
Chapter 14:

NominalandOrdinalDependentVariables

Overview:

This chapter finishes our time examining various types
of dependent variables. In this chapter, we examine de-
pendent variables that are categorical — both nominal
and ordinal response variables are covered in this chap-
ter.

This could be variables with an ordering (like a Lik-
ert scale) or without (pet type). The type of regression
used needs to take into consideration the characteris-
tics of the dependent variable. Thus, this chapter starts
with modeling nominal variables (no ordering) and pro-
ceeds to ordinal variables an ordering).
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One of the most pervasive research questions in Political Science is to pre-
dict a person’s vote based on demographic information. In other words, if
you know a person’s age, gender, income, education, and religion, how well
can you predict how that individual will vote in the upcoming presidential
election?

At first glance, this question appears to be a binary dependent vari-
able problem. After all, there are only two parties, right? Well, even if you
ignore third parties, there is a third option: abstention. In each US presi-
dential election, a sizable number of registered voters decide not to vote. For
instance, in the 2016 US Presidential election, while Clinton received 48% of
the vote cast and Trump received 46%, a full 45.3% of the eligible voters did
not vote. Thus, the distribution of votes in the 2016 US Presidential election
is 26.3% Clinton, 25.2% Trump, 3.2% other, and 45.3% none of the above.
As such, conclusions based on those models that assume a binary outcome
have definite issues with generalization to the voting public at large. They
are ignoring important information.

A better alternative is to specifically add in ‘abstention’ and model the
three possible outcomes at once (or ‘abstention’ and ‘other’ and model the
four). Such a regression model is called a nominal regression model or a
multinomial regression model, because there is no inherent ordering among
the levels of the dependent variable.

There is a second type of dependent variable that is closely related to
the nominal case—the ordinal dependent variable. The difference between
the nominal and the ordinal is that the ordinal has more information con-
tained in it. There is no ordering in the nominal case. There is an implicit
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ordering in the ordinal case.1 Examples of ordinal variables include ratings
and indices.

If we just use our logistic regression methods (Chapter 11), we come
up with some odd results. If we force a nominal variable into just two cate-
gories, we lose information in the data. If we treat ordinal dependent vari-
ables simply as nominal, information is also lost. If we treat them as contin-
uous, our conclusions may not match reality.

Thus, both nominal and ordinal dependent variables need their own
modeling methods. This chapter examines how to model both the nominal
dependent variable and the ordinal dependent variable more properly.2

Note: This chapter sits uneasily here. From the standpoint of the de-
pendent variable type, this is its proper place. However, these are not
generalized linear models (GLMs). They are particular expansions to the
GLM paradigm. As such, if you are looking at the modeling method as paradigm
being the unifying theme to this part of the book, this chapter should not
exist.

1Ordinal is actually a portmanteau for “ordered nominal.”
2The study of statistics emphasizes both estimating the value (expected value) and the variance

of that estimate (confidence interval).
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14.1: Nominal Dependent Variable

A nominal variable is a categorical variable where there does not exist a
unique ordering in the categories. Examples may include job type, presiden-
tial vote (and non-vote), and beer brand choice. These variables are categor-
ical — not numeric — and the categories have no inherent ordering. White
Collar is not ‘greater than’ Professional. Voting Democratic is not ‘larger
than’ voting Republican. Widmer is not ‘more than’ Coors.3 How do we
model such dependent variables?

There are a couple of ways of doing this. The first, easiest, and most
understandable is to model the variable as a series of binary dependent vari-
ables. We already understand how this works, the testing of the model is al-
ready conceptually understood, and it works.4 There are just a couple things
to clarify.

14.1.1 Mathematical model As with the simply binary dependent vari-
able case, let us layout the mathematical background to the nominal depen-
dent variable case. As in the binary dependent variables case, we are actually
modeling the underlying probabilities of each of the outcomes. Also, as in
the binary case, there are five requirements for the random variable to follow
a Multinomial distribution (cf, Section 12.1):

1. the number of trials, n, is known;

2. each trial has J possible outcomes;

3. the success probability for each trial,
{
π1,π2, . . . ,πJ

}
, is constant;

4. each trial is independent from the others; and

5. the random variable is the number of each type of outcome in those n
trials.

3Of course, there may be a time when you are predicting Republican vote by examining an
underlying level of conservatism. In such a case, Democratic–Republican would be ordered.
Thus, it really depends on what you are predicting (as always).

4Usually. Nothing in statistics always is best. As you have seen by now, there are always
methods that work better, but with trade-offs. The science here is to be aware of the strengths
with the weaknesses and balance them to get closer to the true process you are trying to
model.
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Thus, if we let πj be the probability that category j is selected, then
the following two conditions must hold:

0 < πj < 1 for all j ∈
{
1,2, . . . , J

}
(14.1)

J∑
j=1

πj = 1 (14.2)

Condition (14.1) must hold because we are dealing with probabilities bounded
by 0 and 1, and Condition (14.2) holds because one of the J possible out-
comes must happen. In the binary case, our two probabilities were π and
1−π, which satisfies the second condition by default and the first because it
makes no sense to study phenomena that always or never occurs.

