
Chapter 10:

GeneralizedLinearModels

Overview:

Until this point, we have been applying the classical
linear model (CLM) to our problems of modeling a de-
pendent variable. It is the model Y = XB + E. While this
model is quite prevalent in the literature, it does not al-
ways do a good job of approximating reality.

In this chapter, we introduce the generalized linear
model (GLM) and start to show its versatility. We also
repeat much of the previous chapter, but from a differ-
ent perspective, one of paying attention to the data-
generating process.
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In our regression examples thus far, we have been dealing with continuous
dependent variables. The classical linear model (CLM) requires this. The
usual method of fitting CLMs also requires that the dependent variable be
conditionally distributed according to the normal (a.k.a. Gaussian) distribu-
tion. Chapters 2 and 3 discussed this in detail.

Chapter 6 examined how we can handle a couple types of violations
of these assumptions, focusing on the case where the dependent variable is
bounded. When the dependent variable is bounded, it cannot be normally
distributed. As such, if your dependent variable is bounded, you will have to
transform that variable into an unbounded analogue. Once this is done, one
can use the methods of the usual CLM paradigm.

We have, however, encountered some difficulties with this transforma-
tion method. In each of our examples from Chapter 6, the dependent vari-
able was bounded — but was never equal to its bound. This was necessary.
If the dependent variable ever is equal to its bound, then the transformation
function you use will return an infinite value (either −∞ or +∞).

In this part of the book, we will extend the classical linear model
(CLM) to be more general, and we will introduce a unifying framework al-
lowing us to fit many different types of dependent variables — both contin-
uous and discrete.
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10.1: The CLM and the GLM

The Classical Linear Model (CLM) assumes that the relationship between
the dependent and the independent variables is linear and that the response
variable can take on all possible values; i.e., Y ∈ R. Furthermore, to come
to statistical conclusions, least squares methods assume that the errors are
normally distributed.

However, not all relationships fit this model. Statisticians who real-
ized this, modified the CLM to handle many different types of relationships,
much in the same way we have (see, e.g., Chapters 4 through 6). Thus, if
the dependent variable is continuous and bounded, we modify the depen-
dent variable. If there is heteroskedasticity in the model, we pre- and post-
multiply the variance-covariance matrix to better approximate the true stan-
dard errors.1 If you need to weight the data based on some information (such
as reliability), you multiply by the weight matrix. And so forth.

However, there are certain types of dependent variables that cannot
be fit using this model (or fit optimally). These are the models with discrete
dependent variables. If we want to hold on to the CLM paradigm, we will
have to pretend such variables are continuous.2 Often, this assumption is not
a good one. When variables are binary, continuous approximations result in
predictions that do not reflect reality. When variables are counts, the vari-
ances are functions of the expected value and are heteroskedastic. When the
dependent variable is nominal, there is little we can do using the classical
linear model.

The Classical Linear Model can usually be altered to create good pre-
dictions.3 However, the further your variable is from being continuous and
unbounded, the more corrections you will have to make, and the more com-
plex the process of estimation and prediction becomes — if even possible.

This chapter serves to bridge the gap between the classical linear model
(CLM) and the generalized linear model (GLM). In this chapter, we will re-
generate the results from the previous chapters, but use a different paradigm.
This new paradigm will help us understand the assumptions underlying or-

1These are called ‘sandwich estimators’ and were developed by Peter Huber (1967) and Halbert
White (1980).

2This assumption may not be a bad one. If we are modeling house value, then the discrete
variable is very close to its continuous approximation.

3While the predictions will frequently be fine, the confidence bounds will be based on assump-
tions not met by the data.
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dinary least squares regression. It will also serve as a basis for understanding
the assumptions of this new modeling paradigm.

10.2: The Requirements for GLMs

The Generalized Linear Model (GLM) is a paradigm that extends the CLM and
many adjustments to it.4 To accomplish this feat, the model parts are named
and examined. Those three parts are the linear predictor, the conditional
distribution of the dependent variable, and the link function. While we have
already mentioned all three of these concepts, let us explore them in greater
detail before we derive the mathematical results.

