
Chapter 13:

CountDependentVariables

Overview:

Using generalized linear models allows one to fit depen-
dent variables that follow specified distributions. This
allows us to focus more clearly on the variable we are
modeling. It also allows us to avoid many of the “fixes”
we used in ordinary least squares that tried to “handle”
issues instead of using them to better understand.

In this chapter, we examine another type of de-
pendent variable and how we can use GLMs to fit such
variables. The variable is the count variable with no up-
per limit. This support separates it from the Binomial
dependent variable from the previous chapter.
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0.704442ζ.



Chapter Contents

13.1 Linear or Poisson Regression? . . . . . . . . . . . . . 359

13.2 The Mathematics . . . . . . . . . . . . . . . . . . 361

13.3 Overdispersion . . . . . . . . . . . . . . . . . . 368

13.4 Full Example: Body counts . . . . . . . . . . . . . . 373

13.5 The Bias-Variance Trade-Off . . . . . . . . . . . . . 379

13.6 Conclusion . . . . . . . . . . . . . . . . . . . . 381

13.7 End of Chapter Materials . . . . . . . . . . . . . . 382

§ § §

Remember that we are examining all of these different types of regressions
for one primary reason: the assumptions of Ordinary Least Squares are not
met by discrete dependent variables. Rather than seeing this as a problem,
we can use it as an indicator that we can better model the data and extract
more information from the data.

This marks the next chapter of discrete dependent variables. In Chap-
ter 11, we discussed binary dependent variables — dependent variables that
can only take on two values. In the previous chapter, we examined depen-
dent variables that were counts of successes over a known number of trials.
In this chapter, we examine count dependent variables that have no upper
limit. Some examples of such count variables include the number of fires
in Galesburg in a year, the number of deaths due to terrorist attacks in the
world in a month, and the number sorties per day in a battle.

§ § §

Let us set the stage with an example that we will return to throughout this
chapter: The Troubles in Northern Ireland lasted from 1969 until 2002. In
that time, over 1800 people died as a result of terrorist actions — both repub-
lican and loyalist groups. Six prime ministers of the United Kingdom — both
Conservative and Labour — had to deal with the terrorism. If we assume that
the terrorist groups are rational actors, then they will act to maximize their
chances of achieving their goals. Because of its hierarchical structure and
large size, the Provisional Irish Republican Army (PIRA) was best able to
organize its actions to affect the elections.
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The question is whether they did — Did the PIRA adjust its tactics
in reaction to the political ideology of the current prime minister? Unfortu-
nately, the extant literature is divided on the direction of the effect. Some
research suggests that the PIRA became more violent and killed more people
when the Conservatives held power. Other research suggests that the PIRA
became more violent under the Labour party. Which is it?

For the unbounded count variables in this chapter, there are three identi-
fying characteristics: the variable can never be negative, has no theoretic
upper bound, and is discrete. If Y is this type of count variable, then Y ∈{
0,1,2,3, . . .

}
.

If we just do usual linear modeling without taking these three items
into consideration, we lose information inherent in the data; we are making
assumptions about the data that are incorrect. Performing count data analy-
sis extracts more information from the data you worked so hard to collect. It
gives better predictions and explanations of the phenomena under study. It
also (usually) means not having to “fix” violations of homoskedasticity or fit.

13.1: Linear or Poisson Regression?

To illustrate some of these observations, let us create a count dataset, fit it
with a simple linear model, fit it with a Poisson model, and then compare
the results. The data that we will use for this example, fakepoisson, was
fabricated so that we know the parameters. As such, we can compare the
estimates we get from the three modeling techniques to the true parameters.
Here is the code I used to create the fakepoisson data set:

set.seed(577)

n=75
x1 = sort( runif(n, min=0, max=2) )
beta0 = 0
beta1 = 2
lambda = exp( beta0 + beta1*x1 )

y = rpois(n, lambda)

By this point, you should be able to determine what each line of code does.
You should also take note of how lambda is defined and keep this in mind
as you read forward.
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Figure 13.1: Plot of the pseudo data with three regression equations overlaying. The
linear regression is in red, the linear regression on the log-transformed data is in green,
and the Poisson regression is in blue. The black curve is the “correct” curve.

For this example, the true parameters are β̃0 = 0 and β̃1 = 2. Both of
these are in log units (hence the tildes to serve as reminders of this). Except
for those provided for the linear model, it is difficult to compare the estimates
the the true value. It is much easier to compare the prediction curves.

It may not be clear that these three cannot be directly compared. The
linear model makes no adjustments, the log-transformed model does, as does
the Poisson regression model. This means that we cannot use information
criteria to compare the models.1

So, how can we determine which of these models is best? A first step is
to determine which is appropriate by checking the assumptions. Check that
the linear model fails the fit test (runs test provides a p-value of 3 × 10−9).
The assumption of homoskedasticity fails for Model 2 (where it is required;
the Breusch-Pagan test returns a p-value of 2.8 × 10−5). The Poisson model
passes the runs test and does not require homoskedasticity. Thus, on the
basis of meeting assumptions, the third model is the best of these three.