When we generalize the binary case, we need to select an appropriate
probability distribution — one that can model J possible outcomes with J
different probabilities. That distribution is called the multinomial distribu-
tion.5 The probability density function for the multinomial distribution in
the general case is

fX(X) =
n!

x1!x2! · · ·xJ !
πx1

1 π
x2
2 · · ·π

xJ
J (14.3)

Here, xi are non-negative integers and
∑
xj = n. The expected value of this

distribution for a specified outcome is

E

[
Xj

]
= nπj (14.4)

Here, n is the total number of trials and πj is the probability of outcome j.

Be aware that X is a vector. So, if n = 1 and J = 4, the following could
be outcomes from the Multinomial distribution:

x =


0
1
0
0

 ; x =


1
0
0
0

 ; x =


0
0
1
0


In the first example, a 2 came up; in the second, a 1; in the third, a 3. Note
that in each case, the sum of the entries is n and the number of entries is J .

5Recall that the distribution in the binary case was the binomial distribution.
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Now, if n = 4 and J = 3, the following could be outcomes from a Multi-
nomial distribution:

x =


0
3
1

 ; x =


2
1
1

 ; x =


0
0
4


In the first example, three 2s and a 3 came up; in the second, two 1s, a 2, and
a 3 came up; in the last, four 3s came up.

Note: Be aware that the sum of the entries in each outcome vector is n
and that the number of entries is J .

If the random variable X follows a Multinomial distribution with n = 3 and
π = [0.1,0.5,0.4]′, then we would write it as

X ∼ Multi

n = 3; π =


0.1
0.5
0.4


 (14.5)

and the expected value of X would be

E [X] =


0.3
1.5
1.2

 (14.6)

The expected value of X3 would be E [X3] = 1.2.

Note: Make sure you see that this is just an extension of the binomial
distribution, where

fX(x) =
n!

x!(n− x)!
πx(1−π)n−x (14.7)

with

X =
[

x
n− x

]
and π =

[
π

1−π

]
(14.8)
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Example 14.1: Let us illustrate the multinomial distribution with a typical
“rolling a die example.” Assuming that the die is fair, then the probability of
rolling each of the six outcomes is 1

6 . If we roll a fair die 3 times, what is the
probability the outcome is [1,0,1,0,0,1]′ (that is, a 1, a 3, and a 6 come up)?
What is the expected value of X? •

Solution: This is a multinomial experiment. There are a fixed number of
possible outcomes (six), the probabilities of each outcome are constant (they
do not change as we roll the die), and the probabilities sum to one. As such,
we know the probability mass function is

fX(x) =
3!

x1! x2! x3! x4! x5! x6!

(1
6

)x1 (1
6

)x2 (1
6

)x3 (1
6

)x4 (1
6

)x5 (1
6

)x6

(14.9)

Thus,

P


X =



1
0
1
0
0
1




=

3!
1! 0! 1! 0! 0! 1!

(1
6

)1 (1
6

)0 (1
6

)1 (1
6

)0 (1
6

)0 (1
6

)1
(14.10)

= 6
(1

6

)3
(14.11)

=
1

36
(14.12)

Thinking through the problem should get us to the same point.

Finally, we know the expected value is

E [X] = nπ = 3



1/6
1/6
1/6
1/6
1/6
1/6


=



0.5
0.5
0.5
0.5
0.5
0.5


(14.13)

�
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As we have a formula for our expected value, we have our mechanism for
estimating the several πj : in an experiment (or set of data), count the num-
ber of times outcome j occurred and divide by the total number of trials (or
records). This is actually the maximum likelihood estimator for πj . Thus,
our linear predictor is

logit(πj ) = βj,0 + βj,1x1 + βj,2x2 + · · ·+ βj,kxk (14.14)

Notice that this linear predictor has k + 1 parameters to estimate for each of
the j categories. Thus, you will need more than j(k + 1) pieces of data to fit
it. There are ways to reduce the dimensionality of the problem (reduce the
number of parameters in need of estimation); however, these are beyond the
scope of this book.

We need the logit link (or something just like it) to force our linear
predictions to be in the range πj ∈ (0,1). As any link that maps g : R →
(0,1) is acceptable, we could use the log-log link, the complementary log-log
link, the probit link, or any of an infinite number of others. . . in theory. As
before, the choice of the link function is largely a matter of tradition. If you
deviate from tradition, the burden of proof is on you to justify the selection.
Furthermore, the differences are usually slight. If the differences are large,
then there is something wrong with your research model. Because of this,
it would behoove you to fit your research model using a couple different
(appropriate) link functions to help determine the stability (robustness) ofrobustness
your results.

Note: Thus, there are two things that you need to take away from thistwo things
discussion: First, we are able to fit the entire model at once because we
have a distribution that can produce the necessary nominal results. Sec-
ond, we model the underlying probabilities (like in the binary case), not
the actual outcomes, as usual.

