
Chapter 8:

QuantileRegression

Overview:

In the previous chapters, we defined “best” by minimiz-
ing the sum of the squared residuals. An even function
was required to ensure that the values in the target
function were positive. In this chapter, we use the ab-
solute value function.

While this may sound like a trivial move, it is not.
Since the magnitude of the slope of the absolute value
is constant, optimization is difficult Furthermore, since
it is undefined at its minimum, we can only use an iter-
ative technique to estimate (approximate) our parame-
ters of interest.

However, in building this structure, we are able to
go beyond just estimating the median, we can estimate
any quantile. This allows us to model the tails of the
data-generating process.
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In the previous sections we examined three types of least squares regressions
— ordinary, weighted, and general. These three estimation methods haveleast squares
one thing in common: The estimates were obtained by minimizing the sum
of squared residuals. We used the squaring function for two reasons. First,
it is everywhere differentiable, especially at its minimum. Second, squar-
ing the residuals ensures that you are adding non-negative values. All even
functions attain the second goal. The class of functions that meet the first
requirement is more restrictive.

Figure 8.1: A return to the line of best fit from Chapter 2. The pink line above minimizes
the sum of squared residuals. The turquoise line minimizes the sum of absolute residuals.
Quite the difference!
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The higher the even power, the more outliers affect the estimates; that
is, the outliers will tend to have an increases effect on the estimator when
the power is larger. One option to reduce the effect of these outliers is to use
a different even function. The absolute value function has been used quite
successfully in the past.

Unfortunately, the absolute value function is not everywhere differ-
entiable. Even worse: it is not differentiable at its minimum, the point of
interest. This means we cannot obtain a simple set of equations for our es-
timators. We can still, however, obtain estimators to an arbitrary degree of
precision by using a set of equations that get us closer and closer to the true
value of the estimate.

8.1: Parameter Estimation

Let us first think about how we could do this by hand. In least squares,
we just did calculus to get equations for the estimators. Here, since such
solutions do not exist and since we need to use an iterative technique, I think
working through a toy example may help understanding. And so, let us start
with the data in the left two columns of Table 8.1.

Remember that we want to minimize the sum of the absolute values
of the residuals.1 Thus, the first step is to obtain residuals. This means we L1 Norm
need to somehow obtain our first estimated regression line. Any will work
as a starting point. So, let’s say our first estimate of the line-of-best-fit is
`1 : y = 3, which is just the horizontal line at the median.

The next step is to calculate the residuals. This is the e1 column in
Table 8.1. The the target function is

Q1 =
n∑
i=1

| ei | =
n∑
i=1

∣∣∣ yi − ŷi ∣∣∣ =
n∑
i=1

∣∣∣ yi − 3
∣∣∣ (8.1)

For this line, its value is 8.

The next step is to change the regression line. How? Well, that is
the important question. Different methods may ultimately lead to slightly
different answers. As this section only seeks to illustrate a method — and

1In other words, we want to minimize the distance between the n-dimensional data vector and
the p-dimensional parameter space. Recall Figure 2.3 where we illustrated this with least
squares.
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x y ŷ1 e1 ŷ2 e2 ŷ3 e3

0 1 3 -2.0 1.5 -0.5 0.0 1.0
1 3 3 0.0 2.5 0.5 2.0 1.0
2 3 3 0.0 3.5 -0.5 4.0 -1.0
3 9 3 6.0 4.5 3.5 6.0 3.0

Table 8.1: Raw data and a few columns of the median regression estimation process. This
is more heuristic than actual. The actual fitting method depends on the program used.

not even a good method — let’s use logic to see what would be next. Note
that the lower values have estimates that are too low, and the higher values
have estimates that are too high. So, it makes sense to increase the slope.
So, let us increase the slope to 1. If we force the line to pass through the
dimension-wise median (x̃, ỹ) = (1.5, 3.0), the linear equation will be `2 : y =
1.5 + 1x. This produces the estimates and residuals in the next two columns
of Table 8.1.

The value of the target function is

Q2 =
n∑
i=1

| ei | =
n∑
i=1

∣∣∣ yi − ŷi ∣∣∣ =
n∑
i=1

∣∣∣ yi − (1.5 + xi)
∣∣∣ (8.2)

Note that this value is 5. As this is lower than the previous value, we headed
in the right direction; we are closer to the estimates because we have reduced
the sum of the absolute errors.

We got closer. Note that the error for higher x-values is greater than
for lower x-values. This suggests we should increase the slope yet again. So,
let us select our third line as `3 : y = 0 + 2x. Again, we are forcing the line to
pass through the dimension-wise median.2 The last pair of columns in Table
8.1 provide the predictions and residuals for this third line.

The value of the target function for this third line isQ3 = 6. This value
is not lower than Q2. Thus, this line is a worse fit than line `2. The next line,
`4, needs to take this into consideration.

This process would continue until the change in target function values
is “small enough.” Usually, we define “small enough” as being less than some
tolerance, like τ = 0.000001.

2Do we need to do this? No. There are algorithms that do not force this restriction. Again, the
actual mathematics cannot reasonably be done by hand. I write this part so that you can get
a feel for what the computer is doing.
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8.1.1 The Big Question The big question is how we get from one line-of-
best-fit to the next, from `i to `i+1. Unfortunately, there is no “best method”
to minimize the L1 norm when there are more points than dimensions. It is
even worse: We were able to find closed-form solutions to the unique estima-
tors for the L2 norm (squaring). That cannot be done when using the L1 norm
(absolute values). There are multiple appropriate algorithms. The estimators
may not be unique. Those are just a few problems working with the L1 norm.

