
Chapter 11:

BinaryDependentVariables

Overview:

Thus far, we have examined linear regression where the
dependent variable is continuous — either unbounded
or bounded. These cases cover a wide variety of in-
stances — but not all. Examples of dependent variables
we can now use include heights, incomes, vote propor-
tions, distances, and so forth.

However, we do not yet have the ability to handle
dependent variables which are discrete. Such variables
include dichotomous variables (presence of a character-
istic), count variables (ages, deaths, numbers of fires),
ordinal variables (importance level), and nominal vari-
ables (different outcomes). These types of variables are
all limited in that there are adjacent outcomes. This
chapter deals with modeling dichotomous (binary) ran-
dom variables.
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§ § §

The previous chapter introduced the generalized linear model paradigm (GLM).
Modeling with GLMs requires that we know three things:

1. the conditional distribution of the dependent variable (thus a formula
for the expected value of the dependent variable), µ;

2. the linear predictor, η = XB; and

3. a (bijective) function linking the two, g(µ) = η.

In that chapter, we showed that the Classical Linear Model is just a special
case of the Generalized Linear Model. Specifically, the CLM is just a GLM us-
ing the Gaussian (Normal) distribution and the identity link. In this chapter,
we cover the case of dichotomous (binary) dependent variables. In the fol-
lowing pages, we determine the appropriate distribution and the canonical
link function.
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11.1: Binary Dependent Variables

A dichotomous variable is one that can take one of two values: 1 or 0, True or dichotomous
False, Yes or No, success or failure. In research, these variables include the oc-
currence of terrorism, the election of a specific party to power, the existence of
a fire, and the failure of a plane. In each of these cases, there are only two pos-
sible values: success and failure. This is the hallmark of dichotomous vari-
ables. Before Nelder and Wedderburn (1972) created the GLM framework,
statisticians created special models for binary dependent variable problems.

They did so because the classical linear model invariably makes pre-
dictions outside the logical range, demonstrates heteroskedasticity, and has
residuals that are not Normally distributed — all violations of the OLS as-
sumptions. To illustrate this, let us model the decision to purchase life in-
surance using age and income and the classical linear model (fit using OLS).
The next example illustrates these issues.

Example 11.1: The decision to buy life insurance is related to several vari-
ables, including age and income. Table 11.1 includes records of several indi-
viduals. Fit this data with a linear model using OLS:

insurance = β0 + β1age+ β2income (11.1)

Next, predict whether Bob will buy life insurance, given that his age is 65 and
his income is $125,000. Finally, determine if the assumptions of ordinary
least squares are violated with this model and data. •

Solution: Using our statistical program, we get the following as our linear
regression equation

insurance = −0.4277 + 0.0130×age+ 0.0088×income

Using the provided information, we predict Bob will buy life insurance at
(with?)

insurance =− 0.4277 + 0.0130×age+ 0.0088×income (11.2)

=− 0.4277 + 0.0130× 65 + 0.0088× 125 (11.3)

= + 1.5121 (11.4)

291



Figure 11.1: Scatter plot of the residuals against the values of the dependent variable.
Note the different variances for the two groups. As such, the linear model is not appropri-
ate in this case.

What does this value of 1.5121 actually mean?

I don’t know, either.

Next, to check the assumptions of OLS, let us merely check the assumption
of homoskedasticity (constant variance). To do this, we plot the residuals
against the values of the dependent variable. Figure 11.1 shows that the vari-
ation in the residuals significantly differs across the two groups in this model
— a violation of our assumptions. In fact, calculations show that the variance

Individual Insurance Age Income ($000)

1 0 25 20
2 0 30 30
3 0 21 30
4 0 35 25
5 0 28 27
6 1 80 90
7 1 55 25
8 1 40 60
9 1 40 65

10 1 25 125

Table 11.1: Insurance pseudo data to accompany Example 11.1 in the text, in which we
predict a person purchasing life insurance based on the person’s age and income.
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for those who bought insurance is about 24 times higher than for those who
did not (0.1325 vs. 0.0055). This is an example of non-constant variance. Per-
forming the usual F-test for comparing two variances, we also see that this
difference is statistically significant (F = 0.0416,νn = 4,νd = 4,p = 0.0093).
Therefore, we conclude that our model is not appropriate for this data. �

There were two problems with this analysis. First, the model predicted an
outcome that did not make sense. Second, the model violated at least one
assumption of ordinary least squares (it actually violates all three). To solve
the first problem, we could create a decision rule that any predicted value
above the threshold τ = 0.500 will be treated as a ‘Buy’ prediction, and any
predicted value less than τ = 0.500 will be treated as a ‘Not Buy’ prediction.

The second problem is more serious and not so easily solved, espe-
cially if we care about our estimate’s uncertainty (i.e., create confidence in-
tervals). One may consider performing a transformation on the dependent
variable to make it unbounded. A logit transformation would be a natural
transformation for this; however, all of the dependent variables are either 1
or 0, which means the transformed values will be either +∞ or −∞. Further-
more, this transformation would not take care of the relationship between
the residuals and the (transformed) dependent variables.

Note: There is a tendency to feel disappointed when our model violates
assumptions, such as here. However, instead of seeing the existence of
a relationship between the residuals and the dependent variable as a
problem, let us realize such a relationship tells us that there is more in-
formation in the data than we are modeling at this point. As an inter-
ested researcher, we want to use that information to get more from our
data. Thus, violations are not steps backwards; they are a path towards a
deeper understanding of the data generating process.
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11.2: Latent Variable Modeling

In Example 11.1, we discovered that Bob has a something of 1.5121 to buy life
insurance. What is the something? Our gut really wants us to say that it is the
probability that he buys life insurance. In fact, it would be very helpful if we
could predict Bob’s probability of buying life insurance. Unfortunately, what
we estimated cannot be a probability, as the value is greater than 1. Notice,
however, that we have just made an unconscious step in our minds: We are
no longer thinking in terms of modeling the actual outcome (1 or 0); we are
thinking in terms of modeling the expected value of the outcome, E [Y | x];
here, that is the probability of a success, π.

In other words, we are now modeling a variable we cannot measure
— a latent variable. Instead of modeling an actual outcome, we now think inlatent
terms of modeling the underlying probability that the person will purchase
life insurance. This has the dual advantage of being a continuous variable
and of being bounded by 0 and 1, exclusive.