To see this in action, let us look at an extended example.
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Example 14.2: The General Social Survey (GSS) at the University of Chicago
conducts an extensive survey of adult Americans every year. The data is
freely available.6 In this small subset of the data, gssocc, I would like to
predict a person’s occupation category (occ) based on race (white), years of
education (ed), and years of experience (exper). •

Before getting started, let us examine the variables involved. The race vari-
able is binary, with a ‘1’ representing the person identifying as ‘white’ and
a ‘0’ otherwise. As a side note, this is a race variable, not an ethnicity vari-
able. Thus, Hispanics may self-identify as either white or non-white. Also
note that this is a self-identification variable; that is, the individual being
surveyed decided his or her reported race. Looking at a frequency count, a
full 91.69% of the respondents stated they were white. This is significantly
higher than the population at large, where approximately 80% of Americans
are white. When we do the final analysis, we need to keep this in mind, as it
is not necessarily representative of the nation as a whole.

The median number of years of education in the sample is 12 years,
which corresponds to graduating from high school. The mean number of
years is 13.09, which indicates the sample is right skewed (the Hildebrand
ratio is +0.37). Furthermore, it is interesting to note that 51.0% of the sample
only graduated from high school. Additionally, 23.4% of the sample received
a bachelor’s degree or more, which is close to the population (27% have re-
ceived a bachelor’s degree or higher). Finally, 18.7% of the sample did not
graduate from high school, which is close to the 15% estimate of the pop-
ulation. From this, it appears as though the sample is representative of the
population in terms of educational attainment.

The third independent variable is the years of experience in the job.
There are no general statistics for the population, so we will have to make a
large assumption that the sample represents the population.7 In the sample,
the years of experience varies widely, from 2 to 66 years. The median is 17
years and the mean is 20.5 years. Thus, the sample is also right skewed.
This makes sense as this is a count variable. Count variables tend to be right
skewed as they cannot take on negative values. In fact, there is nothing in

6The raw data can be accessed from http://www.norc.uchicago.edu/GSS+Website/.
7This was a safe assumption with respect to the education variable, but not with respect to the

white variable. As such, it needs to be mentioned that you are unable to check the represen-
tativeness of the experience variable.
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White Education Experience

White 1.0000 0.0243 -0.0794
Education 0.0243 1.0000 -0.2740
Experience -0.0794 -0.2740 1.0000

Table 14.1: Correlation matrix for the three independent variables in the example, from
gssocc data.

the distribution of the experience variable that looks wrong. With that said,
however, one still needs to mention the caveat.

Looking at the correlations amongst the independent variables can
help us avoid any unpleasantness and surprises due to collinearity and mul-
ticollinearity. The correlation matrix (Table 14.1) does not show any hint of
multicollinearity. In fact, this correlation matrix suggests that these three
variables are effectively independent of each other.8

Finally, let us note that there may be an inherent ordering in some of
the jobs (White Collar greater than Blue Collar), but not for all five of the
categories. As such, this is definitely a candidate for nominal regression.

Nominal regression: Now, let us model the outcome variable with the three
independent variables. Actually, we need to step back and really think about
what we mean by ‘model the outcome’. Do I want to predict the probability
that a person will be Blue Collar given the x-variables? Or: Do I want to pre-
dict the job category given the input variables? These are different questions.
They require slightly different methods.

The first question actually asks a binary question: What is the proba-
bility that a person will be Blue Collar (compared to all of the other job cate-
gories)? This is very much like the questions asked in Chapter 11. Here, the
dependent variable takes on values 1 (Blue Collar) and 0 (not Blue Collar).

To answer this question, we need to create a variable called bluecol
as an indicator variable for Blue Collared-ness. Thus, the model we fit will
be

bluecol ∼ white+ed+exper

8Pearson’s product-moment correlation test indicates that the correlation between education
and experience is statistically significant at the α = 0.05 level (t = −5.2152,df = 335,p �
0.0001). However, the coefficient of -0.2740 is a low level of correlation.
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Estimate Std. Error z-value p-value

Intercept 3.1036 1.0110 3.07 0.0021
White 0.7090 0.6213 1.14 0.2538
Years of education -0.3721 0.0640 -5.81 0.0000
Years of experience -0.0259 0.0113 -2.30 0.0215

Table 14.2: Results from the GLM (using the binomial family and the logit link) predict-
ing whether or not a person is a blue collar worker. The AIC for this model is 304.75.

We would fit it using a generalized linear model, a binomial family, and a
logit link. The results of the regression are in Table 14.2. From this model,
we can perform all of the goodness of fit measures from Chapter 11.

Looking at the results from running the model, we see that greater lev-
els of education and greater levels of experience are associated with a lower
probability of being a blue collar worker. For Bob, an individual who re-
sponded that he was white, had 20 years of education, and 10 years of ex-
perience in their current job, the probability of being a blue collar worker is
approximately 2% (as compared to not being a blue collar worker).

Note: This last part is subtle, but extremely important. Here is why: important
What is the probability that Bob is a white collar worker? If we do the
same steps above, we get that the probability that Bob is a white collar
worker (as compared to not being a white collar worker) is 13.1%. Simi-
larly, if we continue performing separate logistic regressions, the proba-
bility that Bob is a professional is 96.9%; menial, 2.3%; and craft, 7.9%.

Note that all of these probabilities add up to more than 100%.
There is something wrong here, since the probability that Bob holds one
of these five job types cannot be greater than 100%.