1Remember that we can use AIC, BIC, etc. only when the y-values are the same. This is not true
here, as the y-values are all transformed differently.
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If all we care about is estimates (and not confidence intervals), we
could look at the graphic comparing the data and the estimations from the
model (Figure 13.1). Numerically, we could also check how much the uncer-
tainty in y has changed. The uncertainty using the null model (predicting
y = y ) is 184.96. The uncertainty with the linear model is 43.6 — a reduction
of 76%. The log-transformed linear model has an uncertainty of 8.1, which is
a reduction of 96%. This is quite much different from the pure linear model.
The Poisson model also has an uncertainty of 8.1 and a total reduction of
96%.

Thus, if all you care about is the estimate (which scientists should not),
finding some adjustment so that the curve fits the data works. If you are a
true scientist, then the confidence interval (and p-values) are important. This
means assumptions about homoskedasticity are important — if they exist.
Some modeling requires homoskedasticity others do not. Poisson regression
does not.

13.2: The Mathematics

Count models have dependent variables that can take on only non-negative
Integers. Back in the time of OLS, we handled the non-negative aspect by
taking the logarithm of the dependent variable (perhaps by adding 1 before
taking the logarithm if there are values of 0). However, OLS does not al-
low for discrete dependent variables. The discrete aspect must be handled
through Generalized Linear Models (GLMs).

Recall that using GLMs requires that we explicitly specify three things.
First, we need to know the distribution of the dependent variable, condi-
tioned on the independent variables. Second, we need to know the linear
predictor, η. Finally, we need to know the link function that appropriately
connects the two of them. The linear predictor is the same as always: the
weighted sum of our independent variables. The link function is the loga-
rithm function. Finally, the distribution we will use is the Poisson distribu-
tion.

The Poisson is not the only option for such count dependent variables.
The negative binomial distribution can also be used, but as the Negative Bi-
nomial distribution is a bit more complicated than the Poisson, we will mo-
tivate this chapter with the Poisson and save the negative binomial for Sec-
tion 13.3.3.
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13.2.1 The Poisson Distribution The Poisson distribution has the fol-
lowing probability mass function (pmf):

fY (y; λ) =
e−λλy

y!
y ∈

{
0,1,2,3, . . .

}
(13.1)

Again, the probability mass function (pmf) is not as important as the ex-
pected value of this distribution. Why? Remember that the Generalized
Linear Model paradigm models the expected value, E [Y | X], not the actual
outcomes.

Calculating the expected value of the Poisson distribution is not as
easy as it was for the binomial; it requires a trick:

E [Y ] :=
∞∑
y=0

y fY (y) (13.2)

=
∞∑
y=0

y
e−λλy

y!
(13.3)

=
∞∑
y=1

y
e−λλy

y!
(13.4)

=
∞∑
y=1

e−λλy

(y − 1)!
(13.5)

= λ
∞∑
y=1

e−λλ(y−1)

(y − 1)!
(13.6)

Let us define z := y − 1:

= λ
∞∑
z=0

e−λλz

z!
(13.7)

and so, we have

E [Y ] = λ (13.8)

This last step is correct as e−λλz
z! is the probability mass function for the Pois-

son, therefore
∑∞
z=0

e−λλz
z! = 1. Thus, the expected value of a Poisson random

variable is E [Y ] = λ.
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Note: Recall that one of the assumptions of Ordinary Least Squares is
that the variance is constant with respect to the (expected value of the)
dependent variable. When the outcomes are distributed as Poisson ran-
dom variables, we can actually prove that the variance is not constant
with respect to the predicted outcomes. To see this, let Y ∼ P (λ). With
this, and with the probability mass function above, we can use the defi-
nition to calculate the variance of Y . Without proof, the variance of Y is
V [Y ] = λ. Yes, the variance is the same as the expected value.

Thus, the variance is a function of the expected value, and an as-
sumption of OLS is violated.

Note: That the variance is a function of the expected value also creates
a problem. Quite often, we will be dealing with data in which the vari-
ance is not equal to, but is greater than, the expected value. Such data
is termed overdispersed. When we encounter it (Section 13.3), we will
discuss what it means and what we should do.

Now that we understand our choice of distribution a bit better, and the re-
sulting expected value, let us examine the third facet: the link function. First,
note that λ is bounded; λ ∈ (0,∞). Thus, we need a function that takes a
bounded variable and transforms it into an unbounded variable. We have
already met a link function that can handle this — the logarithm function
(see Chapter 6).

Note: Again, note that we are modeling λ = E [Y ], not the observed count.
As λ is continuous and bounded below by zero (but never equal to zero),
we can use the logarithm function as our transformation link.

And so, we have the three necessary components to use Generalized Linear
Models for count data:

• the linear predictor,

η = β0 + β1x1 + β2x2 + · · ·+ βpxp (13.9)
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• the distribution of the dependent variable,

Y | x ∼ P (λ) (13.10)

with the formula for the expected value,

µ = λ (13.11)

• and the link function,
log(µ) = η (13.12)

Note: Here is what you need to take away from this section: The distribu-
tion must fit the possible outcomes. The link must translate the bounds
on the parameter to the lack of bounds on the linear predictor. Both re-
quire you to know some distributions.