As such, we can model it using previous techniques. Remember that
the predicted value will be a probability, not an actual outcome we can mea-
sure. To predict the outcome, there is an additional step: selecting a thresh-
old value, τ , above which we predict the individual bought insurance; below
which, not. The traditional threshold value is τ = 0.500; however, there is no
reason we cannot alter it to better fit the data (Section 11.5.3).

Thus, our research model in the life insurance example becomes

logit
(
P [insurance]

)
= β0 + β1age+ β2income (11.5)

We use the logit function for the same reason we used it before (Chapter 6):
to transform the bounded variable into an unbounded variable. The right
hand side of Equation 11.5 is η, a linear function that can take on all real
values — the linear predictor. Figure 11.2 shows a schematic of what we are
actually modeling. The diagonal line in the top Figure 11.2 is the line of
best fit for the linear predictor. The horizontal line is the threshold value we
chose to distinguish between ‘Success’ predictions and ‘Failure’ predictions,
which corresponds to logit(τ) in this top graph, τ in the bottom. The bottom
figure is the linear predictor back-transformed into ‘probability’ units. The
horizontal line is the actual τ chosen, here τ = 0.500.
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Figure 11.2: Plot of the linear predictor and a possible threshold for a typical latent binary
dependent variable model. The logit of the Linear Predictor is in level units (proportion
units).

If we need to actually calculate the probability that Bob will purchase
life insurance, we can calculate it from the linear predictor:

logit
(
P [insurance]

)
= η (11.6)

This is equivalent to

P [insurance] = logistic
(
η
)

(11.7)

§ § §

This section examined the relationship between the line of best fit for the
linear predictor, η, and the predicted probability of a success. However, we
did not discuss how that line of best fit was determined. The next section
does just that.
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11.3: The Mathematics

When we model using the Classical Linear Model, we actually model/predict
the expected value of the dependent variable, the mean. In the above insur-
ance example, we modeled/predicted the probability of a person purchasing
life insurance. What is the connection? It is that E [Y | x] = π.

Remember from Chapter 10, performing GLM estimation requires
that we know three things about our data and our model: the linear pre-
dictor, the distribution of the dependent variable, and the function that links
the two domains. The previous section discussed the linear predictor (η =
β0 + β1age+ β2income) and a link function, logit(µ), for our example. That
only leaves the conditional distribution of the dependent variable.

What are the possible values of the dependent variable? They are{
0,1

}
. What distribution has only these two outcomes? It is the Bernoulli

distribution.1 For the Bernoulli distribution, the probability of getting a ‘1’
(success) is π and the probability of getting a ‘0’ (failure) is 1−π. Mathemat-
ically, this means the full probability mass function (pmf) is

fY (y) =


πy(1−π)1−y y ∈

{
0,1

}
0 otherwise

(11.8)

Strictly speaking, the probability mass function is not as important as the
expected value of this distribution. Why? Remember that the Generalized
Linear Model paradigm models the expected value, E [Y | x] of the distribution
of the dependent variable.

Calculating the expected value of the Bernoulli distribution is easy
using the definition of expected value:

E [Y ] :=
∑
i

yifY (yi) (11.9)

= 0× fY (0) + 1× fY (1) (11.10)

= 0× (1−π) + 1× (π) (11.11)

= π (11.12)

Thus, the expected value of a Bernoulli random variable is π, the success
probability.

1The Bernoulli distribution is a special case of the Binomial. It is equivalent to the Binomial
distribution when n = 1; that is, if Y ∼ Bern(π), then Y ∼ Bin(1,π).
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This fact makes the results of modeling more apparent: As the GLM
paradigm models the expected value, when we use the Bernoulli distribution,
we end up modeling the probability of a success, which is what we want.

Note: Recall that one of the assumptions of Ordinary Least Squares is
that the variance is constant with respect to the independent variable.
When the outcomes are Bernoulli random variables, we can easily prove homoskedasticity
that the variance is not constant with respect to the predicted probabili-
ties (expected values). If there is a relationship between the independent
variable and the probabilities (which will be true if X affects Y), then a
relationship between variance and expected value indicates heteroske-
dasticity.

To see this, let Y ∼ Bern(π). With this, and with the probability
mass function above, we use the definition of variance to calculate V [Y ]:

V [Y ] :=
∑
i

(yi −µ)2fY (yi) (11.13)

= (0−µ)2fY (0) + (1−µ)2fY (1) (11.14)

= (0−π)2fY (0) + (1−π)2fY (1) (11.15)

= π2(1−π) + (1−π)2π (11.16)

= π(1−π)
[
π+ (1−π)

]
(11.17)

This last line simplifies to V [Y ] = π(1−π), as π+(1−π) = 1, which means
V [Y ] is a function of π, the expected value. It is not a constant with
respect to the expected value, π. Binary dependent variables violate the
assumption of homoskedasticity — by definition.

Note: The variance is a quadratic function of the probability of a success,
V [Y ] = π(1−π). From this formula, we see that we are most unsure (the
variance is highest) when the probability of a success is π = 0.500. Check
that this makes sense: Which has a more uncertain outcome, a fair coin
(π = 0.500) or a two-headed coin (π = 1.000)?
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Note: Finally, let us note that not all forms of heteroskedasticity can be
handled in this manner, even when there are only two outcomes. How
do we handle such data? One way is to use a different estimation routine
than maximum likelihood estimation (MLE). One option is called quasi-
maximum likelihood estimation (QMLE). When this becomes important,
we will revisit it.

Now that we understand our choice of distribution a bit better, and the re-
sulting expected value, let us examine the third facet: the link function. First,
note that π is bounded: π ∈ (0,1). Thus we need a function that takes a
doubly-bounded variable and transforms it into an unbounded variable. We
have already met a link function that can handle this — the logit function
(see Chapter 6).2

And so, we have the three necessary components to use generalized
linear models in this example:

• the linear predictor,

η = β0 + β1age+ β2income (11.18)

• the distribution of the dependent variable,

insurance ∼ Bern(π) (11.19)

with the formula for the expected value µ = π.