The problem is that we kept changing the base category. In Chap- moral of the story
ter 11, we never mentioned the need to specify the base category since
it always defaulted to the opposite of what we were modeling. In other
words, we were actually measuring the probability of an event as com-
pared to the probability of ‘not the event’. This ensured that the probabil-
ities always added up to 100%. Within each of the above five regressions,
if we added the probability of the event that Bob holds job type X with
the probability that Bob holds job type not X, we always get 100%.
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The lesson: Comparing probabilities of events is not as easy as when we werethe lesson
only working in the binary realm. It is doable — easily so, with one small
change. We need to select a base category that does not change throughout
our analysis. The choice is up to you, as all choices are equally acceptable
from a statistics standpoint.

Since we can select any job type as our base, let us select Blue Collar,
since it is the first level according to the alphabet. (We will see again shortly
how to switch between the bases.)

To perform this modeling, you will have to load the nnet package.
Since this comes with your base distribution of R, there is no need to install
it. Once loaded with the library(nnet) command, to fit the better model,
use the R command

multinom(occ ∼ white + ed + exper)

Because of the large amount of output, the regression table is structured
slightly different. The coefficients (in logit units) and the standard errors
are still presented. The statistical significance is not. However, a quick rule
of thumb is that the variable is statistically significant (at the α = 0.05 level)
if the parameter estimate is more than twice the standard error. Table 14.3
presents the output from modeling the data in the form given in the output.

Note that one of the five job types is missing: Blue Collar. This is be-
cause all of the probabilities are measured with respect to Blue Collar. Thus,
these percentages are directly comparable (after transforming from logit units).

R is nice in that if you predict on a multinomial model, it will give
you the category with the highest probability, by default. Thus, according to
this model, Bob will most likely be a Professional (which was our conclusion
above). If we want the probabilities for each of the possible job types for Bob,
we need to add a type="probs" parameter to our function call:

predict(model.mn1, newdata=BOB, type="probs")

Such a call gives us the following probabilities (which sum to one, as they
should):

BlueCol Craft Menial Prof WhiteCol

0.0020 0.0091 0.0020 0.9565 0.0304
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Coefficients:
Constant Term White Education Level Experience

Craft -1.8328 -0.7642 0.1933 0.0230
Menial -0.7412 -1.2365 0.0994 -0.0074
Prof -12.2595 0.5376 0.8783 0.0309
WhiteCol -6.9800 0.3349 0.4526 0.0299

Std. Errors:
Constant Term White Education Level Experience

Craft 1.1861 0.6324 0.0775 0.0126
Menial 1.5195 0.1996 0.1023 0.0174
Prof 1.6681 0.7996 0.1005 0.0144
WhiteCol 1.7144 0.9340 0.1023 0.0153

Table 14.3: Results of the multinomial regression. Note that the p-values are not pro-
vided. To determine which independent variables are statistically significant for predict-
ing the dependent variable levels, divide the coefficient estimate by the standard error. If
that ratio is greater than 2, then the variable is statistically significant at the α = 0.05
level.

Base switching: If you wish to switch your base category, there are two op-
tions. First, you can subtract the parameter estimates of the new base from
all the other bases. Thus, if we want to change the base from Blue Collar to
Professional, we would subtract the Professional parameter estimates from
the other parameter estimates. So, for example, the White Color estimates
with Professional as the base will be −6.9800 − -12.2595 = 5.2795. Unfortu-
nately, the standard errors are not so easily calculated — or at all reasonably
calculable by hand.

Also unfortunately, most statistical programs require you to physi-
cally re-order the data to select a different base; most programs use the
level of the first data point as the base category. R does allow you to switch
among the bases without having to physically alter the data. Unfortunately,
the method is rather arcane. Fortunately, the RFS package has a function,
set.base that allows you to change the bases much more easily.

Thus, to set craft as the base, we would use the command

occ = set.base(occ, base="craft", data=gssocc)

I leave it as an exercise to rerun the analysis with craft as the base. Check
that the parameter estimates follow the above observation.
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Interpretation: The interpretation of the coefficients (parameter estimates)
is the same as for the binary dependent variable case. Just remember that
the coefficients are in logit units. In R, however, this library does not require
you to back-transform your predictions. To remember this, just look at the
output — it is in proportions already (a quick check is that they sum to one).

Goodness of fit: The first check of the goodness of the model is the rel-
ative accuracy (see also Section 11.5). The accuracy is the number of cor-
rect predictions divided by the number of cases. The relative frequency di-
vides this number by the accuracy of always selecting the modal category
(the null model). For this dataset, the modal category is Professional, with
140 out of 337 cases belonging to Professionals. Thus, the relative accuracy
is 169

337 /
140
337 = 1.207. Thus, this model improves accuracy by 21% over the null

model. Is this good? It depends on your other models.

As Maximum Likelihood Estimation is used, the Akaike Information
Criteria score is also reported. For this model, AIC = 885. Is this good?
Again, it depends on your other models. In other words, model comparison
needs another model. I leave it as an exercise to see that the null model has
AIC = 1027. Thus, our model is much better than the null model.

