
Chapter 9:

MaximizingtheLikelihood

Overview:

In the previous chapters, we defined “best” by how the
sum of the squared residuals were minimized. We made
bad things small. Another way of viewing the “best”
line is to maximize good things. That is the idea behind
maximum likelihood estimation.

While the concepts seem a bit different from or-
dinary least squares, this method actually leads to the
same estimators of β0 and β1. It also leads to a biased
estimator of σ2. So, why do we look at it here? First, the
bias is relatively minor and disappears as the sample
size increases.

More importantly, the method is extremely flexi-
ble. OLS requires Normality in the residuals. MLE can
be used with any distribution.
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In the previous chapters, we have progressed from our desire to minimize
some function of the residuals. This led to several related techniques:

• ordinary least squares

• weighted least squares

• generalized least squares

• ordinary least absolutes

All of these techniques sought to make the ‘bad’ things as small as possible,
to produce a model that minimizes these residuals. However, our first defi-
nition of “best” from Page 16 was based on making good things as large as
possible, where that “good thing” is the likelihood of observing this particu-
lar data.1

The theory is that the estimate most likely to have produced the ob-
served data is the “best” estimate. Note that this differs from previous esti-
mation methods in both the objective function and the size we desire. Bigger
is better. . . bigger in terms of the “likelihood.”

1It is called the “likelihood of the data given our parameter estimates.”
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9.1: The Likelihood

From a theoretical standpoint, the likelihood is just a generalization of prob-
ability. Where probability is bounded by both 0 and 1, the likelihood is only
bounded below by 0. Values with higher probabilities are more likely to be
observed. The same is true of likelihood: Values with higher likelihoods are
more likely to be observed.

In the discrete case, the likelihood and the probability (mass) are the
same. In the continuous case, the likelihood is the probability density. In
other words, you really have come across the likelihood before. In your pre-
vious statistics course, the likelihood was called the “probability density” for
continuous random variables and the “probability mass” for discrete random
variables.

The difference between the likelihood and the probability mass or
density is only one of emphasis. The probability mass (or density) is a func-
tion of observable values given the parameters of the distribution.

The likelihood is a function of the parameters, given the observed val-
ues (data). That difference is illustrated in the next two examples.

Example 9.1: Given that the success probability of a binomial random vari-
able is π = 0.25, what is the probability of observing exactly one success out
of two trials? •

Solution: The probability mass function of the binomial distribution is

f (x; π,n) =
(
n
x

)
πx (1−π)n−x (9.1)

In this particular instance, the probability mass function is

f (x; π = 0.25,n = 2) =
(
2
x

)
0.25x (1− 0.25)2−x (9.2)

243



And now calculating the probability gives

f (1; π = 0.25,n = 2) =
(
2
1

)
0.251 (1− 0.25)2−1 (9.3)

= 2 0.251 (0.75)1 (9.4)

= 2 (0.25) (0.75) (9.5)

= 0.375 (9.6)

Thus, the probability I observe exactly one success in two trials, given the
success probability is 0.25 is just 0.375, which is a probability of 3 in 8. �

Example 9.2: Given that I observed exactly on success in two trials, what is
the likelihood that the success probability is π = 0.25? •

Solution: The likelihood for a binomial random variable is

f (π; x,n) =
(
n
x

)
πx (1−π)n−x (9.7)

In this particular instance, the likelihood is

f (π; x = 1,n = 2) =
(
2
1

)
π1 (1−π)2−1 (9.8)

Thus, the value of the likelihood for π = 0.25 is

f (0.25; x = 1,n = 2) =
(
2
1

)
0.251 (1− 0.25)2−1 (9.9)

= 2 (0.25)1 (0.75)1 (9.10)

= 2 (0.25) (0.75) (9.11)

= 0.375 (9.12)

Thus, the likelihood that π = 0.25 is 0.375. Is this a lot? It depends on the
number of data points. In general, the larger your sample size, the smaller
the likelihood. Thus, the likelihood can only meaningfully be interpreted
when in relation to other likelihoods based on the same data. �same data
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The probability and the likelihood are numerically the same. The use (in-
terpretation), however, is different. With probability, we are looking at a
function of possible outcomes. With likelihood, we are looking at a function
of possible values of the parameters. Thus, in the first case, we could ask
questions about which value of x is most likely. In the second case, we would
ask questions about which value of π is most likely.