• and the link function,
logit(µ) = η (11.20)

2Here, I must mention that the logit is not the only appropriate link function. Any monotonic
function that maps (0,1) 7→ R is appropriate. This includes the entire class of quantile func-
tions, of which the probit is a member.
The choice of the link function often reduces to tradition within your field. However, social
science theory is getting advanced enough to suggest link functions that are more appropriate
than others.
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Note: Here is what you need to take away from this section: The distribu-
tion must fit the possible outcomes. The link must translate the bounds
on the parameter to the linear predictor. Both require you to know some
distributions, which is why they are briefly covered in Appendix S.

11.3.1 Deriving the Canonical Link* In Chapter 10, we mentioned that
each distribution has a canonical link. Let us derive the canonical link for
the Bernoulli distribution. As a side note, one does not have to understand
this section to use Generalized Linear Models.

The steps to determine the canonical link are the same for the Bino-
mial as it was for the Gaussian (Chapter 10):

1. Write the probability mass function (pmf).

2. Write the probability mass function in the required form.

3. Read off the canonical link.

For this distribution, this results in:

pmf : πy(1−π)1−y (11.21)

= exp
[
log

(
πy(1−π)1−y

) ]
(11.22)

= exp
[
log(πy) + log

(
(1−π)1−y

) ]
(11.23)

= exp
[
y log(π) + (1− y) log(1−π)

]
(11.24)

= exp
[
y log(π) + log(1−π)− y log(1−π)

]
(11.25)

= exp
[
y (log(π)− log(1−π)) + log(1−π)

]
(11.26)

= exp
[
y log

( π
1−π

)
+ log(1−π)

]
(11.27)

= exp
[
y logit(π) + log(1−π)

]
(11.28)

= exp
[
y logit(π) + log(1−π)

1
+ 0

]
(11.29)
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Link Inverse Link

Logit log(µ/(1−µ)) Logistic (1 + exp(−η))−1

Probit Φ−1(µ) Normal CDF Φ(η)

Cauchit tan
(
π
(
µ− 1

2

))
Cauchy CDF arctan(η)/π+ 1

2

log-log − log(− log(µ)) exp(−exp(−η))
Complementary log-log log(− log(1−µ)) 1− exp(−exp(η))

Table 11.2: A list of several possible link functions (not all) to use for binary dependent
variables. For the case of the Bernoulli distribution, remember that µ = p.

This is in the required form:

(11.30)

exp
[
y θ − b(θ)
a(φ)

+ c(y,φ)
]

(11.31)

(11.32)

Thus, reading off the standard form, we have the following:

• y = y

• θ = logit(π)

• a(φ) = 1

• b(θ) = log(1−π) = − log(1 + eθ)

• c(y,θ) = 0

As such, the canonical link is the logit function, g(µ) ≡ logit(π).

11.3.2 Other Links As mentioned in Chapter 10, we do not have to use
the canonical link. Any monotonic, increasing function that maps the re-
stricted domain to the unrestricted domain works. Thus, there are several
options for the link function. Table 11.2 gives some options.3

The logit link is the canonical link. The probit link is frequently usedprobit

3Note that Table 11.2 is not an exhaustive list. Because we need an increasing function map-
ping (0,1) to the real numbers, any quantile function (inverse CDF) will work — any. How-
ever, the typical link functions for this type of problem are the logit and the probit.
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Figure 11.3: A graph of three symmetric links (logit, probit, and cauchit). Note that they
all cross when the linear predictor η = 0 and that they cross at µ = 0.5.

in biostatistics. Its advantage is that it is based on the Normal distribution,
with which we are intimately familiar. There is usually little difference be-
tween predictions made with the logit link and those made by the probit link.
The coefficient estimates will usually differ by a factor of approximately 3.7,
and the levels of significance will usually be close. The cauchit link is a sym-
metric link with heavy tails, as compared to the logit and the probit links
(see Figure 11.3).

The log-log link and the complementary-log-log link are asymmetric
links. The log-log link has a heavy right tail; the complementary-log-log link,
a heavy left tail (see Figure 11.4). Most science theory is only now beginning
to be able to state which of the three types of link functions will be most
appropriate for the given model (symmetric, heavy left, heavy right).

Note: R has the built-in ability to model using the following link func-
tions for the binomial (Bernoulli) distribution: logit, probit, cauchit, log,
and complementary-log-log. The RFS package adds the log-log link func-
tion:

glm( y ∼ x, family=binomial(link=make.link("loglog")) )
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Figure 11.4: A graph of two asymmetric links (complementary-log-log and log-log func-
tions) with the symmetric logit link for comparison.

§ § §

Again, the link choice is usually a matter of tradition, rarely of theory. Sta-
tistical significance of the variables should be similar across the several link
functions. So, from a theory-testing standpoint, the link functions are rather
interchangeable. With that said, predictions will vary depending on the link
function chosen. Thus, if prediction is important then you will want to in-
vestigate the effect of different link functions on your predictions (and confi-
dence bounds).

� Warning: While the actual predictions will differ, they should only do so slightly.
The rule is that all models that are “appropriate” should provide similar conclu-
sions and predictions. If they do not, then your model is too fragile. . . a bad thing.
Build for model robustness.
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11.4: Modeling with the Logit

For a binary response variable, the canonical link function is the logit link
(Section 11.3.1). This link is characterized by being symmetric and having
relatively thin tails (see Figure 11.3). This symmetry may be important when
you are dealing with events that are balanced — neither rare nor frequent.
The tail thickness may be important when you think there is a sharp transi-
tion between success and failure in your data. In reality, current social sci-
ence theory is rarely so clear as to give you guidance in which link function
you should use. As such, try several and see which one gives the best fit.4

Of course, if there is a traditional link function used in your field, you
should use it as the default. Thus, Social Scientists should start with the logit,
while the health science researchers should start with the probit.