Now that we have looked at our model, let us look at the parameter
estimates. According to our model, Whites have a higher probability of being
Professionals and White Collar workers than they are to be Craft or Menial
laborers. As for education, higher levels of education are associated with
higher odds of being a Professional or a White Collar worker (both of these
are statistically significant) than being a Blue Collar worker. Finally, years of
experience are not a statistically significant predictor of job type, as none of
the coefficients are statistically significant (coefficient / standard error > 2).9

So, we have a picture of Professionals and White Collar workers, when
compared to Blue Collar workers: they are White and well educated. Not an
earth-shattering conclusion, but it is encouraging to see that our conclusions
do seem to reflect reality.

9This rule of thumb comes from the fact that in a Normal distribution, the ratio needs to
exceed 1.96 to be statistically significant at the α = 0.05 level. These parameter estimates
are not guaranteed to be Normally distributed. As such, the rule of thumb is to be more
conservative. Even with the rule of thumb, do not bet the farm.
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14.2: Ordinal Dependent Variable

Another variety of categorical dependent variables is ordinal. A variable is
ordinal if it is categorical and the categories have an underlying order to
them. Examples include movie ratings (number of stars), hurricane inten-
sity, and so forth.

There are actually at least four ways of handling ordinal dependent
variables:

1. Treat them as nominal. This allows us to fit ordinal data using previ-
ous techniques. Unfortunately, it is inefficient as it ignores important
aspects of the data itself.

2. Treat their cumulative level as nominal. If the ordinal variable takes
on values 1 – 5, then create nominal variables corresponding to Level
1, Levels 1 and 2, Levels 1–3, Levels 1–4, and Levels 1–5. This pre-
serves much of the underlying information and allows us to fit it using
a previous method.

3. Assume that there is an underlying continuous process that you wish to
fit. The ordinal nature is just several threshold values along the possi-
ble values. This reduces to a pseudo-OLS, where you also need to fit the
threshold values, not just the slopes and intercepts. Using Maximum
Likelihood methods, this is trivial to solve.

4. Pretend that the ordinal values are continuous and fit it using ordinary
least squares or one of its offsprings. This has the advantage of being
easily fit.

Three of these ways have already been discussed, and you are quite adept at
using them (Options 1, 2, and 4). Only the third option is completely new to
you. This chapter focuses on how to fit Option Three.

14.2.1 Option Three Let us assume that there is an underlying contin-
uous process. We only experience this process through the ordinal variable.
This is very similar to how we first looked at binary variables: underlying
process exhibited only in the 0/1 outcomes (see Figure 11.2). Here, there
is more than just the one threshold (which traditionally defaulted to 0.500).
Thus, we have two sets of parameters to fit. The first is the parameters which
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Figure 14.1: Schematic diagram of the thresholding process. The line represents the linear
continuous process. The τs represent the threshold values. A, B, C, and D represent the
ordinal outcomes.

describe the process (the βs). The second is the position of those threshold
values (the τs).

Without going into the details, we will use Maximum Likelihood Esti-
mation as our fitting method because it has many nice properties. Thus, our
underlying process is

η = β0 + β1x1 + β2x2 + · · ·+ βkxk (14.15)

Our thresholding process is illustrated in Figure 14.1. The line represents
the underlying continuous process that you are trying to model. The A, B,
C, and D represent the observed ordinal values. The threshold values, τ1, τ2,
and τ3 are the values of η that separate the observed ordinal values.

This model is very straight forward and understandable. Using R to
obtain the fitting is also straight forward. The results presented are also rel-
atively straight forward.
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Variables: Value Std. Error t-value
Woman 0.743 0.078 9.50
White -0.400 0.118 -3.39
Age -0.020 0.0024 -8.17
Years of Education 0.098 0.013 7.52

Thresholds:
SD — D -1.700 0.237 -7.18

D — A 0.111 0.233 0.48
A — SA 1.979 0.236 8.37

Table 14.4: Result of ordinal regression in R. Note that the women tend to view President
Obama in a more favorable light; whites, less; older, less; and higher educated, more. All
of these agree with multiple surveys throughout his tenure as President.

Example 14.3: Let us use some more data from the GSS. This data explores
the ‘warmth of feeling’ the respondent has for President Obama. The demo-
graphic information is the gender (male), the race (white), the age, and the
number of years of education (ed). The response variable has four ordered
levels: Strongly Disagree (SD), Disagree (D), Agree (A), and Strongly Agree
(SA). Our goal is to explain a person’s feelings toward the president based
solely on demographic information. •

Solution: Let us fit this data with ordinal regression. The function in R is
polr, which stands for “proportional odds logistic regression,” although the
probit is an option as a link function. This function requires the MASS pack-
age. Thankfully, since MASS also comes with the base distribution of R, there
is no need to install it, only to load it via the library(MASS) command.