10.2.1 The Linear Predictor Of the three knowledge requirements for
using generalized linear models (GLMs), the linear predictor is the most fa-
miliar. It is merely the weighted sum of your chosen explanatory variables
that you used throughout the classical linear model chapters:

η := β0 + β1X1 + β2X2 + · · ·+ βkXk (10.1)

= XB (10.2)

The only difference is that we are providing a name for the weighted sum
(η, the Greek letter eta) and we are calling it the “linear predictor.” It is a
“linear” predictor because the expression is linear in each of the coefficients
(βi). It is a predictor because it is used to predict the expected value of the
dependent variable from the independent variables.

Note that the values produced by the linear predictor are unbounded.
That is, note that η ∈R. This is very important to realize, especially when we
get to the third requirement: the link function.

4There is a modeling paradigm termed General Linear Models, which merely allows for mul-
tiple independent variables to the CLM; technically, the CLM uses only one independent
variable. General Linear Models are rarely discussed separately from the CLM, as such there
is standardized no abbreviation for them. However, authors that do discuss General Linear
Models frequently abbreviate them by GLM. These same authors will abbreviate Generalized
Linear Models by GLZ. Upshot: When searching for information on GLMs, make sure you
are reading about Generalized Linear Models and not General Linear Models.
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Default Canonical Treated in
Dependent variable is . . . Distribution Link Chapter

Continuous, unbounded Gaussian Identity Chapter 10
Discrete, dichotomous Bernoulli Logit Chapter 11
Discrete, bounded count Binomial Logit Chapter 12
Discrete, unbounded count Poisson Log Chapter 13
Discrete, very limited Multinomial Logit Chapter 14

Table 10.1: A listing of several classes of dependent variables and appropriate distribu-
tions and links, and the chapter in which we discuss the variable class more closely.

10.2.2 The Conditional Distribution The first “new” addition is the
conditional distribution of the dependent variable (its distribution, condi-
tional on the values of the independent variable). Naming it is usually not
as difficult as it may seem — a few rules of thumb are very helpful. The
distribution chosen reflects your knowledge of the domain of the dependent
variable. If the dependent variable can take on all Real values (as before), dependent variable
then an appropriate distribution is the Gaussian distribution (as before).5 If
the dependent variable can take on only values of 0 and 1, then an appro-
priate distribution is the Bernoulli distribution. And so forth. Table 10.1
provides appropriate distributions for several different types of dependent
variables (and the chapter in which we discuss them). This is not an exhaus-
tive list, nor are the listed distributions always correct. They are just a good
place to start.

Note: All of these distributions have something in common: They are
members of the exponential family of distributions. Section 10.2.4 dis-
cusses why this family of distributions was selected and which distribu-
tions belong to it.

5The Gaussian distribution is the eponymous distribution named for Johann Carl Friedrich
Gauss (1777–1855). We already know it as the normal distribution. That we are using the
name Gaussian reflects standard terminology in GLMs and a desire to give credit where it is
due. Well, in Francophone areas, the distribution is known as the Gauss-Laplace distribu-
tion to give appropriate credit to Pierre-Simon, Marquis de Laplace (1749–1827). However,
Laplace also has his own distribution. Both the Gaussian and the Laplace distribution were
created to describe errors in measurement.
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The distribution is important in that its expected value automatically re-
stricts the outcome to appropriate values of the dependent variable. Note
that we are explicitly modeling the expected value of the dependent vari-expected value
able (given the values of the dependent variables). That we are modeling the
expected value may sound odd, but we did this previously with the linear
models: Our prediction line was a line of the expected value of the dependent
variable, E [Y | x]. The same is true for GLMs: The fitting routine predicts the
expected value of the distribution, E [Y | x], not the observed value.

10.2.3 The Link Function The third aspect you need to know in order to
use the GLM framework is the link function, which links the linear predictor
and the expected value of the distribution. If we symbolize the expected
value of the distribution as µ and the linear predictor as η, then the link
function is g(·), such that g(µ) = η.

The most important requirement for the link function is that it maps
the bounded domain of the expected value of Y to the unbounded domain of
the linear predictor η. An additional requirement is that it is a bijection; thatmapping
is, the link and its inverse are both functions. It is also usual to make the link
a strictly increasing function. This forces the direction of the effect of your
variable to be in the same direction as the sign of the estimated coefficient: if
the coefficient estimate is positive, then the variable has a positive effect on
the dependent variable.