Example 11.2: Since binary dependent variable regression is so very impor-
tant to understand, let us look at it from a different direction: Let us imagine
an experiment where we have a series of 100 coins. Were these coins all
fair, then the probability of getting a Head on any throw would be π = 1

2 .
However, let us assume these coins are not necessarily fair, and that they are
weighted in a very specific manner: Coin i has a probability of flipping a
Head of πi , which increases as i increases. Now, if we were allowed to flip
each coin only once, how can we estimate π1 from the data? •

Solution: As we have no evidence to the contrary, let us use the canonical
link function, the logit. Our steps are quite similar to the steps we performed
when we had to transform the dependent variable:

1. Read in the data

2. Model the dependent variable using the GLM paradigm (specify the
distribution, the linear estimator, and the link function)

3. Predict outcomes using your model

4There is another reason to try several link functions. Since the “population” link function is
not known, the predictions of the model should be robust to the choice of link function: Test
several and see if the predictions are stable. If not, then the quality of your model depends
heavily on something you cannot measure.
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Estimate Std. Error z-value p-value

Constant Term -2.2929 0.5384 -4.26 � 0.0001
Trial Number 0.0345 0.0087 3.97 0.0001

Table 11.3: Results of performing logit regression on the coin flip data, coinflips.
Note that these coefficient estimates are in logit units. As such, any predictions done using
them will have to be transformed into level units using the inverse of the link function (the
logistic).

4. Back-transform the predictions using the inverse of your chosen link
function

Note: There is a step missing from when we previously transformed our
dependent variable: We do not have to transform the dependent variable.
Generalized linear modeling does that for us in R. We do, however, have
to back-transform the predictions. Be aware of this!

In R, the general form of the command is, showing the most important pa-
rameters,

glm(formula, family(link), data)

Only formula is required. If family is missing, the Gaussian (or Normal)
distribution will be assumed. If link is missing, the canonical link for that
family will be assumed. If data is missing, the current data will be assumed.

For binary response variables, the family will need to be the Binomial
distribution.5 Thus, for the example using the coinflips data file, the
command will be

m1 = glm(head∼ trial, family=binomial(link="logit"), data=coin)

I used the data parameter, as I did not attach the data earlier. If you at-
tached, then you do not need to include this parameter. I also included
link="logit" even though this is the default setting for the Binomial fam-
ily in order to remind myself of the link function I used in this analysis.

5Remember that the Bernoulli distribution is a special case of the Binomial. Bern(π) = Bin(n =
1;π).
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The results from this command are summarized in Table 11.3. Again,
note that the parameter estimates (and predictions) will be in logit units.
You will have to use the logistic function to get the predictions in units of
probability.

Recall that the original question asked us to determine π1, the prob-
ability of getting a Head on the first coin. There are a couple ways of doing
that. The best will depend on the numbers involved. Since we want π1, we
know it is equal to the logistic of the intercept plus one times the coefficient:

π1 = logistic
(
− 2.2929 + 1× 0.0345

)
= 0.0946 (11.33)

The other way is to use the predict function and take the logistic of that value.
You will get the same answer (within rounding error). The function call used
is

predict(m1, newdata=data.frame(trial=1))

This gives an answer of −2.2584. The logistic of −2.2584 is our estimate of
π1, which is π1 = 0.0946.

If we so desire, we can also plot the probability curve on a graph of
the outcomes (see Figure 11.5). With such a graph, we could estimate which
coin is most fair. With the graph, we could also get a feel for how well the
model represents the data. �

Note: The linear predictor is represented in the curve graphed in Fig-
ure 11.5. Note, however, that the curve is not linear. This is because the
curve in Figure 11.5 is actually the logistic of the linear predictor.

With that said, the curve is linear in the transform space. If you
graph the coin number against the logit of the head probability, the line
of best fit is, indeed, a line (see Figure 11.2.)
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Figure 11.5: Overlayed plot of the outcome of the experiment with the estimated prob-
abilities superimposed. The horizontal line is the τ = 0.500 threshold. The vertical line
corresponds to a trial number corresponding to that threshold (τ = 66.4). Thus, this
model predicts that all coins above number 66.4 have a probability of greater than half of
coming up Heads. Red dots are misclassified, green dots are properly classified.

11.5: Prediction Accuracy

Naturally, the next questions concern issues of goodness-of-fit: How good is
the model? This question can be answered in many ways using many related
accuracy measures.

Recall that in linear regression, we used R2 to help us determine how
well the model fit the data — an R2 value close to 1.00 indicated good fit,
while an R2 value close to 0.00 indicated a poor fit. If we recall, the R2 value
— a PRE measure — was calculated using a ratio of the original variability
in the data and the variability explained by the model (Section 2.4). The R2

value was not the only PRE we have covered. Many others exist. Similar
processes can be used in this context to create a pseudo-R2 measure.pseudo-R2

Note: This measure is a pseudo-R2 measure primarily because it shares
some of the characteristics of the true R2 measure, namely that it mea-
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sures the decrease in prediction variability due to the model. It is a PRE
measure.

The reason it is not called the R2 measure is only because that
name is taken elsewhere.

11.5.1 Accuracy Rate Let us define the accuracy rate to be the number
of correct predictions divided by the total number of predictions. This makes
inherent sense as a measure of goodness of fit since it reads as the proportion
of correct predictions.

There is no native accuracy function in R. However, the RFS package
provides one. The accuracy function takes four parameters: data (the
data variable), y (the binary dependent variable), model (the model you fit
with the data), and t (the threshold). The optional parameter, rate, tells
the function to return the accuracy rate (default) or the number of accurate
predictions (rate=FALSE). Thus, to determine the accuracy of this model
for this data using the usual threshold value of τ = 0.500, we would use

accuracy(data=coin, y=coin$head, model=m1, t=0.500)

The result of this command is 0.710, which agrees with our by-hand calcula-
tions. Thus, we conclude that this model correctly predicts 71% of the time
for this data.

11.5.2 Relative Accuracy Of course, having an accuracy rate of 0.710
does not tell us the entire story. Just as the R2 from Section 2.4 was based
on a ratio of the model variance to the data (null) variance, a better accu-
racy number would be the accuracy of the model relative to the accuracy of
the null model. The accuracy of the null model refers to merely selecting
the modal category as our prediction. In this example, the modal category is
Tails, as there were 61 Tails in the data. Thus, the accuracy of merely select-
ing the modal category is 61÷ 100 = 0.610. So, the relative accuracy is

AR =
0.710
0.610

= 1.164 (11.34)

Thus, the model does a 16.4% better job of prediction than does just predict-
ing ‘Tail’ all of the time.
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There actually is a proportional reduction in error (PRE) measurement
associated with the relative accuracy. Recall that the R2 value was valuable
because it measured the proportion of error explained by the model. For
binary dependent variable regression, we can calculate something similar.