The actual command to fit this model using ordinal regression is

polr( warm ∼ male + white + age + ed )

This command will give the coefficients of the underlying linear regression
and the threshold values separating the four categories. From Table 14.4, we
see that the equation for the underlying linear process is

η = 0.743×Woman+−0.400×white+−0.020×age+ 0.098×ed

The thresholds are also listed. The threshold between Strongly Disagree and
Disagree is at τ1 = −1.700. The threshold between Disagree and Agree is
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τ2 = 0.111. The threshold between Agree and Strongly Agree is τ3 = 1.979.
Thus, to calculate our prediction, we calculate the prediction based on the
linear model, η, and compare that value to the intervals described by the
thresholds. Thus, for Bob, who is Male, White, 40 years old and has 20 years
of education, we have

η = 0.740× 0 +−0.400× 1 +−0.020× 40 + 0.098× 20 = 0.76

As η = 0.76, we have our prediction that Bob agrees with the president. If we
actually want probabilities that Bob Strongly Disagrees, Disagrees, Agrees,
or Strongly Agrees, we would have to back-transform using the inverse of theback-transform
logit function and calculate each probability using integral calculus. . . or we
could just ask the computer to do it for us:

BOB = data.frame(male="Men", white="White", age=40, ed=20)
predict(model.ol1, newdata=BOB, type="probs")

This gives the probabilities as

SD D A SA

0.0785 0.263 0.429 0.229

Thus, it is far from certain that Bob agrees (or strongly agrees) with the pres-
ident, although that probability is rather high: 0.429 + 0.229 = 0.658. �

Accuracy: Finally, let us look at the accuracy of the model. I leave it as
an exercise to show that the relative accuracy is 1.105, which indicates that
the model is about 10.5% better than the null model (the modal category
is “Agree”). This is not a fantastic increase in accuracy, but we do know
how certain demographics feel about the president: Whites tend to disagree,
Males tend to disagree, older people tend to disagree, and lesser educated
people tend to disagree.

Of course, we could have added in a quadratic education term to the
model to see if both the more-educated and the less-educated both support
the president. I also leave this as an exercise to show that there is no evidence
of this. Thus, we have no evidence that the relationship between education
and presidential support is anything other than linear.
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14.3: Extended Example: Cattle Feed

Now that we have been introduced to these two new types of regression, let
us deal with an example of each. This example tries to predict the feed type
used for a cow. Such a question would arise if there is missing data in your
data file and you wanted to estimate the missing value instead of throwing
out the entire record.

Example 14.4: Previously, we attempted to model the weight of cattle based
on a few factors. Let us try something different. Let us predict the brand of
food used by the cattle based on the ranch, age, and weight.

Specifically, let’s first model feed type. Then, let’s say that the RUR
ranch sent a 21-year-old cow to slaughter at 1197 pounds. Which food brand
was most likely used? What are the probabilities of each brand being used?

•

Solution: Since the food brand is a nominal variable, we will use multino-
mial regression. The data file is cattleData. Let’s load it and look at some
summary statistics on it.

library(nnet)
cowz = read.csv("http://rur.kvasaheim.com/data/cattleData.csv")
attach(cowz)

summary(cowz)

cor.test(weight,age)
table(ranch,feedType)

Note that there is (as expected) a strong correlation between age and weight.
If we are doing model selection, we will need to keep this in mind as this
multicollinearity will decrease the statistical significance of those two vari-
ables.

Note from the cross-tabulation that the EVA ranch only used Purina
and the TCL ranch only used Rangeland (in this sample). That fact would
make it really easy to predict the feed type for those ranches. The other
ranches use a combination of all of the brands.
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With this information to guide us, we fit the model

cowModel = multinom(feedType ∼ weight+ranch+age)
summary(cowModel)

The first line fits the model. Note that the model did converge, so we can pay
attention to the results. If it had not converged, we should first change the
link function, then realize that the multicollinearity is a problem. Dropping
one or more variables would be an appropriate action in that case.

The results of the summary(cowModel) command gives some in-
sight into the relationships. First, note that the coefficient estimate for ranchEVA
for estimating Purina is 20.37. This is extremely high, meaning it is almost
guaranteed that a cow from the EVA ranch will used Purina.

But, from the cross-tabulation above, we already knew this.

Similarly, the coefficient estimate for ranchTCL for Rangeland is a
huge 22.32. This indicates a cow from the TCL ranch will most certainly use
Rangeland food. Again, we knew this from our cross-tabulation.

Note from the regression table that Accuration is missing. All feed
measurements are taken with respect to that level. This is important to keep
in mind if we do this by hand. It is just something to note if we are using the
computer to do our calculations.

So, let’s estimate the food used by our mystery cow.10 First, let’s define
it:

mysteryMoo = data.frame(weight=1197, age=21, ranch="RUR")

Now, let’s predict the probabilities it used each of the feed types:

predict(cowModel, mysteryMoo, type="prob")

The results tell us that the mystery cow most likely used Steakmaker. In fact,
the probability it used Steakmaker was 79%. The second most likely feed
type was Accuration (13%). �

10Cattle are interesting. A female is called a cow, a male is called a bull. The neutral is called a
cow. Thus, we can talk about cattle and heads of cattle, but use cow for the singluar if the sex
is not known or is not important. Six years at Oklahoma State taught me something.
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14.3.1 Graphics Let us talk about graphics for a bit. A two-dimensional
scatter plot looks at two numeric variables. We can therefore easily plot a
prediction curve when dealing with only a single dependent variable and
single independent variable.