Table 10.1 lists the canonical link functions for each of the providedcanonical link
distributions. One can use links that are not canonical — and often should
— but the canonical link is the default link function used. In subsequent
chapters, when an alternate link function is appropriate, we will discuss why.

10.2.4 The Mathematics* Nelder and Wedderburn (1972) formulated
the GLM paradigm to unify modeling techniques for several different classes
of problems, including logistic regression, count regression, and linear re-
gression. Starting with a member of the exponential family of distributions,
Nelder and Wedderburn created an estimation method called iteratively re-
weighted least squares (IRLS). This method uses maximum likelihood esti-
mation (MLE) to estimate the parameter effects. MLE remains the primary
method of fitting GLMs, but other approaches are used, including maximum
quasi-likelihood estimation, Bayesian estimation, and several variance stabi-
lization methods.
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Their choice of MLE was simply one of computing ease. Remember
that the early 1970s were a time of loud polyester clothes, not of cheap com-
puting power. However, even though MLE was chosen for ease, these esti- Pong
mates have some helpful properties. As such, this is still the most widely
used method for fitting GLMs, just as OLS has been the preferred method for
fitting CLMs for many decades.

Exponential Class of Distributions: The one and only requirement on the
distribution is that it belongs to the exponential class of distributions (Nelder
and Wedderburn 1974; Wood 2006). Most of the distributions we experience
belong to this class, so it is not an issue. Examples of distributions in this
class are

• beta

• chi-squared

• exponential

• gamma

• geometric

• normal

• Poisson

• standard uniform

Specifically, to be a member of this family, the probability density function
(or probability mass function, if discrete) must be expressible in the follow-
ing form:

f (y) = exp
[
yθ − b(θ)
a(φ)

+ c(y,φ)
]

(10.3)

The Mean. The expected value of the distribution is just mean

E [Y ] = b′(θ) (10.4)

Recall that the expected value is important, as it is what we actually model
in GLMs.

Variance. The variance is variance

V [Y ] = b′′(θ) · a(φ) (10.5)

The a(φ) is called the “dispersion parameter.” Infrequently, the chosen dis- dispersion
tribution forces this to be a specific value. Usually, however, this variable is
free to reflect the data (be estimated from). For those distributions that force
this to be a specific number, we either need to use quasi-likelihood to fit the
model or we need to test this assumption.
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Canonical Link. Next, the θ is the canonical link function, g−1(·). It is a Maka × Soul
function of the parameters of the distribution selected. In the Gaussian case,
the canonical link is the identity function, µ. In the Bernoulli (and Binomial
when n is known) case, the canonical link is the logit function,

logit(µ) := log
[
µ

1−µ

]
(10.6)

Nuisance Parameters. Finally, c(y,φ) is a term that allows some flexibilityNuisance
to the exponential family of distributions. Without the c function, far fewer
distributions would belong to this family. Further, note that the c function
affects neither the expected value nor the variance.

10.3: Assumptions of GLMs

When we were creating ordinary least squares (OLS) regression, we made

one assumption: ε iid∼ N (0,σ2). After learning the mathematics of fitting the
models, we went back and figured out how to test these assumptions. The
same will be true here.

When performing generalized linear modeling, you make at least three
assumptions: you assume the linear predictor is correct; you assume the con-assumptions
ditional distribution of the dependent variable is correct; and you assume
the link function is correct. If these assumptions are not met by the data and
model, then there is information in the data that you are ignoring.good news!

Testing these is usually not as easy as in the case of OLS regression.
The linear predictor and the link function, together, determine the functional
form. It can frequently be tested using a runs test. That is the easy part. Test-functional form
ing the correctness of the conditional distribution is much more involved. It
requires that one understands the hypothesized distribution, especially in
terms of range, expected values, and variances. Note that tests of heteroske-
dasticity may not be useful here; many distributions are heteroskedastic.

The testing must be done, however.