P RE = 1− error with model
error without model

(11.35)

Here, we can see that a pseudo-R2 measure for this data and this model (and
this threshold) is

1− 1− 0.710
1− 0.610

≈ 0.2564 (11.36)

Thus, we can state that this model (and this threshold) reduced the error by
25.64%. Note that there is a bad quality of this measure: while it can never
be greater than 1.0, it can be less than zero. However, it will only be less than
zero when your model is worse than no model at all.

Note: There are many different ways of calculating pseudo-R2 measures.
Each of the measures are based on different definitions of ‘error’ or of
‘variability,’ just as the R2 and the adjusted R2 are both based on different
definitions of error. Researchers do not agree on much about pseudo-R2

measures except that they are not useful in vacuo, and rarely useful in
concert with other measures.

This is why I am offering it here, alongside many other measures
of fit. Getting to know your model results is just as important as getting
to know your data.

11.5.3 Maximum Accuracy In each of the above measures, we assumed
our threshold was τ = 0.500. In some cases, this is a logical threshold. In
some cases, it is chosen arbitrarily. If we treat τ as a parameter, we may be
able to get a better prediction model.

The plan is straight forward: Calculate the accuracy for various values
of the threshold. The threshold that gives us the best accuracy will be our
optimal threshold. Doing this by hand is prohibitive. Using a script to loop
through all threshold values is much easier:

308



Figure 11.6: A plot of the accuracy of the model against various thresholds. The horizon-
tal line corresponds to the accuracy of selecting the modal category (the base accuracy).
The vertical line corresponds to the threshold τ = 0.50. The circled point represents the
maximal threshold, τ = 0.48 and accuracy = 0.73. The light blue envelope consists of a
95% confidence interval for coin accuracy, based on Monte Carlo simulation.

a = numeric()
for(i in 1:100) {
t = i/100
a[i] = accuracy(coin, coin$head, m1, t=t)

}

Figure 11.6 is a plot of the calculated accuracy for various thresholds. Note
that the ‘optimal’ threshold is not τ = 0.50, but τ = 0.48, and the maximal
accuracy is 0.73 for that threshold. Note, however, that there is little differ-
ence in accuracies between this optimal threshold (τ = 0.48,A = 0.73) and
the traditional threshold (τ = 0.50,A = 0.72).

Note: Recall that the standard deviation for (variability of) a binomially-
distributed random variable is σx =

√
nπ(1−π). This takes on a maxi-

mum value at π = 0.500. . . the success probability for a fair coin. This
means that we are least sure of our answer nearest π = 0.500. The blue
envelope of Figure 11.6 contains 95% of the calculated accuracies based
on the true population; that is, 95% of the accuracy curves are contained
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in that envelope. It is very wide. It supports the contention that accu-
racy (relative or otherwise) matters little in the estimation of an optimal
threshold τ .

By the way, since this is all based on generated data, we know
the true threshold for a fair coin: τ = 0.500. Binomial random variables
contain small amounts of information.

Finally, here is the script to estimate the confidence bounds above using
Monte Carlo simulation:

B = 1e4
acc = matrix(NA, ncol=100, nrow=B)

for( j in 1:B ) {
thisSample = sample(100, replace=TRUE)
mod = glm(H[thisSample]∼ cnum[thisSample], family=binomial)
a = numeric()

for(tau in 1:100) {
a[tau] = accuracy( cnum, H, mod, t=tau/100 )

}
acc[j, ] = a

}

From reading through this script, you should be able to tell what the vari-
ables H and cnum represent. You should also be able to explain the purpose
of each line. In fact, you should be able to use this code as the basis of future
accuracy investigations.

11.5.4 The ROC Curve There are other types of errors, more-specific
types, that are useful in other fields. If we look back to Figure 11.5, we see
that the threshold line (horizontal) and the corresponding trial line (vertical)
divide the dataset into four parts. The lower-left quadrant are those Tails
that are correctly predicted by the model and the threshold value to be Tails.
The upper-right quadrant are those Heads that are correctly predicted to be
Heads. The lower-right quadrant are Tails incorrectly predicted to be Heads.
The upper-left quadrant are Heads incorrectly predicted to be Tails. These
four types of errors are also referred to as True Negatives, True Positives,
False Positives, and False Negatives, respectively.
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For our coin flipping example (and with τ = 0.500), we can write out
a confusion matrix to show all four of these, both in magnitude and in rates: confusion matrix


FN = 17 T P = 22

TN = 49 FP = 12

⇐⇒

FNR = 17

17+22 = 0.4359 T PR = 22
17+22 = 0.5641

TNR = 49
49+12 = 0.8033 FPR = 12

49+12 = 0.1967

 (11.37)

The true negative rate (TNR) is also called specificity, and the true positive
rate (TPR) is called the sensitivity. You will come across these two terms in the
field of biostatistics and clinical trials, because they mirror what physicians
and biomedical researchers want out of their diagnostic tests.

The receiver operating characteristic (ROC) curve is a graphical rep- ROC Curve
resentation of the true positive rate against the false positive rate (FPR) as
the threshold is changed. Thus, to plot a ROC curve, one would calculate
the sensitivity and the false positive rate for various values of the threshold,
then plot sensitivity against the FPR. Figure 11.7 shows the ROC curve for
our coin model.

In general, a model whose ROC curve is closer to the left and upper
axes is the better model. As such, we can define a single number that tells
us how good our model is — the area under the ROC curve (AUC, A′). The
area under the ROC curve is a useful number in that it equals the probability
that a model will classify a positive instance higher than a negative one. In probability
other words, A′ is the probability that the model scores a true Head (success)
higher than a true Tail (failure). Calculating the area is very straight forward,
in a geometry/Riemann Sum manner.