13.2.2 Deriving the Canonical Link In Chapter 10, we mentioned that
each distribution has a canonical link. Let us derive the canonical link for
the Poisson distribution. The steps to determine the canonical link are the
same for the Poisson as it was for the Gaussian (Chapter 10), Bernoulli (Chap-
ter 11), and binomial (Chapter 12):

1. Write the probability mass function (pmf).

2. Write the probability mass function in the required form.

3. Read off the canonical link.

For this distribution, this results in:

pmf : f (y | λ) =
e−λ λy

y!
(13.13)

= exp
[
log

(
e−λ

)
+ log(λy)− log(y!)

]
(13.14)

= exp[−λ+ y log(λ)− log(y!)] (13.15)

(13.16)
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f (y | λ) = exp
[
y log(λ)−λ

1
+− log(y!)

]
(13.17)

This is in the required form:

(13.18)

exp
[
y θ − b(θ)
a(φ)

+ c(y,θ)
]

(13.19)

(13.20)

Thus, reading off the standard form, we have the following:

• y = y

• θ = log(λ)

• a(φ) = 1

• b(θ) = λ = exp(θ)

• c(y,θ) = − log(y!)

As such, the canonical link is the log function. I leave it as an exercise to
show that E [Y ] = λ and V [Y ] = λ using the methods of Section 10.2.4.

Note: As mentioned in previous chapters (10, 11, and 12), we are not
required to use the canonical link. Any monotonic, increasing function
that maps the restricted domain to the unrestricted domain works. With
that said, however, few links work better than the logarithm link in this
situation.

Example 13.1: The people in many US states have the ability to formulate
binding laws by placing them before the people for a vote. This process is
called the Citizens’ Initiative. Extant theory suggests that states with a higher
population will also use the initiative process more often than states with a
lower population. Let us test this hypothesis with data (crime datafile). •
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Solution: As we are performing GLM modeling, we need to determine the
three needed components. First, since the dependent variable is a count of
the number of initiatives placed before the voters, we will assume that the
dependent variable has a Poisson distribution:

inituse | λ ∼ P (λ) (13.21)

The linear predictor will use our explanatory variable:

η = β0 + β1pop90 (13.22)

The link function will be the logarithm function:

log(λ) = η (13.23)

With this, we use these commands to load and analyze the data

vcr = read.csv("http://rur.kvasaheim.com/data/crime.csv")
m2 = glm( inituse∼ pop90, family=poisson(link=log),

data=vcr, subset=(ccode!=93) )

Now, summary(m2) tells us that there is a statistically significant relation-
ship between the state’s population in 1990 and its use of initiatives in the
1990s. Unfortunately, the relationship is negative (β̂1 = −7.433×10−8), which
is definitely inconsistent with the original hypothesis. We have shown that
the original hypothesis does not agree with this reality.

Let us now predict the number of initiatives that Utah would have
had during the 1990s using the fact that the population of Utah is 1,722,850.
We can do this by hand or we can use the predict function. In either
case, we must remember to back-transform using the inverse of the loga-
rithm function, the exponential function. Using the latter method gives me
an un-transformed prediction of 2.0, which means the model predicts 7.44
initiatives for Utah in the 1990s. The real value is 3.

UTAH = data.frame(pop90=1722850)

prL = predict(m2, newdata=UTAH)
exp(prL)

Note: The glm function used here includes an additional parameter that
we have not discussed: subset. This parameter allows us to explicitly
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Figure 13.2: A plot of initiative use against the population of the state in 1990, with the
Poisson regression curve superimposed.

specify which data to include in the analysis. Here, I removed the state
with ccode equal to 93 (California) from the analysis. The reason I did
this is that a plot of the entire data suggested that California was an in-
fluential point.

Figure 13.2 is a plot of the data, with the regression curve superimposed.
The interesting thing is that the graph visually calls into question the results
of the GLM regression above. While the effect direction does definitely ap-
pear to be negative, it is hard to believe that this effect has such a high level
of significance (p � 0.0001). There is a lot of variance in the data What is
happening? �

The problem is that the model/data is overdispersed.
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13.3: Overdispersion

Recall that one result of using the Poisson as our distribution of choice is that
the residual variance and the expected value are assumed equal, because the
probability mass function has a(φ) = 1. Overdispersion means that a(φ) > 1.

In essence, this means V [Y | X] > E [Y | X]. For a Poisson model (and
for a binomial model), the overdispersion measure equals the ratio of the
residual deviance to the residual degrees of freedom. We use the ‘residual,’
since overdispersion is a function of the model, as well as the data. For the
Initiative Use model (Example 13.1), the overdispersion factor is 681.68/48 =
14.2. In other words, the level of unexplained variance is 14.2 times too high
for this model.

Note: Please revisit Section 12.3.2 for one way of testing whether 681.68
really is evidence of significant overdispersion. If you create the right
test,2 you will get a critical value of just 69. Since 681.86� 69, there is a
lot of overdispersion in this data.

