no evidence that the relationship between education and presidential support
is anything other than linear.
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15.3: Extended Example: Cattle Feed

Now that we have been introduced to these two new types of regression, let us deal
with an example of each. This example tries to predict the feed type used for a cow.
Such a question would arise if there is missing data in your data file and you wanted
to estimate the missing value instead of throwing out the entire record.

Example 4

Previously, we attempted to model the weight of cattle based on a few factors.
Let us try something different. Let us predict the brand of food used by the
cattle based on the ranch, age, and weight.

Specifically, let’s first model feed type. Then, let’s say that the RUR
ranch sent a 21-year-old cow to slaughter at 1197 pounds. Which food brand
was most likely used? What are the probabilities of each brand being used?

Solution: Since the food brand is a nominal variable, we will use multinomial re-
gression. The data file is cattleData. Let’s load it and look at some summary
statistics on it.

library (nnet)
cowz = read.csv("http://rur.kvasaheim.com/data/cattleData.csv")
attach (cowz)

summary (cowz)

cor.test (weight, age)
table(ranch, feedType)

Note that there is (as expected) a strong correlation between age and weight. If we
are doing model selection, we will need to keep this in mind as this multicollinearity
will decrease the statistical significance of those two variables.

Note from the cross-tabulation that the EVA ranch only used Purina and the
TCL ranch only used Rangeland (in this sample). That fact would make it really
easy to predict the feed type for those ranches. The other ranches use a combination
of all of the brands.

With this information to guide us, we fit the model

cowModel = multinom(feedType ~ weight + ranch + age)
summary (cowModel)
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The first line fits the model. Note that the model did converge, so we can pay atten-
tion to the results. If it had not converged, we should first change the link function,
then realize that the multicollinearity is a problem. Dropping one or more variables
would be an appropriate action in that case.

The results of the summary (cowModel) command gives some insight into
the relationships. First, note that the coefficient estimate for ranchEVA for estimat-
ing Purina is 20.37. This is extremely high, meaning it is almost guaranteed that a
cow from the EVA ranch will used Purina.

But, from the cross-tabulation above, we already knew this.

Similarly, the coefficient estimate for ranchTCL for Rangeland is a huge
22.32. This indicates a cow from the TCL ranch will most certainly use Rangeland
food. Again, we knew this from our cross-tabulation.

Note from the regression table that Accuration is missing. All feed mea-
surements are taken with respect to that level. This is important to keep in mind if
we do this by hand. It is just something to note if we are using the computer to do
our calculations.

459



TS
So, let’s estimate the food used by our mystery cow. First, let’s define it:

|| mysteryMoo = data.frame(weight=1197, age=21, ranch="RUR")

Now, let’s predict the probabilities it used each of the feed types:

” predict (cowModel, mysteryMoo, type="prob")

The results tell us that the mystery cow most likely used Steakmaker. In fact, the
probability it used Steakmaker was 79%. The second most likely feed type was
Accuration (13%). ¢

I 15.3.1 Graraics Let us talk about graphics for a bit. A two-dimensional scat-
ter plot looks at two numeric variables. We can therefore easily plot a prediction
curve when dealing with only a single dependent variable and single independent
variable.

If there is a second independent variable, we can plot several curves, one for
each level in that second independent variable.

Once we move beyond two independent variables, graphics are more difficult
to do. A simple regression model like the one above may require dozens of graphics
to illustrate each aspect.

However, we can simplify things by focusing on only a couple independent
variables at a time. The choice depends on the story you are trying to learn (or tell).

GrarHic: Feep Type versus WEIGHT: For this first graphic, I am consciously making
the decision to plot the predicted probability on the y-axis, the cattle weight on the
x-axis, and have a prediction curve for each feed type. This will allow me to see the
effect of weight on the predicted food type.

This means I need to select values for the other two independent variables.
For the numeric age, I would typically use its mean or median, whichever was the
“typical” age for these cattle.

For the selected value of the ranch, I would either select the ranch to which
the mystery cow belonged (to continue that story) or the most popular ranch (to try
to generalize the story). It is best to do separate graphics for all ranches so that you,
the researcher, can better understand the effect of ranch on the probabilities. It is
always better to do more to understand.

So, here is the code to create the predictions:
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theWeights = seq(1019,1579, length=le4)

theAge = median (age)

PrRUR = predict (cowModel, newdata=data.frame (weight=theWeights
, age=theAge, ranch="RUR"), type="probs")

The prRUR variable contains 10,000 rows (one for each weight) and 5 columns (one
for each feed type). The entries are the probabilities.