Note: As you read through this part of the book, always keep in mind
what we are assuming. That will help you determine the requirements
and how to test them.
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10.4: The Gaussian Distribution

To illustrate what we did in the previous sections, let us apply what we know
to the Gaussian distribution, determining the canonical link, the expected
value, and the variance. Hopefully, the results will not surprise us. normal distribution

We start with the probability density function (pdf).

f (y) =
1

√
2πσ2

exp
[
−

(y −µ)2

2σ2

]
(10.7)

Now, to write this in standard form. This just takes algebra and some rules
of logarithms.

= exp
[
−

(y −µ)2

2σ2 + log
(

1
√

2πσ2

)]
(10.8)

= exp
[
−
y2 − 2yµ+µ2

2σ2 + log
(

1
√

2πσ2

)]
(10.9)

= exp
[
−
y2

2σ2 +
yµ

σ2 −
µ2

2σ2 + log
(

1
√

2πσ2

)]
(10.10)

= exp

yµ− 1
2µ

2

σ2 + log
(

1
√

2πσ2

)
−
y2

2σ2

 (10.11)

Recall from Section 10.2.4 that the standard form is standard form

f (y) = exp
[
yθ − b(θ)
a(φ)

+ c(y,φ)
]

(10.12)

Thus, we can see the correspondences. Thus, we have the following:

• y = y

• θ = µ

• a(φ) = σ2

• b(θ) = 1
2µ

2 = 1
2θ

2

• c(y,φ) = log
(

1√
2πσ2

)
− y2

2σ2
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Thus, the canonical link is g(µ) = µ, also known as the identity function. Note
that the dispersion parameter is the variance, a(φ) = σ2. Also note that the
expected value is

E [Y ] = b′(θ) (10.13)

=
d
dθ

(1
2
θ2

)
(10.14)

= θ (10.15)

= µ (10.16)

Hopefully, this is as we expect. Finally, note that the variance is

V [Y ] = b′′(θ)a(φ) (10.17)

=
d2

dθ2

(1
2
θ2σ2

)
(10.18)

=
d
dθ

(
θσ2

)
(10.19)

= σ2 (10.20)

Also as we expect, hopefully.

Other Link Functions: While the canonical link is the identity function
(η = µ), it is not the only allowable link function. In Section 6.1.2, we trans-not canon
formed the continuous dependent variable because it was bounded below by
(but never equaled) zero. In such a case, the logarithm is an appropriate link
function: The dependent variable has a restricted range. The link function
converts that range to an unbounded range. The same is true under the GLM
framework. Similarly, the logit function is frequently an appropriate link
function, as it was in Section 6.1.1.

With that, we start to see that for continuous dependent variables,
what we did under the CLM paradigm we can do under the GLM paradigm.
This is always true; the GLM paradigm extends the CLM paradigm to handle
different classes of dependent variables.
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10.5: Generalized Linear Models in R

In previous chapters, we performed linear modeling using the lm function.
To perform generalized linear modeling, we use the glm function. When one
uses the Gaussian distribution and its canonical link, results between the two
methods will be identical. That is, we could have fit all of the lms with glms
and not change a thing.

Note: If one uses the Gaussian distribution and a non-canonical link,
the predictions will be very close, but not identical. The reason is that
the transformation is performed on different quantities between the two
methods.

To see this, we can look at two things. The first is focusing on what the
alteration applies to (the residuals????). When transforming the dependent
variable:

g−1(Y) = XB + E (10.21)

⇒ Y = g(XB + E) (10.22)

When using the link function:

g−1(E [Y | X]) = XB (10.23)

E [Y | X] = g(XB) (10.24)

Y = g(XB) + E (10.25)

(10.26)

So, the only difference is in whether the function applies to the residuals.

Second, we can see this in an old example, use the GLM paradigm to
find the answers, and see that the results are slightly different from when the
model fit when transforming the dependent variable.
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Example 10.1: Let us return to the cows data file. The voters of Děčı́n are
being sent to the polls to vote on a constitutional referendum (ballot mea-
sure) that proposes to limit the number of cows that can be housed within
the city limits. This was not the first time that Ruritanians were sent to the
polls to vote on this or a closely related issue. Given the information from
previous votes, what is the estimated proportion of voters who will vote in
favor of the ballot measure in Děčı́n? •

Solution: The example asks us to estimate the proportion of voters who will
vote in favor of the ballot measure in Děčı́n. The dependent variable will be
propWin and the independent variables will be yearPassed, chickens,
and religPct. For now, let us assume a linear relationship between the
independent variables and the dependent variable; that is, the equation we
will use to fit the data is

propWin = β0 + β1(yearPassed) + β2(chickens) + β3(religPct) + ε
(10.27)

This is equivalent to

E [propWin] = β0 + β1(yearPassed) + β2(chickens) + β3(religPct)
(10.28)

which is more clearly connected to the GLM paradigm than before.