Since overdispersion is a function of the model you are fitting to your data,
the first solution is to determine if you are missing some important vari-
ables (or powers of variables). Frequently, modifying your linear predictor
by adding appropriate variables will reduce the overdispersion to an accept-
able level.

Even though this is the most appropriate method in many ways, there
is an extreme danger to using this method: you may need to include too
many variables and combinations of variables to eliminate the overdisper-
sion. This results in over-fitting the data; that is, you are fitting the data
and not the data-generating process in which we are actually interested (see
Section 13.5).

Thus, if you end up including too many variables before the overdis-
persion is treated, you may want to consider other options.

The first is to adjust the standard errors by hand. This frequently
works acceptably, as the primary effect of overdispersion is to underesti-
mate the standard errors. The second option is to fit the model using a

2The code I used was qchisq( c(0.025,0.975), df=48).
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Parameter Original Adjusted

Estimate Std. Error Std. Error z-value p-value

Intercept 2.136 0.0814 0.307 6.960 � 0.0001
1990 Population -7.433 ×10−8 1.743 ×10−8 6.568 ×10−8 -1.131 0.2578

Table 13.1: The results from the Poisson model, with standard errors adjusted for overdis-
persion. In the original Poisson model, the residual deviance was 681.68 and the residual
degrees of freedom was 48. Thus, the dispersion factor was 14.202. Thus, we adjust the
standard errors by multiplying the original estimates by

√
14.202 = 3.769. The calcula-

tion for the z value is the same: coefficient divided by standard error, with the new p-value
based on the adjusted z value.

different fitting technique, one that allows you to use the Poisson but also
allows you to have a different relationship between the mean and variance.
Quasi-maximum likelihood estimation (QMLE) is a common alternative to
the usual maximum likelihood methods. Finally, you can fit the model us-
ing a different distribution, one that does not require the mean to equal the
variance. The negative binomial is a common alternative to the Poisson.

13.3.1 Adjusting the Standard Errors This first option adjusts the es-
timated standard errors to try to compensate for the overdispersion. Recall
that the dispersion factor is the ratio of the residual variance to the expected
variance. As the standard error is the square root of a variance, it would make
sense that we could ‘fix’ the overdispersion by multiplying by the square root
of the dispersion factor.

Table 13.1 presents the original standard error estimate along with the
adjusted standard errors, z-values, and p-values. Note that the 1990 popula-
tion was highly significant in the unadjusted model, but is not significant in
the adjusted model (p = 0.2578).

The strength of this method is that it is easily performed. The draw-
back is that the correction is only an approximate estimate. In the era of ex-
pensive computational times, this method was commonly used; in the mod-
ern era of cheap computing, not-so-much. The next two methods are more
appropriate in that their results are more statistically sound than this ap-
proximation.

13.3.2 Quasi Maximum Likelihood Estimation The maximum likelihood
estimation method makes assumptions about the relationship between the
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Parameter Original Adjusted

Estimate Std. Error Std. Error z-value p-value

Intercept 2.136 0.0814 0.345 6.103 � 0.0001
1990 Population -7.433 ×10−8 1.743 ×10−8 7.492 ×10−8 -0.992 0.3261

Table 13.2: The results from the Poisson model, with standard errors estimated using
Quasi-Likelihood Estimation. Note that the coefficient estimates are the same between the
two methods. The differences are due to the re-estimated standard errors. Note, again,
that the 1990 population is no longer a statistically significant variable as it was in the
original Poisson model.

mean and variance of the underlying distribution. For the Poisson distribu-
tion, that relationship is the identity function; that is, E [Y ] = V [Y ]. The
presence of overdispersion indicates that this relationship — or this value of
a(φ) — is incorrect.

A different way of estimating the parameters is to use Quasi Maximum
Likelihood Estimation (Section 12.3.2, page 338). This method allows for
modeling different relationships between the expected value and variance
for the distribution. It effectively includes an additional parameter for a(φ).

The strength of using QMLE is that you can use the same distributions
with which we are familiar, and the interpretation is identical. The weakness
is that some statistical programs are not able to model using this method. R
can. To model using QMLE in R, we prefix the distribution with the world
quasi. Thus, we would use

glm(y ∼ x, family=quasipoisson(link=log))

to fit this model. This command produces the results in Table 13.2. Note that
the coefficient estimates are the same as for the Poisson model. The difference
is in the standard errors — they are increased. This reduction causes our z-
values to decrease, resulting in increased p-values.

Note: The only two distributions that have the QMLE option in R are the
Poisson (quasipoisson) and the binomial (quasibinomial). These
are the only two main distributions that have a specific numeric value for
a(φ) = 1. The rest have a value for a(φ) that is estimated from the data;
for instance, the Gaussian has a(φ) = σ2.
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13.3.3 The Negative Binomial Family In the Generalized Linear Model
framework, you need to select an appropriate distribution that matches your
dependent variables. If that variable is a count, then the sole requirements
for that distribution are that the outcomes can only be discrete and non-
negative. The Poisson is the usual distribution, but it is not the only one.
An alternative distribution is the negative binomial. The negative binomial an
family allows for both over- and under-dispersion in the model. It does this
by assuming the rate parameter λ in the Poisson is distributed as a gamma
random variable (Venables and Ripley 2004). Specifically, it assumes

Y | µ,θ ∼ NegBin(µ,θ) (13.24)

where

Y |W ∼ P (µW ) (13.25)

with

W ∼ 1
θ

GAM(θ) (13.26)

where E [W ] = 1 and V [W ] = 1/θ.