If there is a second independent variable, we can plot several curves,
one for each level in that second independent variable.

Once we move beyond two independent variables, graphics are more
difficult to do. A simple regression model like the one above may require
dozens of graphics to illustrate each aspect.

However, we can simplify things by focusing on only a couple inde-
pendent variables at a time. The choice depends on the story you are trying
to learn (or tell).

Graphic: Feed Type versus Weight: For this first graphic, I am consciously
making the decision to plot the predicted probability on the y-axis, the cattle
weight on the x-axis, and have a prediction curve for each feed type. This
will allow me to see the effect of weight on the predicted food type.

This means I need to select values for the other two independent vari-
ables. For the numeric age, I would typically use its mean or median, whichever
was the “typical” age for these cattle.

For the selected value of the ranch, I would either select the ranch to
which the mystery cow belonged (to continue that story) or the most popular
ranch (to try to generalize the story). It is best to do separate graphics for all
ranches so that you, the researcher, can better understand the effect of ranch
on the probabilities. It is always better to do more to understand.

So, here is the code to create the predictions:

theWeights = seq(1019,1579, length=1e4)
theAge = median(age)
prRUR = predict(cowModel, newdata=data.frame(weight=theWeights

, age=theAge, ranch="RUR"), type="probs")

The prRUR variable contains 10,000 rows (one for each weight) and 5 columns
(one for each feed type). The entries are the probabilities.
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Now, we just plot the data and these predictions:

par(family="serif", las=1)
par(xaxs="i", yaxs="i")
par(mar=c(4,4,0,0)+0.5)
par(cex.lab=1.2, font.lab=2)

plot.new()
plot.window( xlim=c(1000,1600), ylim=c(0,1))

axis(1); axis(2)
title(xlab="Weight [lb]")
title(ylab="Probability at RUR Ranch")

lines(theWeights,prRUR[,1], col=1) # Accuration
lines(theWeights,prRUR[,2], col=2) # Purina
lines(theWeights,prRUR[,3], col=3) # Rangeland
lines(theWeights,prRUR[,4], col=4) # Steakmaker
lines(theWeights,prRUR[,5], col=5) # Wind and Rain

legend("topright", bty="n", col=1:5, lwd=2,
legend=c("Accuration","Purina","Rangeland","Steakmaker","Wind

and Rain")
)

Note that this graphic includes a legend that lets the reader know which
probability curve belongs to which feed type. Legends are rather important
to include on a graphic. Remember that graphics should be stand-alone with
their caption. Because a legend contains so much information, it requires a
large function. To see all a legend can do, run ?"legend" in R.

Figure 14.2 is the resulting graphic. Note that the predicted feed type
tends to be either Steakmaker, for light cows, or Purina, for heavy cows.
When the weight of the cow is middling, there is great uncertainty in which
feed type it used.

It is interesting that this analysis gives us additional insight on how we
can create big cows for slaughter. This suggests we should use Purina brand.
This conclusion, however, is based only on the RUR ranch and a middle-aged
cow.

More importantly, this conclusion assumes that the data are represen-
tative of the population of interest. As this data was originally collected in
conjunction with a dissertation in Animal Science, I tend to think it is repre-
sentative.
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Figure 14.2: Graphic of the probability for each feed type at the RUR ranch. The proba-
bilities vary with the cow’s weight. The age is held at the median, 21.

From a strictly statistical standpoint, the additional insight is limited.
However, if you are hired by RUR ranch to determine the best feed type, this
graphic would be very persuasive for you, the decision-maker.

While we could create a similar graphic for feed type against age, I am
not convinced it would be helpful. Age is not something one would like to
optimize like weight. In other words, I am not sure what story I would tell
about it.

Note: Don’t make graphics just for fun. Make sure you create them know-
ing how to interpret them.
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14.4: Extended Example: The State University of Ruritania

A second example will try to model the level of the student given some in-
formation about the student. Again, this may be interesting for imputation
(filling in missing data).impute

Example 14.5: Previously, we modeled the grade point average of students
at the State University of Ruritania (Státnı́ Univerzita v Ruritánii). Let us turn
this around and model the student’s class (Freshman, Sophomore, Junior,
Senior) given only the gender and the current GPA of the student.

Let us also predict the class of Eliska, a female student with a 3.33
GPA. •

Solution: As usual, the first step is to import the data and look at a summary,
including a cross-tabulation of our categorical independent variable and the
dependent variable:

library(MASS)

suvrData = read.csv("http://rur.kvasaheim.com/data/suvr.csv")
summary(suvrData)

Let us pause here. Note that the class variable is an ordinal variable. We
need to let R know this:

suvrData$class = ordered(suvrData$class, levels=c("Non-
Matriculated", "Freshman", "Sophomore", "Junior", "Senior")
)

summary(suvrData)

There we go, the levels for the class variable are in the right order. Let’s
continue.

attach(suvrData)
table(gender, class)

Note that none of the non-matriculated students are female. This is just
something to know and remember as we get results.
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Now, we can fit our model and look at the summary results:

suvrModel = polr(class∼ gender+gpa, data=suvrData)
summary(suvrModel)

A quick check that you have ordered the levels correctly is to look at the check!
second table in the summary output. The rows should describe subsequent
levels.