Likelihood cries out to be maximized. Is π = 0.25 the maximum like-
lihood in the previous example? No. Calculate the likelihood of π = 0.40 to
see that 0.25 is not the maximum (the value of π that produces the largest
likelihood value). If you calculated f (0.40; x = 1,n = 2) = 0.48, then you did
the calculations correctly.

Note that f (0.40; x = 1,n = 2) > f (0.25; x = 1,n = 2). Thus, π = 0.25
is not the maximum likelihood estimate of π in this case. What is? Such
optimization requires using calculus. From the above, you should be able to
see that the objective function is

Q(π) =
(
2
1

)
π1 (1−π)2−1 = 2 π (1−π) (9.13)

This is a function of the parameter, since we are trying to determine the
value of π that is most likely, given the data. The optimization proceeds as
expected:

d
dπ

Q(π) = 2(1− 2π) (9.14)

0 set= 2(1− 2π̂) (9.15)

0 = 1− 2π̂ (9.16)

1 = 2π̂ (9.17)
1
2

= π̂ (9.18)

Thus, given that we observed 1 success in 2 trials, the maximum likelihood
estimator of π is π̂ = 0.500. For some reason, I am not surprised at this
outcome. Are you?

In general, one can show that the maximum likelihood estimator of π
is π̂ = x/n, where x is the number of successes and n is the number of trials. I
will leave that as an exercise. exercise
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A second distribution that you probably saw in your previous statistics class
is the Poisson distribution. It has just one parameter, λ, the average rate. In
this example, we will determine the maximum likelihood estimator of λ.

Example 9.3: Let Y be the number of Ruritanians walking through the door
of the Valné Shromážděnı́, the general assembly building of Ruritania. The
King would like use to estimate the average entering between noon and 1pm.
To do this, we simply measure the number of people who entered the build-
ing during that hour on Monday.

That number is y = 17. With this information, let us calculate the
estimate of λ using maximum likelihood estimation. •

Solution: The likelihood for a discrete distribution, like the Poisson, is just
the probability mass function:

L(λ; y) =
e−λ λy

y!
(9.19)

That is the likelihood of each observation. Here, we only took one measure-
ment (on Monday). Thus this is also the entire likelihood.

The next step is to maximize the likelihood with respect to the param-
eter, λ:

d
dλ
L(λ; y) =

d
dλ

(
e−λ λy

y!

)
(9.20)

=
−e−λ y(λy−1) + e−λλy

y!
(9.21)

Now, set this equal to zero and solve for the parameter.

0 set= −e−λ̂ y(λ̂y−1) + e−λ̂λ̂y (9.22)

Since λ is constrained to be positive, we have the following simplification

0 = −y(λ̂y−1) + λ̂y (9.23)

0 = −y + λ̂ (9.24)
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Thus, the maximum likelihood estimate of λ is λ̂ = y = 17.

And so, we report to His Majesty that our estimate of the average num-
ber of people passing through the doors of the Valné Shromážděnı́ is 17 per
hour. � surprised?

Example 9.4: His Majesty liked our report, especially our font. However, he
asked an excellent question: “Bylo by lepšı́ měřit vı́ce než jednou?”

To address his point, I decided to take multiple measurements over
several days. So, for the next week, I measured the number of people entering
the Valné Shromážděnı́ an hour at a time, randomly selecting the time of day.
Here is that data: 15,20,23,34,23.