With this formulation, it can be shown that E [Y ] = µ, V [Y ] = µ+µ2/θ, exercise
and that the probability mass function for Y is

f (y;θ) =
Γ (θ + y)
Γ (θ) y!

µyθθ

(µ+θ)θ+y
(13.27)

The strength of this formulation is that a greater number of variations
are able to be fit.

The drawback is that interpreting the results is a bit more difficult.
However, since we make the computer do all the heavy lifting, this drawback
is minor. It does, however, introduce a new set of possible error messages
and parameters that you may have to interpret.

The other drawback is that the negative binomial distribution is not a
member of the exponential family (unless θ is known, which it is not). As
such, it cannot be used within the GLM paradigm (strictly speaking). With
that said, fitting a model using the negative binomial distribution is just as
easy as it is for any of the previous distributions.

In R, you will have to load the MASS package to use the Negative Bi-
nomial family, since it has its own regression function: glm.nb. The options
for glm.nb are similar to those for glm — the programmers designed it that
way. Thus, the command

371



Estimate Std. Error z-value p-value

Constant Term 2.2376 0.4835 4.63 � 0.0001
Population in 1990 -1.0091× 10−7 8.1903× 10−8 -1.23 0.2179

Table 13.3: The results table for modeling the initiative use using the Negative Binomial
distribution. Note that the population is no longer statistically significant.

m2n = glm.nb( inituse ∼ pop90, data=vcr, subset=(ccode!=93) )

will perform negative binomial regression similar to the regression performed
in Section 13.3.2. The first thing to notice is that the overdispersion is no
longer relevant. With this, we can have more confidence in the parameter es-
timates (provided in Table 13.3). The second thing to notice is that the effect
of population is still no longer statistically significant. This agrees with our
observation in Sections 13.3.1 and 13.3.2. Finally, we notice that there are ad-
ditional parameters estimated (at the bottom). The Theta is the estimated
value of θ in the Gamma distribution above.

Note: The direction of the coefficient estimate is still directly comparable
to the other coefficients estimates we have examined. The magnitudes
are also comparable, but only to the other log-linked models. Thus, this
model tells us that there is a negative relationship between the state’s
population and the level of initiative use (although it is not statistically
significant).3

This model estimates that Utah will have had approximately 7.9 initiatives
during the 1990s. I leave it as an exercise to determine this.exercise

3That the direction is comparable is due to choosing a link function that is strictly increasing.
That the estimates are comparable is due to having the same link function or same transform
function.
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13.4: Full Example: Body counts

Using the above information, let us examine the problem of understanding
terrorism. This extended example will also allow us to discuss a few things
that are becoming important to our analyses, namely the bias-variance trade-
off.

Example 13.2: The Troubles in Northern Ireland lasted from 1969 until 2002.
In that time, over 1800 people died as a result of terrorist actions — both re-
publican and loyalist groups. Six prime ministers of the United Kingdom
— both Conservative and Labour — had to deal with the terrorism. If we
assume that the terrorist groups are rational actors, then they will act to
maximize their chances of achieving their goals. Because of its hierarchi-
cal structure and large size, the Provisional Irish Republican Army (PIRA)
was best able to organize its actions to affect the elections.

The question is whether they did —

Did the PIRA react to the political ideology of the current
prime minister?

Unfortunately, the extant literature is divided on the direction of the effect.
Some research suggests that the PIRA became more violent and killed more
people when the Conservatives held power. Other research suggests that the
PIRA became more violent under the Labour party. Which is it? •

The dataset, terrorism, contains just three variables of import: total (the
total number of deaths under that prime minister for the year, or part of
the year), days (the number of days during the year that the prime minister
was in power), and riteleft (the level of conservatism of the prime minis-
ter). The second variable is necessary to control for the fact that some prime
ministers only ruled for a part of the year. The third variable is the research
variable. The first variable is the response variable (dependent variable). The
basic research model is

deaths ∼ riteleft (13.28)

However, we need to deal with days, the number of days the premier is in
power. If we include days as a simple independent variable, we allow the
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effects of the days variable to freely vary to fit the data. However, this may
not really make sense. If the model tells us that the coefficient estimate for
days is 2.35, what does that really mean?

It is usually better to treat days as the divisor for terrorist killings,
thus ostensibly creating a variable of killings per day. But, this is no
longer a count model (non-integer values), nor is it a proportion model (val-
ues can be greater than one). What should we do?