Now, we just plot the data and these predictions:

par (family="serif", las=1)
par (xaxs="1i", yaxs="i")

par (mar=c(4,4,0,0)+0.5)
par(cex.lab=1.2, font.lab=2)

plot.new()
plot.window( x1lim=c(1000,1600), ylim=c(0,1))

axis(1l); axis(2)
title(xlab="Weight [1b]l")
title(ylab="Probability at RUR Ranch")

lines(theWeights,prRUR[,1], col=1) # Accuration
lines (theWeights, prRUR[, 2], col=2) # Purina

lines (theWeights, prRUR[, 3], col=3) # Rangeland
lines(theWeights,prRUR[,4], col=4) # Steakmaker
lines (theWeights, prRUR[, 5], col=5) # Wind and Rain

legend("topright", bty="n", col=1:5, 1lwd=2,
legend=c ("Accuration", "Purina", "Rangeland", "Steakmaker", "Wind
and Rain")

)

Note that this graphic includes a legend that lets the reader know which probability
curve belongs to which feed type. Legends are rather important to include on a
graphic. Remember that graphics should be stand-alone with their caption. Because
a legend contains so much information, it requires a large function. To see all a
legend can do, run ?"legend" in R.

Figure 15.2 is the resulting graphic. Note that the predicted feed type tends
to be either Steakmaker, for light cows, or Purina, for heavy cows. When the weight
of the cow is middling, there is great uncertainty in which feed type it used.

It is interesting that this analysis gives us additional insight on how we can
create big cows for slaughter. This suggests we should use Purina brand. This con-
clusion, however, is based only on the RUR ranch and a middle-aged cow.

More importantly, this conclusion assumes that the data are representative
of the population of interest. As this data was originally collected in conjunction
with a dissertation in Animal Science, I tend to think it is representative.
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Figure 15.2: Graphic of the probability for each feed type at the RUR ranch. The proba-
bilities vary with the cow’s weight. The age is held at the median, 21.

From a strictly statistical standpoint, the additional insight is limited. How-
ever, if you are hired by RUR ranch to determine the best feed type, this graphic
would be very persuasive for you, the decision-maker.

While we could create a similar graphic for feed type against age, I am not
convinced it would be helpful. Age is not something one would like to optimize like
weight. In other words, I am not sure what story I would tell about it.

Note: Don’t make graphics just for fun. Make sure you create them knowing
how to interpret them.
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15.4: Extended Example: The State University of Ruritania

A second example will try to model the level of the student given some information
about the student. Again, this may be interesting for imputation (filling in missing
data).

Example 5

Previously, we modeled the grade point average of students at the State Uni-
versity of Ruritania (Statni Univerzita v Ruritanii). Let us turn this around
and model the student’s class (Freshman, Sophomore, Junior, Senior) given
only the gender and the current GPA of the student.

Let us also predict the class of Eliska, a female student with a 3.33
GPA.

Solution: As usual, the first step is to import the data and look at a summary, includ-
ing a cross-tabulation of our categorical independent variable and the dependent
variable:

library (MASS)

suvrData = read.csv("http://rur.kvasaheim.com/data/suvr.csv")
summary (suvrData)

Let us pause here. Note that the class variable is an ordinal variable. We need to
let R know this:

suvrData$class = ordered(suvrData$class, levels=c ("Non-
Matriculated", "Freshman", "Sophomore", "Junior", "Senior")

)

summary (suvrData)

There we go, the levels for the class variable are in the right order. Let’s continue.

attach (suvrData)
table (gender, class)

Note that none of the non-matriculated students are female. This is just something
to know and remember as we get results.

Now, we can fit our model and look at the summary results:

|| suvrModel = polr(class ~ gender + gpa, data=suvrData)
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check!

|| summary(suvrModel)

A quick check that you have ordered the levels correctly is to look at the second table
in the summary output. The rows should describe subsequent levels.

The AIC of this model is 1547. The AIC of the null model

suvrNullModel = polr(class ~ 1, data=suvrData)
summary (suvrNullModel)

is 1566. Thus, our model is an improvement.
The model predicts that Eliska is a Junior (44.7%) or a Senior (36.5%):

eliska = data.frame(gender="Female", gpa=3.33)
predict (suvrModel, eliska, type="prob")

Here are the (abbreviated) raw results

Non-Mat Fresh Soph Junior Senior
0.00211 0.02356 0.16293 0.44656 0.36483

Thus, we do have an estimate for Eliska’s class level, but there is a second option
which is rather close. I'm not sure I would bet any money on where to put Eliska.