Note: There is an entire R package dedicated to ROC curves, Epi. To cre-
ate ROC graphs and to calculate the area under the curve in that package,
first load it using library(Epi), then use the command

ROC(test, stat, plot="ROC")

Here, test is the predicted probability of success for each datum from
model (a continuous variable bounded by 0 and 1), stat is the binary
dependent variable, and plot="ROC" produces a ROC plot. This graph
(Figure 11.8) is a bit more useful than the simple graph in Figure 11.7,
as it contains some useful statistics, including the AUC and the optimal
threshold, τ , which is the threshold value closest to the upper-left corner.
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Figure 11.7: A receiver operating characteristic curve for the coin flipping model. The
diagonal line represents a random model. The thicker line represents our model. The
farther the ROC curve is above the random line, the better the model is at distinguishing
between the two cases (Head and Tail, here). The area under the ROC curve is a measure
of the goodness of the model. Here, A′ = 0.7516.

Note: This optimal value is only optimal if the costs of making each type
of error is the same. If the cost of a Type I Error is greater than that
of a Type II Error (or vice-versa), then one should take those costs into
consideration when determining the ‘optimal’ threshold τ .
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Figure 11.8: The receiver operating characteristic curve for the coin flipping model using
the ROC command from the Epi package.

11.6: Modeling with Other Links

The logit regression we did above is quite sufficient if all you want to do is
fit the data using logit regression. If, on the other hand, you want to better
understand the process that gave you the data, you will want to try different
link functions to determine if any of the alternative links do an appreciably
better job of fitting your data. The logit link is symmetric. You should also
use the probit link as a check on your model: If the results are comparable,
then the conclusions are strengthened; if not, there is something wrong with
your model.

In addition to using a second symmetric link function, you should use
the two main asymmetric link functions: the complementary log-log and the
log-log link function.
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Figure 11.9: Plot of the complementary log-log function (upper curve) on top of the logit.
Note the difference in shapes between the two curves. The asymmetric complementary log-
log function approaches its maximum value much faster than does the symmetric logit.

11.6.1 The Complementary log-log Link As mentioned earlier, there
are several other available links functions beyond the logit link (see Table 11.2).
Actually, for binary response variables, all that is required of the link func-
tions is for it to smoothly map g : (0,1) 7→ R and to have an inverse that
smoothly maps g−1 : R 7→ (0,1). As mentioned earlier, the logit link is sym-
metric. If you are dealing with rare-events data, you may not want to use a
symmetric link function. The complementary log-log link is asymmetric and
is often useful (Figure 11.9).6

The formula for the complementary log-log is

g(µ) := log
(
− log(1−µ)

)
(11.38)

Its inverse is
g−1(η) = 1− exp

(
− exp(η)

)
(11.39)

The plot of the complementary log-log function is seen in Figure 11.9, over-
laid with the same plot for the logit link. Note the difference in shapes. Re-
call that the logit link is symmetric. The complementary log-log is not; it
approaches its maximum value more steeply than the logit.

Because of this asymmetry, it will fit models differently. Let us fit the
coin data with a complementary log-log link. The command is

6You may see the complementary log-log link function referred to by one of its abbreviations
— cloglog or cloglog.
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Estimate Std. Error z value Pr(> | z |)

Constant term -2.0651 0.4353 -4.74 � 0.0001
Trial number 0.0244 0.0063 3.86 0.0001

Table 11.4: The results of fitting the coin flip data with a complementary log-log link
(cf. Table 11.3). As before, the magnitudes of the estimates cannot be compared across
different link functions; however, the direction of effect can.

glm(head∼ trial, family=binomial(link="cloglog"), data=coin)

Note that the only change is in the link clause. The results of this new model
are provided in Table 11.4. Note that the direction of effect is the same in
both models. Unfortunately, as the first model is in logit units and the second
model is in complementary log-log units, comparing the magnitude of the
coefficients tells us nothing. Comparing predictions tells us much more.

Using the logit model, the prediction for π1 was 0.095. Using the
complementary log-log model, the prediction is π1 = 0.122, which is closer
to the true value of π1 = 0.150.

11.6.2 The log-log Link A second useful asymmetrical link function is
the log-log link (Figure 11.10). Note that the asymmetric log-log link rises to
its maximum much slower than either the symmetric logit link or the asym-
metric complementary log-log link. Because of this functional shape, it will
be better at fitting certain data sets better than the other link functions dis-
cussed.

In reality, there is a functional relationship between the complemen-
tary log-log and the log-log link functions. They are 180◦ rotations of each
other. Thus, statistical programs either have no support for either or have
support only one. Like most statistics packages, R has native support for
only one of the two. For R, it is the complementary log-log link.7 However,
with the RFS package, it is straight forward to perform binary regression
using the log-log link.

7This is actually a decision of history. From how I (and most) have presented the binary de-
pendent variable models, it seems as though we statisticians started with the logit. The first
use of this type of regression, however, used the complementary log-log function (Fisher). It
was not pretty, but it was a fantastic step in the right direction!
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Figure 11.10: Plot of the log-log function (upper curve) on top of the logit. Note the
difference in shapes between the two curves. The asymmetric log-log function approaches
its maximum value much slower than does the symmetric logit.

The command to perform the log-log regression on this data is the
same as before, except for the link parameter, which is now

link=make.link("loglog")

With this, I leave it as an exercise for you to show that the effect of trials in
the log-log model is 0.0233 and that the predicted probability of a head for
Coin 1 using this model is 0.0498.

11.7: Model Selection

Which of the models is best? That is a model selection question. Model selec-
tion procedures (not tests) attempt to balance competing desires — accuracy
and parsimony — to create the ‘best’ model, by some standard. For linear
models, we discussed the R2 value as a measure of accuracy. However, we
noted that adding variables to the model can never decrease the R2 value,
and will usually increase it. Thus, there is a pressure to increase the number
of variables. However, science is guided by the philosophy of William of Oc-
cam and his Razor: Numquam ponenda est pluralitas sine necessitate. Modelsshaving
should be as simple as possible, but no simpler. In other words, as scientists,
we should only include variables if the theory warrants it.
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Note: Make no mistake, all models are wrong. As scientists, we are
merely searching for the useful ones.

In linear regression, we corrected for the pressure to keep adding variables
by using the adjusted R2 as a guide. This value penalizes the model for the penalty
number of variables it has. Thus, unless the variable is statistically signifi-
cant, there is no benefit to adding it to the model. This is why many scientists
use the adjusted R2 measure to help them determine the better model.