Performing Generalized Linear Modeling in R is straight-forward (as
it is in all modern statistical packages). The function to use is glm (for ‘Gen-
eralized Linear Modeling’):

glm(propWin ∼ yearPassed + chickens + religPct)

As glm returns a lot of information, we should store its results in a variable,
which I will call mod1. Once the computer computes the regression (and all
associated information), we can summarize the results in the standard results
table (Table 10.2) using the command

summary(model.1)

Notice that all three variables of interest are statistically significant at the
α = 0.05 level. Additionally, the model has a residual deviance of 0.063072
(as compared to the null deviance of 0.286802). This indicates that the model
reduced the deviance by a factor ofpseudo-R2
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Estimate Std. Error t-value p-value

Constant Term 0.1512 0.0659 2.293 0.0295
Year Passed (post 2000) -0.0201 0.0036 -5.618 � 0.0001
Banned Chickens -0.0373 0.0200 -1.868 0.0723
Percent Religious 0.0095 0.0011 8.801 � 0.0001

Table 10.2: Results table for the regression of proportion support of a generic ballot limit-
ing cows in Děčı́n against the three included variables. The residual deviance is 0.063072,
on 28 degrees of freedom, and the AIC is -98.523. As the hypotheses were one-tailed hy-
potheses, all three explanatory variables are statistically significant at the standard level
of significance (α = 0.05).

1− 0.063072
0.286802

= 0.7801 (10.29)

And this agrees with the R2 from Section 5.3.

Thus, the equation for the line of best fit (also known as the prediction
line) is approximately

E [propWin] = 0.1512− 0.0201(yearPassed)− 0.0373(chickens) + 0.0095(religPct)
(10.30)

According to this model, what is the expected vote in Děčı́n? To answer this,
we need this information about the Děčı́n ballot measure: yearPassed =
9, chickens = 0, religPct = 48. With this information, and under the
assumption that the model is correct, we have our prediction that 42% of the
Děčı́n voters will vote in favor of this ballot measure. �

There is nothing in the previous paragraphs that differs from the analy-
sis results from Section 5.3. This is because the Generalized Linear Model
paradigm extends the Classical Linear Model Paradigm and is equivalent to
it when the dependent variable is Gaussian distributed and the link is the
identity function. We can even use the goodness-of-fit measure we devel-
oped in Section 2.4, the R2 measure. Here, however, we calculate it based on
the null and residual deviances. The null deviance is the deviance inherent
in the data (akin to the variance of the data, TSS). The residual deviance is
the deviance in the data unexplained by the model (akin to the SSE).

If we wish to predict the results of a Venkovský ballot measure from
1994, which also restricted chickens, we would still get an impossible predic-
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Estimate Std. Error t-value p-value

Constant Term -1.8909 0.2898 -6.53 � 0.0001
Year Passed (post 2000) -0.0886 0.0157 -5.63 � 0.0001
Banned Chickens -0.2318 0.0878 -2.64 0.0134
Percent Religious 0.0475 0.0047 10.06 � 0.0001

Table 10.3: Results table of the results of ordinary least squares regression on the logit-
transformed dependent variable. The residual deviance is 0.064987, the null deviance is
0.286802, the R2 is 0.7734, and the AIC is −97.6.