The AIC of this model is 1547. The AIC of the null model

suvrNullModel = polr(class∼ 1, data=suvrData)
summary(suvrNullModel)

is 1566. Thus, our model is an improvement.

The model predicts that Eliska is a Junior (44.7%) or a Senior (36.5%):

eliska = data.frame(gender="Female", gpa=3.33)
predict(suvrModel, eliska, type="prob")

Here are the (abbreviated) raw results

Non-Mat Fresh Soph Junior Senior
0.00211 0.02356 0.16293 0.44656 0.36483

Thus, we do have an estimate for Eliska’s class level, but there is a second
option which is rather close. I’m not sure I would bet any money on where
to put Eliska.

Regardless, it is highly unlikely for Eliska to be either non-matriculated
or a Freshman. Those probabilities, while non-zero, are very low. �

Graphic: Class against GPA: As for a graphic, we need our dependent vari-
able to be the probability of each class. Since there is only one numeric inde-
pendent variable, GPA, that will be the variable we graph along the x-axis.

The ultimate question is: What do we do with the gender variable?

One option is to plot the effect of gender on the same graphic. That
means we will have 5 × 2 curves on the same plot (the number of levels by
the number of genders). That may be problematic as it may overwhelm the
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Figure 14.3: Graphic of the probability for each class level for each gender. Note that the
non-matriculated and the Freshman levels uniformly have low probability. This is due to
the nature of the data; only 2 non-matriculated and 22 Freshmen are in the sample of size
n = 661. This limits what we can say about the population, unless the level distributions
are similar to the population.

graphic. Figure 14.3 is this figure. Note that it does allow us to compare
everything at once. However, you may find it overwhelming. . . or not.

For the higher GPA values, it is most likely that the student is a Ju-
nior, regardless of the gender. At no place is it likely the student is either a
Freshman or non-matriculated. This is supported by the data, as the number
of non-matriculated students is just 2 and the number of Freshman is just 22
— out of a sample size of n = 661.

We can also use this graphic to estimate the various probabilities for
Eliska. Remember she has a GPA of 3.33. Since Eliska is female, we look
at the dashed lines. Going to 3.33 on the x-axis and move vertically, we see
that Eliska is most likely a member of the cyan level — Junior — with a close
second being the magenta level — Senior. This conclusion agrees with our
prediction above.
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Note: The conclusions from this analysis assume that the sample is rep-
resentative of the target population in terms of the class proportions. If
they are not, then nothing we did makes sense. In other words, if the
proportion of Freshmen at SUvR is not close to 3%, then we really cannot
(should not) draw conclusions about Eliska’s class.

14.5: Conclusion

In this chapter, we examined the special issues behind fitting dependent vari-
ables that are either nominal or ordinal. Nominal dependent variables are
still basically fit with a series of logistic (or other link) regressions. The alter-
ation comes about because we need to keep the same base category through-
out in order to make our results comparable.

The ordinal dependent variable can be fit using a technique similar to
the previous chapter: fit an underlying linear function, then create thresh-
olds to divide a constant function into an ordinal response.

In both cases, predictions in R follow the typical structure, with the
addition of being able to just predict the outcome category or being able to
predict the probabilities associated with the case fitting in each bin.
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14.6: End-of-Chapter Materials

14.6.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Packages:

RFS This is a “book package,” that is not yet complete. In lieu of installing
this package and loading it with library(RFS), you will activiate all
of its important parts by running
source("http://rfs.kvasaheim.com/rfs.R").

MASS This package is also a “book package,” a package created for a specific
book. Here, that book is “Modern Applied Statistics with S.”

nnet This package contains many functions dealing with neural networks.
For this chapter, we use it to fit multinomial models.

Statistics:

multinom() This modeling function allows you to fit nominal dependent
variables. Its structure is standard in that its main argument is the
formula. In order to use the multinom function, you must load the
nnet library.

polr() This modeling function allows you to fit ordinal dependent variables
when there is an underlying linear function that drives the process. In
order to use the polr function, you must load the MASS package.

predict(model, newdata) As with almost all statistical packages, R has a
predict function. It takes two parameters, the model, and a dataframe
of the independent values from which you want to predict. If you omit
newdata, then it will predict based on the independent variables of
the data itself, which can be used to calculate residuals. The dataframe
must list all independent variables with their associate new values. You
can specify multiple new values for a single independent variable.

set.base() This allows one to change the base category from which all other
levels are estimated. It is a member of the RFS package.
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14.6.2 Exercises This section offers suggestions on things you can prac-
tice from this chapter.

1. In Section 14.1.1, we fit a multinomial model to the gssocc data. The
base used was ‘Blue Collar.’ Refit the model using ‘Craft’ as the base
category.

2. Determine the AIC of the null model in Section 14.1.1.

3. As mentioned in Section 14.2.1, calculate the relative accuracy of the
model of Example 14.3.

4. As mentioned in Section 14.2.1, add a quadratic education term to the
model of Example 14.3 to see if both the highly educated and the lesser
educated both support the president.
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