There is neither a true R2 nor a true adjusted R2 value for discrete
dependent variable models. Thus, there has been much work in creating an
appropriate measure to use for model selection. Three different measures
are frequently used in the literature: Akaike’s Information Criterion (Akaike
1974), Bayesian Information Criterion (Schwarz 1978), and Likelihood Ratio
Test (Wilks 1938). Each of these three penalizes additional variables in a
different manner and to a different degree. The one you select depends on
the one available to you and the relationship between the two models.

11.7.1 Akaike Information Criterion One of the first attempts to ex-
plicitly penalize for additional parameters (variables) was done by Hirotugu
Akaike (1974). In his paper, he developed (albeit without mathematical
rigor) a comparative measure of ‘model goodness’ that can be used to select
the better of two models. The Akaike Information Criterion (AIC) score can
be calculated whenever Maximum Likelihood Estimation is used to estimate
the model parameters. The formula for the AIC is

AIC := −2ln(L) + 2k

Here, k is the number of parameters being estimated in the model and L is
the likelihood of the data with the model.8

The procedure to determine if one model is better than the other is
straight-forward:

1. Calculate the AIC for Model A.
2. Calculate the AIC for Model B.
3. The model with the lower AIC score is the preferred model.

8The quantity −2ln(L) is often called the deviance of the model, which will be used in Sec-
tion 11.7.3.
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Its simplicity is its strength. Its weakness is that this measure, called the min-
imum information theoretical criterion (MAICE) in the paper, has no known
probability distribution. As such, there is no way to determine whether the
model with the lower AIC is enough better to justify eliminating the other
from the discussion: If the AIC of Model 1 is 3 less than the AIC of Model 2,
do we completely ignore Model 2?

This question actually leads to several “rules of thumb” that deter-
mine when that difference is “large enough.” The usual rules of thumb are to
drop the model with the higher AIC if the difference is at least 5 (or 8 or 10).

Rule of Thumb

That there is no a priori statistical distribution to the AIC score only
means the test is not optimal. In his paper, Akaike concurs (1974: 722):

Although the present author has no proof of optimality of MAICE
it is at present the only procedure applicable to every situation
where the likelihood can be properly defined and it is actually
producing very reasonable results without very much amount of
help of subjective judgment.

The R function that calculates the Akaike Information Criterion is AIC. Using
this function, the AIC for each of the three coin models are AIClogit = 118.48,
AICcloglog = 119.74, and AICloglog = 117.05. Thus, while the log-log is the
‘best’ model from the AIC standpoint, it is not sufficiently better to com-
pletely ignore the other two models (the AIC improvement is not greater
than 5). As such, this procedure is inconclusive with respect to the single
model we should choose.

Note: Please keep in mind that for the AIC to be valid in comparing mod-
els, the dependent variables must be the exactly same across the models.
If not, then this process cannot be used (nor any of these methods).

� Warning: Keeping multiple appropriate models is a good idea. Since sufficient
science theory does not exist to determine the “right” link, we should keep as many
as possible. This will allow us to better understand how much our conclusions
depend on our choice of the link function.robust analysis
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11.7.2 Bayesian Information Criterion Akaike’s paper did not give a
mathematically solid reason why there should be a 2 point penalty for each
additional estimated parameter (the 2k factor). This created an opening for
other researchers to improve upon Akaike’s proof and to create different
penalty factors. Schwarz (1978) took Akaike’s idea and put it on a more
solid foundation. He humbly called his measure the Bayesian Information
Criterion (BIC), others may refer to it as the Schwartz Information Criterion
(SIC) or the Schwarz Bayesian Criterion (SBC).

Its formula is quite similar to the AIC:

BIC := −2ln(L) + k log(n) (11.40)

Here, k is the number of parameters being estimated, n is the number of data
points, and L is the likelihood of the model. Thus, the difference between
the AIC and the BIC is the effect of the additional parameter. In the AIC,
each additional parameter penalizes the score by 2 points; in the BIC, log(n)
points — usually a much greater penalty.

The process to select the better of two models is the same as for the
AIC: Select the model with the lower BIC score (including the rules of thumb).
Furthermore, the requirement that the dependent variables are the same be-
tween the models remains.

11.7.3 Likelihood Ratio Test Frequently, we wish to determine if a group
of variables are jointly significant in the model. To do this, we compare the
two nested models. We say that Model B is nested in Model A if Model A
contains all the same variables as does Model B, plus at least one other. For
instance, let Model A contain the variables X1, X2, X3, X32, and X4. Let
Model B contain variables X1, X2, and X3. Here, Model B is nested within
Model A. Now, if we want to determine if variables X32 and X4 are jointly
significant, then we merely compare Models A and B. To do this, we can use
the AIC or the BIC, but the Likelihood Ratio test is more helpful.

The Likelihood Ratio test is superior to the AIC and BIC — when it can
be used — because there is a known asymptotic probability distribution for
the test statistic. As such, we can determine whether Model A is significantly
better than Model B — whether variables X4 and X5 are jointly significant. jointly

The procedure is also straight forward:

1. Calculate the deviance for Model A.
2. Calculate the deviance for Model B.
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3. The difference between the two deviances is distributed as a chi-squared
random variable with degrees of freedom equal to the parameter (vari-
able) difference in the two models.9

The deviance of a model is defined as

D := −2ln(L) (11.41)

Thus, if Model B is nested in Model A, the test statistic is equal to

TS :=DB −DA ∼ χ2
vA−vB (11.42)

Here, vA is the number of variables in Model A; vB, in Model B.

Example 11.3: Let us assume that Model A uses three variables, X1, X2, and
X3, and has a log-likelihood of -20, and Model B uses one variable, X1, and
has a log-likelihood of -22. Are variables X2 and X3 jointly significant? •

Solution: This is an application of the Likelihood Ratio test. The test statistic
is

TS :=DB −DA (11.43)

=
(
− 2ln(LB)

)
−
(
− 2ln(LA)

)
(11.44)

=
(
− 2(−22)

)
−
(
− 2(−20)

)
(11.45)

= 44− 40 = 4 (11.46)

This test statistic is approximately distributed as a chi-squared random vari-
able with 3− 1 = 2 degrees of freedom; that is, TS ·∼ χ2

2.