Figure 10.1: A plot of the predictions across various values of religiosity comparing the
two models: CLM and GLM. Note that while the two results tables provided different
results, the prediction plots are quite close together. The curves would have been equal only
if we were to use the canonical link and the Gaussian distribution. For the predictions,
the year was 2010 and the ballot measure also banned chickens.

tion — one that is outside logical limits. In Section 6.1.1, we corrected thisimpossible
error by transforming the data, modeling, then back-transforming the re-
sults. Instead of transforming the dependent variable, let us merely change
the link function. Here is how that is done in R and with glm:

We select the logit link function for the exact same reasons we selected
the logit transformation in Section 6.1.1. The command to use is

mod3 = glm(propWin ∼ yearPassed + chickens + religPct,
family=gaussian(link=make.link("logit")))
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Estimate Std. Error t-value p-value

Constant Term 8.1595 0.1546 52.77 � 0.0001
Level of Democracy -0.0452 0.0061 -7.44 � 0.0001
Honesty in Government 0.3335 0.0219 15.20 � 0.0001

Table 10.4: The results table from fitting the GDP data using Generalized Linear Models
(cf. Table 6.2). Note that both independent variables are significant at the α = 0.05 level
here (highly significant).

Now, summary(mod3) provides many results. Note that all three indepen-
dent variables are more statistically significant than in the non-transformed
model. Also note that the effect directions are the same as before.

Finally, note that these parameter estimates are not the same as those
where we used the Classical Linear Model with a logit transformation to fit
the data in Chapter 6. If we make predictions, we see that the results are close
(Figure 10.1). CLMs and GLMs give identical results only with the Gaussian identical
distribution and its canonical link. Here, we used the logit link.

Let us now re-examine Example 6.2 from Chapter 6. Recall that in that ex-
ample, we were modeling a variable that was bounded below, but not above.
This led us to transform the dependent variable using the logarithm function.
Here, we fit the model with the Gaussian distribution and the non-canonical Maka × Kid
logarithm link function.

Example 10.2: The gross domestic product (GDP) per capita is one of many
measures of average wealth in countries. If extant theory is correct, then
the wealth in the country is directly affected by the level of honesty in the
government — countries with high levels of honesty (low levels of corrup-
tion) should be wealthier than those with low levels of honesty (high levels
of corruption). Furthermore, if theory is correct, the level of democracy in a
country should also influence the country’s level of wealth — countries with
higher levels of democracy should be wealthier than countries with low lev-
els of democracy. Let us determine if reality (using the data in the gdpcap
data file) supports the current theory or if current theory needs to explain
the severe discrepancies. •

Solution: The process of fitting this model with a GLM should be getting
rote by now as it is so similar to fitting with a CLM. The R command is
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m2 = glm(gdpcap ∼ democracy + hig,
family=gaussian(link = make.link("log")))

To see the results, we perform a summary call. The results of that call are
provided in Table 10.4. Note that both independent variables are highly sig-
nificant at the usual level of significance, α = 0.05. Furthermore, the effect
directions are the same as in the CLM model (Table 6.2 on page 170). �

Note: For some link functions, R allows you to skip the “make.link”
portion. The log link is one of those for the Gaussian. Thus, the follow-
ing command would also work:

glm(gdpcap ∼ democracy + hig, family=gaussian(link="log"))

I recommend writing it out. That helps those who follow you to interpret
what you are doing.

To predict the GDP per capita for Papua New Guinea, we repeat the same
steps as when we were fitting CLMs: predict, then back-transform. Thus, the
one-line prediction statement will be

PNG = data.frame(hig=2.1, democracy=10)
exp(predict(m2, newdata=PNG))

The predicted GDP per capita for Papua New Guinea was $2678 when fitted
with the CLM. For this model, the prediction is $4481. Thus, the predic-
tion for Papua New Guinea is higher using GLMs than when using CLMs.
Looking at the prediction graph (Figure 10.2), we see that GLM predictions
are lower than CLM predictions for certain values of the dependent variable
(and larger for others).
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Figure 10.2: A plot of the two prediction curves, corresponding to the model fit using the
Classical Linear Model and the Generalized Linear Model. Note that the two prediction
curves are similar, but not really that close for large values of honesty in government.
Estimates for Papua New Guinea are shown with the two symbols.
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10.6: Conclusion

This chapter introduced the Generalized Linear Model paradigm, which is
an extension of the Classical Linear Model paradigm from the previous two
chapters. The advantage of the GLM paradigm is that more classes of de-
pendent variables can be fit. The disadvantage (if we can call it that) is that
we need to understand our data and model better. The three things we need
to know are the linear predictor, the distribution of the dependent variable,
and the function that links the expected value of the distribution with the
linear predictor.