With that new data what is the maximum likelihood estimator of λ,
given these n = 5 measurements? •

Solution: From the previous example, we know that the likelihood of a single
observation is

L(λ; y) =
e−λ λy

y!
(9.25)

Thus, the likelihood of n independent observations is

L(λ; y,n) =
n∏
i=1

e−λ λyi

yi !
(9.26)

Since there is a product involved, it will be easier to maximize the logarithm
of the likelihood,

l(λ; y,n) =
n∑
i=1

(−λ+ yi logλ− logyi !) (9.27)

And so, we maximize this function with respect to λ to obtain our estimator:

d
dλ
l(λ; y,n) =

d
dλ

n∑
i=1

(−λ+ yi logλ− logyi !) (9.28)
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=
n∑
i=1

−1 +
n∑
i=1

yi
λ

(9.29)

= −n+
ny

λ
(9.30)

Now, setting this equal to zero and solving for the estimator gives us

0 set= −n+
ny

λ̂
(9.31)

n =
ny

λ̂
(9.32)

(9.33)

Thus, with multiple measurement, the maximum likelihood estimator of λ is

λ̂ = y (9.34)

Before moving on, think about the result to ensure that it makes sense. This
is always an important step! �

� Warning: At the end of every result, you should think about its consequences.
Make sure the results make sense. If they do not, then double-check your work or
see the world in a more subtle light.

Another important distribution is the exponential distribution. It is used
to model the time until some event occurs. Actuaries may use it to model
(estimate) the time until a person dies or gets into an automobile accident or
gets sued or some other wonderful event.

It has a single parameter, λ, which is the rate.2 This means that the
average will be 1/λ. Double-check that this actually makes sense.

The following examples deals with this distribution.

2If you are having déjà vu again, do not worry. There is an intimate connection between the
Poisson and exponential distributions. If the time between arrivals follows an exponential
distribution, then the number of arrivals follows a Poisson distribution.
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Example 9.5: His Majesty has some additional work for us. He would like to
estimate the average lifetime of Ruritanians.

Let us use maximum likelihood estimation to provide an estimator for
λ, the average rate of a person dying (NOT the average time until death). •

Solution: The probability density function for the exponential distribution,
when parameterized on its rate, is

f (x; λ) = λ e−λx (9.35)

Thus, the likelihood function for a single observation is

L(λ; x) = λ e−λx (9.36)

And, the likelihood function for n independent observations is

L(λ; x,n) =
n∏
i=1

λ e−λxi (9.37)

As this is a product, the log-likelihood will be easier to differentiate. It is

l(λ; x,n) =
n∑
i=1

(logλ−λxi) (9.38)

Now, we maximize it.

d
dλ
l(λ; x,n) =

d
dλ

n∑
i=1

(logλ−λxi) (9.39)

=
n∑
i=1

1
λ
−

n∑
i=1

xi (9.40)

=
n
λ
−nx (9.41)

0 set=
n

λ̂
−nx (9.42)

0 =
1

λ̂
− x (9.43)

λ̂ =
1
x

(9.44)
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Note: From this, it can be shown that the maximum likelihood estimator
of the mean of an exponential distribution is

µ̂ = x (9.45)

All it takes is knowing that the expected value of an exponential distri-
bution is 1

λ .

Since the original question dealt with the average age, we would want to cal-
culate µ̂, not λ̂. I leave it as an exercise to show that the maximum likelihood
estimator of µ for the following parameterization of the exponential distri-
bution

f (x;µ) =
1
µ
e−x/µ (9.46)

is µ̂ = x .

Note: It should be noted that the maximum likelihood estimator is awe-
some in that functions “pass through.” In other words, it can be shown
that

f̂ (x)MLE = f (x̂MLE) (9.47)

In words, the maximum likelihood estimator of a function of a parameter
is that function of the maximum likelihood estimator of the parameter.

This is as good a time as any. There are two “drawbacks” to using maximum
likelihood to estimate parameters. The first is that there is no guarantee that
the estimator is unique. The second is that there is no guarantee that the
estimator is unbiased.

While these seem bad, there is a nifty theorem that states the MLE is
asymptotically unbiased; that is, as the sample size increases, its bias goes to
zero.
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9.2: The MLE and the CLM

Recall that the classical linear model assumes

Y = XB + E, (9.48)

with E ∼ N
(
0; σ2I

)
. When we fit this model using ordinary least squares

(OLS), we obtained the following estimators:

b0 = y − b1 x (9.49)

b1 =
∑

(xi − x )(yi − y )∑
(xi − x )2 (9.50)

Let us see what we get when we fit this model using maximum likelihood
methods.