A chi-squared table gives us a p-value of approximately p = 0.15.
This is close to what R gives us: pchisq(4,df=2,lower.tail=FALSE) =
0.135. Thus, we conclude at the α = 0.05 level that we cannot reject the null
hypothesis and we conclude that the restricted model is not significantly dif-
ferent from the full model; that is, we conclude that the two variables are not
jointly significant and we can use Model B in lieu of Model A with little loss.
�

9Technically, the distribution of the test statistic is only asymptotically chi-square. For small
sample sizes (n < 30), you may want to use simulation to obtain a more accurate test.

320



11.8: Conclusion

This chapter covered a lot of material. First, we examined how to fit binary
dependent variable models. The GLM paradigm allows us to easily fit such
models. As in all uses of the GLM paradigm, we need to know three things:
the conditional distribution of the dependent variable, the linear predictor,
and the link function that connects the two.

For binary dependent variables, the dependent variable is distributed
Bernoulli. The linear predictor is the usual combination of our independent
variables. The canonical link is the logit link. Additional link functions in-
clude the probit, log-log, and complementary log-log functions.

The chapter proceeded to examine issues of determining how well
a model fits the data. Accuracy, relative accuracy, and maximum accuracy
measures were examined. Additionally, we examined the ROC curve and
how it gives us additional information about our model.

Finally, we examined general techniques to select between two mod-
els. Three methods were examined. The first two did not require that the
two models be nested. Both the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) only required that the dependent vari-
ables be the same. Also in both cases, the model with the lower score was the
preferred model, although when that difference was less than 8 there was no
reason to jettison the higher-scoring model.

The Likelihood Ratio Test was superior to the two Information Crite-
rion tests as the test statistic has a known asymptotic distribution (χ2). Thus,
we could test the statistical significance of multiple variables at once. The
drawback to using the Likelihood Ratio test is that the compared models
needed to be nested.

The next chapter continues our examination of discrete dependent
variables. Frequently, our outcome variable is a count of events. In such a
case, we cannot use the techniques discussed in this chapter as the depen-
dent variable takes on more than just two values. We also cannot apply the
techniques of Chapter 10, as the dependent variable is not continuous.

Staying in the realm of GLMs allows us to fit such variables easily. All
we need to do is determine the appropriate distribution, the linear predictor,
and the link function.
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11.9: End-of-Chapter Materials

11.9.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Packages:

RFS This package does not yet exist. It is a package that adds much gen-
eral functionality to R. In lieu of using library(RFS) to access these
functions, run the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Epi This package adds several functions and procedures related to epidemi-
ology. As it is not a part of the base installation for R, you will need to
install it before you can load it with library(Epi).

Statistics:

lm(formula) This function performs linear regression on the data, with the
supplied formula. As there is much information contained in this func-
tion, you will want to save the results in a variable.

glm(formula) This function performs generalized linear model estimation
on the given formula. There are three additional parameters that can
(and often should) be specified.

The family parameter specifies the distributional family of the de-
pendent variable, options include gaussian, binomial, poisson,
gamma, quasibinomial, and quasipoisson. If this parameter is
not specified, R assumes gaussian.

The link parameter specifies the link function for the distribution. If
none is specified, the canonical link is assumed.

Finally, the data parameter specifies the data from which the formula
variables come. This is the same parameter as in the lm() function.

predict(model, newdata) As with almost all statistical packages, R has a
predict function. It takes two parameters, the model, and a dataframe
of the independent values from which you want to predict. If you omit
newdata, then it will predict based on the independent variables of
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the data itself, which can be used to calculate residuals. The dataframe
must list all independent variables with their associate new values. You
can specify multiple new values for a single independent variable.

accuracy(model) This function in the RFS package determines the predic-
tive accuracy of a provided model. It takes three necessary parameters:
data, truth, model, and threshold. It has the optional parameter
of returning the number of correct classifications (rate=FALSE).

AIC(model) This function calculates the Akaike Informations Criterion score
for the provided model. The model needs to have been fit using Maxi-
mum Likelihood Estimation.

BIC(model) This function in the RFS package calculates Schwarz’s Bayesian
Information Criterion (BIC) for the provided model.

deviance(model) This function returns the deviance in the model. This
value is useful in the Likelihood Ratio Test.

pchisq(x) This gives the value of the cumulative distribution function (CDF)
under the Chi-squared distribution. The necessary parameter is the
number of degrees of freedom, df=. By default, it returns the lower-tail
probability. Usually, we will want to have the upper-tail probability,
thus we will use the lower.tail=FALSE parameter.

var.test(x,y) This function performs an F test, which compares the variances
of two samples (x and y) from Normal populations. It can only com-
pare two samples. If you need to compare more than two samples for
equality of variance, you will need to perform either a Bartlett test or a
Fligner-Killeen test.

Graphics:

ROC(formula) This function in the Epi package performs ROC analysis on
the data. It provides a ROC graph as well as some statistical values.
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Programming:

for This command is one of the basic control-constructs in the R language (as
in most programming languages). The usual use is for(var in seq) expr,
where var is the looping variable (the variable that equals the current
loop number). The parameter seq is a vector of values. Usually, seq
= something like 1:100, which is a vector of values from 1 to 100.
Finally, expr is the expression (or series of expressions) that are per-
formed for each value in the seq vector.
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11.9.2 Exercises This section offers suggestions on things you can prac-
tice from this chapter. Save the scripts in your Chapter 11 folder. For each
of the following problems, please save the associated R script in the chapter
folder as ext0x.R, where x is the problem number.

1. In Example 11.1, we suggested that you fit the provided pseudo data
with linear regression and the OLS method. Please do so now.

2. From Section 11.6.2, please fit the coin data with the formula head∼
trial and the log-log link. What is the predicted probability of getting
a Head on Coin 15?

3. Use the coinflip data (coinflips.csv ) to estimate the coin that is closest
to being fair (a probability of producing a head is closest to 0.500). Use
multiple link functions and select which you think is the best.

4. Let us revisit the cows data. One of the variables is passed, which is a
binary variable indicating whether the ballot measure passed. Your job
is to predict the proportion of voters in Děčı́n who will vote in favor
of the bill to limit cows. Do not use the pctFavor variable. Decide
which model you are supposed to use. Prove that your model is the
best model available. Make your prediction of the vote share. Include
graphs if you would like, but only if the graph helps to illustrate your
point.
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