Regardless, it is highly unlikely for Eliska to be either non-matriculated or a
Freshman. Those probabilities, while non-zero, are very low. ¢
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Warning: Beware! Remember that the data are not representative of the population. The
distribution of the classes is quite similar to the probabilities predicted for Eliska. This is
not surprising. The effect of the independent variables on the dependent variable are not
statistically significant. Thus, these probabilities are essentially the relative proportions
of the classes in the sample.

GraruIC: Crass acaiNsT GPA: As for a graphic, we need our dependent variable
to be the probability of each class. Since there is only one numeric independent
variable, GPA, that will be the variable we graph along the x-axis.

The ultimate question is: What do we do with the gender variable?

One option is to plot the effect of gender on the same graphic. That means
we will have 5 x 2 curves on the same plot (the number of levels by the number
of genders recorded). That may be problematic as it may overwhelm the graphic.
Figure 15.3 is this figure. Note that it does allow us to compare everything at once.
However, you may find it overwhelming. .. or not.

For the higher GPA values, it is most likely that the student is a Junior, re-
gardless of the gender. At no place is it likely the student is either a Freshman or
non-matriculated. This is supported by the data, as the number of non-matriculated
students is just 2 and the number of Freshman is just 22 — out of a sample size of
n=0661.

We can also use this graphic to estimate the various probabilities for Eliska.
Remember she has a GPA of 3.33. Since Eliska is female, we look at the dashed lines.
Going to 3.33 on the x-axis and move vertically, we see that Eliska is most likely a
member of the cyan level — Junior — with a close second being the magenta level
— Senior. This conclusion agrees with our prediction above.

465



1.0 7
Non-Matriculated
== Freshman
= Sophomore
Junior
w—  Senior
0.8 -
= Male
== = Female
Z
= 0.6
=
<
2
S
S S
& [TTmmeeeeel
E _________________
Q 1 [
2 N
02 — <
0.0 +——— I l ' |
0 1 : | |

Figure 15.3: Graphic of the probability for each class level for each gender. Note that the
non-matriculated and the Freshman levels uniformly have low probability. This is due to
the nature of the data; only 2 non-matriculated and 22 Freshmen are in the sample of size
n = 661. This limits what we can say about the population, unless the level distributions
are similar to the population.
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15.5: Conclusion

In this chapter, we examined the special issues behind fitting dependent variables
that are either nominal or ordinal. Nominal dependent variables are still basically
fit with a series of logistic (or other link) regressions. The alteration comes about
because we need to keep the same base category throughout in order to make our
results comparable.

The ordinal dependent variable can be fit using a technique similar to the
previous chapter: fit an underlying linear function, then create thresholds to divide
a constant function into an ordinal response.

In both cases, predictions in R follow the typical structure, with the addi-
tion of being able to just predict the outcome category or being able to predict the
probabilities associated with the case fitting in each bin.
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15.6: End-of-Chapter Materials

I 15.6.1 R Funcrions In this chapter, we were introduced to several R functions
that will be useful in the future. These are listed here.

PAckAGEs:

RFS This is a “book package,” that is not yet complete. In lieu of installing this
package and loading it with 1ibrary (RFS), you will activiate all of its im-
portant parts by running
source ("http://rfs.kvasaheim.com/rfs.R").

MASS This package is also a “book package,” a package created for a specific book.
Here, that book is “Modern Applied Statistics with S.”

nnet This package contains many functions dealing with neural networks. For this
chapter, we use it to fit multinomial models.

STATISTICS:

multinom() This modeling function allows you to fit nominal dependent variables.
Its structure is standard in that its main argument is the formula. In order to
use the multinom function, you must load the nnet library.

polr() This modeling function allows you to fit ordinal dependent variables when
there is an underlying linear function that drives the process. In order to use
the polr function, you must load the MASS package.

predict(model, newdata) As with almost all statistical packages, R has a predict
function. It takes two parameters, the model, and a dataframe of the inde-
pendent values from which you want to predict. If you omit newdata, then
it will predict based on the independent variables of the data itself, which can
be used to calculate residuals. The dataframe must list all independent vari-
ables with their associate new values. You can specify multiple new values for
a single independent variable.

set.base() This allows one to change the base category from which all other levels
are estimated. It is a member of the RF'S package.
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I 15.6.2 Exercises This section offers suggestions on things you can practice from
this chapter.

1. In Section 15.1.1, we fit a multinomial model to the gssocc data. The base
used was ‘Blue Collar.” Refit the model using ‘Craft’ as the base category.
2. Determine the AIC of the null model in Section 15.1.1.

3. As mentioned in Section 15.2.1, calculate the relative accuracy of the model
of Example 15.2.1.

4. As mentioned in Section 15.2.1, add a quadratic education term to the model
of Example 15.2.1 to see if both the highly educated and the lesser educated
both support the president.
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