Fear not! Through the magic of mathematics, we can handle it.mathemagic

Recall in Section 13.2 that the link function we used was the loga-
rithm: log[λ] = β0 + β1x1 + β2x2 + · · ·+ βkxk . If, instead of the expected count,
λ, we wanted to model the expected ratio, λ

days , we would have:

log
[ λ
days

]
= β0 + β1x1 + β2x2 + · · ·+ βkxk (13.29)

Using one of the properties of logarithms, this is equal to

log[λ]− log[days] = β0 + β1x1 + β2x2 + · · ·+ βkxk (13.30)

This, in turn, is mathematically equivalent to

log[λ] = β0 + β1x1 + β2x2 + · · ·+ βkxk + log[days] (13.31)

As such, we now have a count model (the log[λ] is alone on the left and is a
random variable) with an additional factor (log[days] on the right as a non-
random variable). Note that there is no parameter to estimate for log[days].
This is important in how we set up the model, as days is not a typical vari-
able. Let us call it an offset variable.

Offset variables do not have parameters to estimate. They are direct
effects with no multipliers. One can think of them as being subsumed in
the constant term (which would be true if the offset variable was constant).
Most statistical programs have an offset option available when you specify
the model to be fit. In R, the offset is specified in the model call by the key-
word ‘offset’.offset

For the glm function,

glm(pira ∼ riteleft, offset=log(days), data=terror)

For glm.nb,

glm.nb(pira ∼ riteleft, offset(log(days)), data=terror)
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Poisson Quasi-Poisson Negative Binomial

Constant Term 2.2622 2.2622 2.0363
(0.1190) (0.7071) (0.6004)

Conservatism -0.0115 -0.0115 -0.0142
(0.0011) (0.0065) (0.0093)

Days in year 0.0050 0.0050 0.0058
(0.0004) (0.0021) (0.0019)

AIC 1482.8 —— 369.5

Table 13.4: Results of three different “families:” Poisson, quasiPoisson, and Negative
Binomial. The numbers in parentheses, below the coefficient estimates, are the standard
errors.

Option 1: Days as an independent variable: The first option is to treat the
days variable as just another independent variable. This is not the best an-
swer, as days has a specific meaning with respect to the number of terrorist specific
deaths. The better option is to use Option 2 (below). However, for pedagogi-
cal purposes, let us first enter days as an independent variable. Performing
regressions for each of the three count data families, we get the summarized
results in Table 13.4.

Note that the direction of each of the effects is the same. This is not
always true, especially when the variable has little effect or has no statistical
significance. However, if the variable is significant and changes effect direc-
tion, then there is something severely wrong with your research model. Also
note that the effects are the same between the Poisson and the quasiPoisson
families. The only difference is the size of the standard errors. The quasiPois-
son will always give a better estimate of the standard errors (and of the sta-
tistical significance) than the Poisson.

Note that the Poisson model is severely overdispersed — the residual
deviance is much larger than the residual degrees of freedom (the residual
deviance is 1298, the residual degrees of freedom is 36, the overdispersion
factor is 36.06). As such, the Poisson family would be (very) inappropriate
for this model. Thus, either the quasiPoisson or the negative binomial model
would be preferable.

If we had just used the Poisson family, we would have concluded that
the level of conservatism of the prime minister is highly significant. How-
ever, looking at the more-appropriate results of fitting using Quasi Maxi-
mum Likelihood Estimation (or using the negative binomial family), we see
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Poisson Quasi-Poisson Negative Binomial

Constant Term -1.8280 -1.8280 3.8744
(0.0254) (0.1495) (0.0969)

Conservatism -0.0106 -0.0106 -0.0069
(0.0011) (0.0063) (0.0041)

AIC 1479.6 —— 2080.2

Table 13.5: Results of three different families: Poisson, quasiPoisson, and Negative Bino-
mial. The numbers represent the estimated coefficients. The numbers in parentheses are
the estimated standard errors.

that the effect of conservatism is non-existent. Since the effect of conser-
vatism on deaths was the purpose of this research question, it is extremely
important to reach good conclusions about the effects of this variable.

As our research variable is not statistically significant at the usual
level of significance, we will not even bother to predict and graph our pre-
dictions here.

Option 2: Days as an offset variable: The second (and preferred) option
uses days as an offset (or “exposure”) variable. This makes more sense thanexposure
allowing it to freely enter the model as a typical independent variable. The
results from fitting the data with the three model families are found in Ta-
ble 13.5.

According to the results, the Poisson family is not appropriate; the
level of overdispersion is very high — on the order of 35. As such, using the
QMLE method or the negative binomial family would make good substitutes.
In the quasiPoisson model, the parameter estimates remain the same, but the
estimates of the standard errors change to reflect the overdispersion. Thus,
while the effect of conservatism was statistically significant in the Poisson
model, it was not in the quasiPoisson model (p = 0.1013).

The negative binomial model echoes the qualitative conclusions of the
quasiPoisson: The level of conservatism has no statistically discernible effect
on the level of deaths resulting from PIRA terrorism in the United Kingdom
during the Troubles in Northern Ireland (p = 0.0905).