Theorem 9.1. The maximum likelihood estimator of β0 is

β̂0 = y − β̂1 x (9.51)

This is equivalent to the OLS estimator of the y-intercept.

Proof. The first step is to determine the likelihood function. The second step
is to maximize that likelihood with respect to the parameter. As is usual, one
maximizes the logarithm of the likelihood instead of the likelihood itself. It
is generally easier.

Remember the conditional distribution of y. With that in mind, here
is the likelihood for one observation:

L(µ,σ2; x,y) =
1

√
2πσ2

exp
[
−1

2
(y −µ)2

σ2

]
(9.52)

=
1

√
2πσ2

exp
[
−1

2
(y − ŷ)2

σ2

]
(9.53)

=
1

√
2πσ2

exp

−1
2

(
y − (β0 + β1x)

)2

σ2

 (9.54)

Jeeee-willikers! That is just the probability density function for the normal
distribution, where µ (as always) represents an expected value.
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That was for a single observation. However, we rarely deal with just
one data point. We deal with n of them. We remember from our introductory
statistics course that if the data are independent, then P [A∩B] = P [A]P [B]. IF
That means that the likelihood of observing all of our data is just the product
of the individual likelihoods.

With that, we have

L
(
β0,β1,σ

2; x,Y
)

=
n∏
i=1

1
√

2πσ2
exp

[
−1

2
(yi − (β0 + β1xi))

2

σ2

]
(9.55)

Since you may not have seen the notation before,
∏

is the product symbol
just like

∑
is the summation symbol.

The next step is to maximize this likelihood. From calculus, we recall
the product formula for derivatives. Just try applying the product formula
here. You will shortly go bald from pulling out your hair. There is no easy
way to maximize this likelihood function. ¡Què làstima!

However, if we apply a bijection to this likelihood, then maximizingone-to-one
and onto that function is equivalent to maximizing the original likelihood. . . equiva-

lent in terms of the value that produces the maximum.

Because the likelihood has a lot of products, and because it is easier to
maximize a sum, we use the logarithm function. The log-likelihood function
of the above function is just

l
(
β0,β1,σ

2; x,Y
)

=
n∑
i=1

(
−1

2
log

(
−2πσ2

)
− 1

2
(yi − (β0 + β1xi))

2

σ2

)
(9.56)

Taking the derivative of a summation is so much easier than taking the deriva-
tive of a product. . . so much easier!

And, now that we have a practically differentiable function, we use
calculus to maximize it with respect to β0:

∂
∂β0

l(β0,β1,σ
2; x,Y) =

∂
∂β0

n∑
i=1

(
−1

2
log

(
−2πσ2

)
− 1

2
(yi − (β0 + β1xi))

2

σ2

)

=
n∑
i=1

−1
2

2(yi − (β0 + β1xi)) (−1)
σ2 (9.57)

=
n∑
i=1

yi − β0 − β1xi
σ2 (9.58)
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Now, set this to zero and solve for β̂0:

0 set=
n∑
i=1

yi − β̂0 − β̂1xi
σ2 (9.59)

0 =
n∑
i=1

yi −
n∑
i=1

β̂0 −
n∑
i=1

β̂1xi (9.60)

n∑
i=1

β̂0 =
n∑
i=1

yi −
n∑
i=1

β̂1xi (9.61)

nβ̂0 = ny −nβ̂1 x (9.62)

β̂0 = y − β̂1 x (9.63)

Thus, we have shown that β̂0 = y − β̂1 x , as we desired. Note that this is also
the OLS estimator of the y-intercept. Very interesting!

Theorem 9.2. The maximum likelihood estimator of β1 is

β̂1 =
∑

(xi − x )(yi − y )∑
(xi − x )2 (9.64)

Proof. From our proof of the estimator of β0, we have the following as our
log-likelihood function:

l
(
β0,β1,σ

2; x,Y
)

=
n∑
i=1

(
−1

2
log

(
−2πσ2

)
− 1

2
(yi − (β0 + β1xi))

2

σ2

)
(9.65)

And so, the proof proceeds by taking the derivative with respect to β1 and
solving for β̂1.