We tied this chapter to the previous chapters by showing that a GLM
model using the Gaussian distribution (and the identity link) is equivalent
to using the CLM. Three examples showed that the steps in modeling using
the Generalized Linear Model paradigm are very similar to the steps used in
modeling using the Classical Linear Model paradigm.

This chapter actually marked a major departure in how we see our
data. Before, whenever a datum was different from our prediction, we viewed
it as an error. Now, we realize that this variation is simply due to random
fluctuations. We know this because we realize that our dependent variable is
a random variable.

In the next chapters in this part of the book, we will examine more
classes of dependent variables: binary, limited discrete (both nominal and
ordinal), count, and non-negative continuous. As we examine these classes,
pay attention to the selected distribution and the possible link functions. Ta-
ble 10.1 provides several of the distributions and their canonical link func-
tions.

Before you move on to the next chapter, ask yourself one thing: What
requirements do we need to check four our models in this chapter? Make
sure you can explain why they are requirements, too.
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10.7: End-of-Chapter Materials

10.7.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Packages:

RFS This package does not yet exist. It is a package that adds much gen-
eral functionality to R. In lieu of using library(RFS) to access these
functions, run the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Statistics:

lm(formula) This function performs linear regression on the data, with the
supplied formula. As there is much information contained in this func-
tion, you will want to save the results in a variable.

glm(formula) This function performs generalized linear model estimation
on the given formula. There are three additional parameters that can
(and often should) be specified.

The family parameter specifies the distributional family of the de-
pendent variable, options include gaussian, binomial (this chap-
ter), poisson (next chapter), quasibinomial, quasipoisson, and
gamma. If this parameter is not specified, R assumes gaussian.

The link parameter specifies the link function for the distribution. If
none is specified, the canonical link is assumed.

Finally, the data parameter specifies the data from which the formula
variables come. This is the same parameter as in the lm function.

predict(model, newdata) As with almost all statistical packages, R has a
predict function. It takes two parameters, the model, and a dataframe
of the independent values from which you want to predict. If you omit
newdata, then it will predict based on the independent variables of
the data itself, which can be used to calculate residuals. The dataframe
must list all independent variables with their associate new values. You
can specify multiple new values for a single independent variable.
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10.7.2 Exercises This section offers suggestions on things you can prac-
tice from just the information in this chapter. As the purpose of this chapter
was to introduce Generalized Linear Models and emphasize that everything
we have done thus far can be done with GLMs, all of the extension questions
are from previous chapters. For each of these, use the Generalized Linear
Model paradigm (and the glm function).

Summary:

1. What are the three aspects of your model that must be known before
using generalized linear models?

2. When doing ordinary least squares regression, what were these three
aspects?

3. How does the canonical link function differ from a link function?

4. What is a(φ) for the Gaussian distribution?

Data:

5. Now, note that the value for Reka is 46% weekly church attendance.
If, in the year 2012, the voters of Reka were faced with a ballot mea-
sure limiting the number of cows in the city limits, but not restricting
chickens, what is the probability that it will pass?

6. Calculate a 95% confidence interval, with the transformed Cow Vote
model, for predicting Děčı́n’s vote. Is the actual outcome within the
95% confidence interval?

7. The logit transformation is not the only possible choice as a link for
proportion data, there is also the asymmetric complementary loglog
transformation (cloglog in the RFS package). Use this function as the
link function to predict Děčı́n’s vote, its 95% confidence interval, and
the probability of the SSM ballot measure passing. The inverse of the
complementary log-log transform has no name, but the R function is
cloglog.inv, also in the RFS package.

8. Estimate the GDP per capita for Papua New Guinea. For this problem,
use the untransformed model. Also, calculate a 95% confidence inter-
val for this estimate. How close is this estimate to the real answer, and
it the real answer within the predicted confidence interval?
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9. Estimate the GDP per capita for Papua New Guinea. For this problem,
use the transformed model. Also, calculate a 95% confidence interval
for this estimate. How close is this estimate to the real answer, and it
the real answer within the predicted confidence interval?

10. Compare and contrast the results of your Papua New Guinea estimates
(Problems 8 and 9). Which model works best for Papua New Guinea?
Which model works best overall?
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