13.4.1 Bettering the Fit* Using the results from both the quasiPoisson
and the negative binomial model does offer you the ability to strengthen your
conclusions. If one result gave statistical significance and the other did not,
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then you would realize that your conclusions depended on the assumptions
you made about the underlying mechanism that produced the data, and not
on the variables you chose to include (or exclude). It is never a good place
to find yourself when your substantive results depend on the choice between
two acceptable models.4

Maybe, one should not stop here. Our formula is rather simplistic: it
states that one independent variable is all we need to explain the dependent
variable. It also assumes that the effect is linear between the independent and
the dependent variable. If we believe that extremist prime ministers suffer extreme
from higher (or lower) levels of terrorist killings, then the research formula
we have cannot capture that effect. To capture that effect, we will have to use
the square (and/or higher powers) of the riteleft variable.

In fact, let us examine the effects of conservatism (up to the fourth
power), plus the effects of having Labour in power, plus an interaction be-
tween having Labour in power and the level of conservatism in the Labour
government. Thus, the research model we wish to fit will be

pira = β0 + β1 riteleft+ β2 riteleft
2 + β3 riteleft

3 (13.32)

+ β4 riteleft
4 + β5 labour (13.33)

+ β6 labour × riteleft (13.34)

Of course, we would need to have good theory to provide this model, but let’s theory!!
just have fun with this.

In most statistical programs, one would have to create new variables
for each of the powers (three new variables) and a new variable for the in-
teraction term (labour × riteleft). In R, however, we can just write the
formula to reflect what we want without having to worry about the addi-
tional step of creating new variables. As such, in R, the formula will be

pira ∼ riteleft + labour + I(riteleft∧2) (13.35)

+ I(riteleft∧3) + I(riteleft∧4) + I(labour*riteleft)
(13.36)

The use of I() indicates that R should evaluate what is in the parentheses
as a new variable. Fitting this model using Quasi Maximum Likelihood Esti-
mation indicates that none of the terms have a statistically significant effect.

4With this said, there is some research into combining estimates from separate models. These
estimates require that you are able to specify your personal beliefs in the correctness of the
models.
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Quasi-Poisson Negative Binomial

Intercept −12.51 −6.980
(4.478) (2.396)

Labour −4.742 −4.8430
(1.553) (0.2856)

Conservatism 1.847 1.8660
(0.07101) (0.3778)

Conservatism2 −0.03830 −0.03833
(0.01425) (0.00750)

Conservatism3 −0.002585 −0.0026070
(0.0009421) (0.0005005)

Conservatism4 −0.00007314 −0.00007361
(0.00002642) (0.00001398)

AIC —— 1787.8

Table 13.6: Results of two different models: fitting with QMLE and using the Negative
Binomial family. The numbers are the parameter estimates; in parentheses, the estimated
standard errors.

This should not really surprise us, since there is a lot of correlation among
the independent variables in that model. In the presence of high correlation,
the standard errors tend to be larger than they should be.

Since nothing was statistically significant, let us pare the model to
reduce the effect of correlation and get at some more basic effects. The best
first thing to remove from the model is the interaction term. Doing this gives
us the research model:

pira = β0 + β1 riteleft+ β2 riteleft
2 + β3 riteleft

3

+ β4 riteleft
4 + β5 labour+ ε (13.37)

Fitting this model using both the quasiPoisson family and the Negative Bi-
nomial family gives us the results in Table 13.6.

Notice that all of our variables are now statistically significant at the
α = 0.05 level. It turns out that the interaction term was so highly correlated
with the other variables that it made it impossible to correctly estimate the
effects of the individual research variables.

Now that we have two models that tell us, substantively, the same
story, we should show the effect of the variables of interest. There are really
only two independent variables involved here, with one being dichotomous.
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Figure 13.3: Plot of the number of deaths due to terrorism, caused by the Provisional
Irish Republican Army (PIRA), in the United Kingdom during the Troubles in Northern
Ireland. The points are overlaid with the quasiPoisson model (Left Panel) and the Negative
Binomial model (Right Panel). In both cases, the upper curve (red) corresponds to the
prediction when the Conservative Party is in power.

As such, we can show the effects on the same graph (one graph for each fam-
ily), with two prediction curves per graph. Figure 13.3 shows the predictions
from both the quasiPoisson model (Left Panel) and the Negative Binomial
model (Right Panel). The upper curve in both cases (red) corresponds to pre-
dictions when the Conservatives are in power.

13.5: The Bias-Variance Trade-Off

Note that these two models are completely worthless in explaining the effects
of the variables on the population (or the “data generating process”).5 Be-
cause we used so many parameters, the model fits the data — noise and all
— as opposed to the underlying reality (signal). This is a common problem.
Since the goodness of our fit increases as we increase the number of variables
in our models (see the effect of the number of covariates on the R2 value),
there is a pressure for us to increase the number of variables. However, as in
this case, using too many variables (or interactions, or powers) usually tells

5Explanation of the relationships is very important. Our job as scientists is to use numerical
relationships to better understand the data generating model (how the dependent variable
cam to being).
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us too little about the underlying process that gave rise to the data, which is
the entire purpose of performing a statistical analysis.

Note: Remember that we are only using the data (a sample) to help us
better understand the process (model) that gave us the data (population).
Fitting the data perfectly actually tells us little about the process we are
trying to model. However, not using enough variables may not get at the
process, either. This trade-off between increasing the number of variables
(which increases the reliance of the parameter estimates on the actual
data) and reducing the number of variables (which increases the errors
in our model) is termed the Bias-Variance trade-off, and it is a problem
we must keep in our minds at all times. On the one hand, we want a
good model that fits the population, on the other hand, we only know
the sample (the data collected).