∂
∂β1

l(β0,β1,σ
2; x,Y) =

∂
∂β1

n∑
i=1

(
−1

2
log

(
−2πσ2

)
− 1

2
(yi − (β0 + β1xi))

2

σ2

)

= −1
2

n∑
i=1

2(yi − (β0 + β1xi)) (−xi)
σ2 (9.66)

=
n∑
i=1

xiyi − β0xi − β1x
2
i

σ2 (9.67)
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Setting this to zero and solving for the estimator, β̂1 gives

0 set=
n∑
i=1

xiyi − β̂0xi − β̂1x
2
i

σ2 (9.68)

=
n∑
i=1

xiyi −
n∑
i=1

β̂0xi −
n∑
i=1

β̂1x
2
i (9.69)

=
n∑
i=1

xiyi −nx β̂0 −
n∑
i=1

β̂1x
2
i (9.70)

=
n∑
i=1

xiyi −nx
(
y − β̂1 x

)
−

n∑
i=1

β̂1x
2
i (9.71)

=
n∑
i=1

xiyi −nx y +nβ̂1 x
2 −

n∑
i=1

β̂1x
2
i (9.72)

Moving the β̂1 terms to the left side gives

n∑
i=1

β̂1x
2
i −nβ̂1 x

2 =
n∑
i=1

xiyi −nx y (9.73)

β̂1

 n∑
i=1

x2
i −nx

2

 =
n∑
i=1

xiyi −nx y (9.74)

And finally,

β̂1 =
∑n
i=1 xiyi −nx y∑n
i=1 x

2
i −nx

2 (9.75)

We have seen this before. It is the OLS estimator of the slope parameter. No
surprise.surprise!

To finish the proof, use algebra to show that the final equation above
is equivalent to β̂1 =

∑
(xi−x )(yi−y )∑

(xi−x )2 .
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Theorem 9.3. The maximum likelihood estimator of σ2 is

σ̂2 =
1
n

n∑
i=1

(
yi − β̂0 − β̂1xi

)2
(9.76)

Proof. It has been a while, so I will leave this as an exercise for you to prove exercise
this. I have already shown the log-likelihood function. All you have to do is
differentiate with respect to σ2, solve for σ̂2, and use algebra to move things
into the right form.

Note that the above formula (Eqn 9.76) is equivalent to

σ̂2 =
1
n

n∑
i=1

e2
i (9.77)

This should raise a red (maybe only yellow or a nice chartreuse) flag, as this
is a biased estimator of σ2. Why?

9.2.1 Consequences I leave it as an exercise to prove the following con-
sequences:

1. β̂0 is unbiased for β0.

2. β̂1 is unbiased for β1.

3. σ̂2 is biased for σ2.

Because the maximum likelihood estimators are identical to the ordinary
least square estimators, and because we have not altered the Normality as-
sumption of the classical linear model, everything from Chapters 2 and 3
hold.

Well, that is not entirely true. Remember that the MLE estimator of σ2

is not the same as the OLS estimator. Thus, the test statistic and confidence
interval will need to be altered a bit. However, the differences are minor for
large samples.3

3And this is the problem that William Sealy Gosset had to deal with (see Section S.4.6). Things
easily work for large samples. He had to deal with small samples in his work.
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9.2.2 Multivariate Distributions* There is one prerequisite to this text-
book that would make things a little easier: an introduction to multivariate
distribution. Thus far, I have “hand-waved” over the topic. Here, I will briefly
discuss the topic.

The following is a univariate distribution:

f (x; µ,σ2) =
1

√
2πσ2

exp
[
−1

2
(x −µ)2

σ2

]
(9.78)

This is the (in)famous probability density function for the normal distribu-
tion. It is a function of just one variable (value), x. This is what makes it
univariate. The prefix uni stands for neither the University of Northern Iowa
nor edible sea urchin gonads. It is a Latin combining form for “one.” Thus,Ewww!
“univariate” indicates “one variable.”

The following is one example of a bivariate distribution:

f (x,y) =
exp

{
− 1

2(1−ρ2)

[(
x−µx
σx

)2
− 2ρ

(
x−µx
σx

)(y−µy
σy

)
+
(
y−µy
σy

)2
]}

2πσxσy
√

1− ρ2
(9.79)

This is a distribution where X and Y are distributed jointly normal, and
where they have correlation ρ between them. There are a lot of symbols
there because it is written in scalar form. Were we to write it in matrix form,
we could generalize all of these “—variate” distributions into one form.

If the random vector Y follows a multivariate normal distribution such
that Y ∼ Nn (µ; Σ/Σ/Σ/ ), thenMVN

f (Y; µ,Σ/Σ/Σ/ ) = (2π)−n/2
∣∣∣ Σ/Σ/Σ/ ∣∣∣−1/2

exp
[
−1

2
(x−µ)′Σ/Σ/Σ/

−1(x−µ)
]

(9.80)

Here, n is the number of variables that are jointly normal. This means that
each random variable follows a normal distribution, given the values of the
others. The vector µ is a column vector of expected values for eachXi . Finally,
Σ/Σ/Σ/ is the correlation matrix between the n random variables. If the x values
are independent, thenΣ/Σ/Σ/ ∈ Dn (diagonal). If the x values are independent and
identically distributed, then Σ/Σ/Σ/ = σ2In.

If n = 1, then the multivariate normal reduces to the univariate nor-
mal. If n = 2, then it reduces to the bivariate normal, where the off-diagonal
entries in Σ/Σ/Σ/ are equal to ρσ1σ2 and the diagonal entries are σ2

1 and σ2
2 .
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That is, if n = 2, then

Σ/Σ/Σ/ =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
(9.81)

Still, not much in this subsection is important — if the observations are in-
dependent. If the observations are independent, then the n-variate normal
is just the product of the n univariate normals. The same is true for any
distribution.

If the observations are not independent, then the joint distribution —
the actual distribution we care about — is not so simple. In many cases,
it has not been entirely formulated. For instance, what is the multivariate
Binomial distribution? That is, what is the distribution of

{
y1, y2, y3, . . . , yn

}
,

given correlation amongst those n measurements? Even better: How could
we measure such correlation?4

4In such cases, Dai, Ding, and Wahba (2013) may give you some insight into the difficulty of
these questions — and their answers! This really makes you appreciate random sampling,
where both independence and identical distribution hold.
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9.3: Conclusion

From this chapter, we have discovered how to perform maximum likelihood
estimation (MLE). The steps are as usual: formulate the objective function,
use calculus to maximize it.

The maximum likelihood estimators for the two main parameters of
the classical linear model are the same as the ordinary least squares estima-
tors. Thus, they are both unbiased. The maximum likelihood estimator of the
error variance, however, is biased. We know this because it does not equal
the MSE, which is unbiased.

Thus, it appears as though maximum likelihood gives us nothing help-
ful. However, this is not true. First, there is a theorem (beyond the scope
of this course) that proves all maximum likelihood estimators are asymp-
totically unbiased. In other words, if your estimator is a maximum likeli-
hood estimator, you have nothing to prove with respect to asymptotic bias
(Panchenko 2006, Thode et al. 2002). All other estimators (like OLS) require
separate proofs. So, we gain there.

Second, ordinary least squares requires that the conditional distribu-
tion of the dependent variable is normal. Maximum likelihood does not have
that as a requirement. This allows us to go beyond the classical linear model
and the requirement of Normality. In fact, the next part of this class exam-
ines this feature of maximum likelihood estimation.

258



9.4: End-of-Chapter Materials

9.4.1 R Functions This chapter had no R functions. It was all mathemat-
ics and concepts. Yay!!
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9.4.2 Exercises

1. Prove that the maximum likelihood estimator of π is x/n in a Binomial
experiment.

2. Prove Theorem 9.3.

3. Prove β̂0 is unbiased for β0.

4. Prove β̂1 is unbiased for β1.

5. Prove σ̂2 is biased for σ2 and that the bias is exactly n−1
n σ

2.
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