In the terrorism example (v.s., Section 13.4), we can see that we used too
many explanatory variables in our model. A glance at the graphs in Fig-
ure 13.3 suggests that we should have gone with a quadratic model (second
power) at most, even though the quartic model (fourth power) fit the data bet-
ter. Avoiding over-fitting the data is as simple as being aware of the dataset
and the model predictions (of course, a good graph helps).
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13.6: Conclusion

In this chapter, we examined what we can do when our dependent variable
is an unbounded count variable. As such variables are non-negative and
discrete, nothing we have done thus far can properly handle them. While
performing a log transform of the dependent variable as we did in Chapter 6
would allow us to actually make predictions that made sense (provided that
there were no zero counts), the resultant model would probably violate one
or more of the assumptions of the Classical Linear Model.

Two model families were introduced to handle count data. The Pois-
son family requires that the mean and the variance be equal (which translates
to the residual deviance and the residual degrees of freedom be equal). This
is rarely the case. When the residual variance is much larger than the mean,
the data are overdispersed. The Negative Binomial family models overdis-
persed (and underdispersed) data, but it is a bit more difficult to fit with
data.

As with Generalized Linear Models in general, the methods in this
section model the expected value and not the actual outcome. As the param-
eters must be non-negative, we use a log link to ensure this condition holds.
Note that we are not transforming the dependent variable, we are transform-
ing the family parameter (or parameters) — λ, in the case of the Poisson and
the quasiPoisson; λ and θ for the Negative Binomial.

The last point of this chapter was a warning about the Bias-Variance
trade-off: Including more variables fits the data better, not necessarily the
process that gave rise to the data. Fewer variables may miss both the data
and the underlying process. There is a happy medium — unfortunately, we
cannot know what it is.
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13.7: End of Chapter Materials

13.7.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Packages:

MASS This package is a “book” package — a package created for a spe-
cific book. Here, that book is “Modern Applied Statistics with S,” by
William N. Venables and Brian D. Ripley (2004).

Statistics:

glm(formula) This function performs generalized linear model estimation
on the given formula. There are three additional parameters that can
(and often should) be specified.

The family parameter specifies the distributional family of the de-
pendent variable, options include gaussian, binomial, poisson,
gamma, quasibinomial, and quasipoisson. If this parameter is
not specified, R assumes gaussian.

The link parameter specifies the link function for the distribution. If
none is specified, the canonical link is assumed.

Finally, the data parameter specifies the data from which the formula
variables come. This is the same parameter as in the lm function.

glm.nb(formula) As negative binomial regression is fit using different meth-
ods, it cannot be included in the base glm command. To use the glm.nb
command, you must include the (very helpful) MASS package in your
script, library(MASS). The output of the glm.nb function is similar
to that of the normal glm command, with the inclusion of an estimate
for θ and its standard error. If θ = 1, then the Poisson model may be
appropriate.

offset The offset function (or function parameter) allows us to include known
varying values in our regression. The variable included as an offset will
not have an effect parameter estimated for it.
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predict(model, newdata) As with almost all statistical packages, R has a
predict function. It takes two parameters, the model, and a dataframe
of the independent values from which you want to predict. If you omit
newdata, then it will predict based on the independent variables of
the data itself, which can be used to calculate residuals. The dataframe
must list all independent variables with their associate new values. You
can specify multiple new values for a single independent variable.
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13.7.2 Exercises

1. Show that E [Y ] = λ and V [Y ] = λ using the methods of Section 10.2.4.

2. Example 13.2.2 mentioned that California was an outlier in this model.
First, plot the initiative data with California included. Second, ap-
propriately fit the model with California included and interpret the
coefficients. Finally, predict the number of initiatives Utah would have
(a population of 1,722,850). Save the script as ext01.R.

3. In Section 13.3.3, we fit the initiative data using the Negative Bino-
mial distribution. I made the statement that this model predicted 7.9
initiatives for Utah in the 1990s. Please graph the data, plot the predic-
tion curve, and predict the number of initiatives Utah will have in the
1990s. Finally compare the results between the model with California
and the model without California. Save the script as ext02.R

4. Go back to the last model we fit (Eqn 13.37). Consider the comments
about the model made in Section 13.5. Create a better model. Fit it
with both the quasiPoisson and the Negative Binomial. Plot graphs like
those in Figure 13.3. Comment on the differences in the predictions
between the two models. Save the script as ext03.R

5. Estimate the number of initiatives that Utah had during the 1990s.

6. Prove Equation 13.27 (the formula for the probability mass function)
on Page 371 is true.

7. Given the probability mass function in Equation 13.27, prove E [Y ] = µ
and V [Y ] = µ+µ2/θ.

8. Given the definition of the Negative Binomial distribution (Equations
13.25 and 13.26), prove that an overdispersion of θ = ∞ reduces the
Negative Binomial to a Poisson.
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