For those interested, here are some methods:

• Barrodale and Roberts (1974),

• Koenecker and Bassett (1978),

• Koenker and d’Orey(1987, 1994),

• Li and Arce (2004), and

• Shu-guang and Jian-wen (1992).

Note that these algorithms make use of different paradigms, different ways
of seeing the problems. That is what makes studying statistics fun and inter-
esting. Looking at a problem differently may be the key to its solution.

In R, a function to perform median regression is rq in the package
quantreg, which does not come with the default R installation. Its use is
very similar to what we are used to. While the rq function allows you to se-
lect different optimization methods, the default is the Barrodale and Roberts
(1974) method.

From my experience the optimization algorithm matters little for real
data. If the data are all integers, there may be issues with non-unique so- problem
lutions or non-convergent algorithms. The cause in these cases is the non-
uniqueness of the median.
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Example 8.1: Using median regression, what is the relationship between the
violent crime rates in 2000 and 1990 in the crime data? •

Solution: The following code estimates the median regression line for the
relationship between the violent crime rates in 2000 and 1990 in the crime
data:

library(quantreg)

dt = read.csv("http://rfs.kvasaheim.com/data/crime.csv")
attach(dt)

mod1 = rq(vcrime00∼ vcrime90)
summary(mod1)

The following is the output:

Call: rq(formula = vcrime00 ∼ vcrime90)

tau: [1] 0.5

Coefficients:
coefficients lower bd upper bd

(Intercept) 93.24525 72.83955 102.31731
vcrime90 0.57764 0.57518 0.62676

The output is the usual output. The value of tau is 0.5, because we are
examining the regression line for the median, the 50th percentile.

The coefficients are the estimates for the intercept and slope. The
lower and upper bounds are the 95% confidence interval for those param-
eters. There are no p-values, because the distribution of the estimators does
not follow a nice test distribution. However, because we have a confidence
interval, we have even more information than what a simple p-value would
give. We are 95% confident that the relationship between the violent crime
rate in 1990 and 2000 is between 0.575 and 0.627. Since this does not include
the value 0, we can conclude that there is a significant relationship between
the two variables. �
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I leave it as an exercise for you to see that the OLS estimator for that effect is exercise
0.581, with a 95% confidence interval from 0.518 to 0.643.

There is a difference between the two estimation methods. That dif-
ference is in how the method is affected by influential points like the District influential
of Columbia. Median regression reduces the influence of DC, while ordinary
least squares does not.

The absolute value function increases linearly as the residual increases.
The squaring function increases quadratically as the residual increases. Thus,
ordinary least squares will work harder to avoid making the DC residual too
big. Median regression will not weight it as heavily.

Example 8.2: Here is another example of using median regression. What is
the relationship between the property crime rates in 1990 and 2000? •

Solution: The code is quite similar to that above:

mod3 = rq(pcrime00∼ pcrime90)
summary(mod3)

The following is the partial output:

Coefficients:
coefficients lower bd upper bd

(Intercept) 730.46936 349.56585 1093.31979
pcrime90 0.60584 0.50893 0.77457

Again, the relationship is positive. A point estimate for that relationship is
β̃1 = 0.606, with a 95% confidence interval from 0.509 to 0.775. I again leave
it as an exercise for you to show that the OLS estimator is 0.582 with a 95%
confidence interval from 0.458 to 0.707. �

Note: When the data are “well behaved” without influential points, there
tends to be little difference in the estimators. Figure 8.2 illustrates this.
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Figure 8.2: A graphic comparing the estimated lines from ordinary least squares (gold)
and median (red) regression.

8.2: Quantile Regression

The previous section covered median regression. There, we motivated the
method by focusing on minimizing the sum of the absolute value of the resid-
uals. It turns out that this is equivalent to estimating the conditional medianconditional

median of the dependent variable (hence its name). In other words, the line of best
fit is the line that best goes through the medians at each x-value.

Compare this to how we motivated ordinary least squares in Chap-
ter 2: by minimizing the sum of the squared errors. This is equivalent to
estimating the conditional mean of the dependent variable.conditional

mean
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In other words, OLS estimates E [Y | x] while median regression esti-
mates Med[Y | x], for want of better notation. (Perhaps Q2 [Y | x] would be
better notation?) P50 [Y | x]?

There is absolutely no reason we need to focus only on the conditional
median of the dependent variable (conditional on the independent variable).
We may want to focus on other quantiles, like the 10th percentile. This hap-
pens a lot in sociology when studying poverty (10th percentile of income) or
education (90th percentile of academic achievement).

The idea behind the fitting is the same (Koenker and Hallock 2001).
The R function is also the same. The only difference is that you need to
specify the quantile. To see this, let us see a couple familiar examples.

Example 8.3: What is the relationship between the violent crime rates in
2000 and 1990 in the crime data at the 10th percentile? •

Solution: Here is the code the perform this estimation:

mod5 = rq(vcrime00∼ vcrime90, tau=0.10)
summary(mod5)

The following is the output:

Call: rq(formula = vcrime00 ∼ vcrime90, tau = 0.1)

tau: [1] 0.1

Coefficients:
coefficients lower bd upper bd

(Intercept) 40.29964 -14.80397 100.38757
vcrime90 0.55616 0.38948 0.60422

Thus, for those states near the 10th percentile, the relationship between the
1990 and 2000 violent crime rate is between 0.389 and 0.604, with a point es-
timate of 0.556. This is only a little different from the median results, which
suggests those states that are less crime-ridden (at the 10th percentile) still
followed the same “rule” with respect to violent crime rate changes between
1990 and 2000. �
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Example 8.4: What is the relationship between the property crime rates in
2000 and 1990 in the crime data at the 90th percentile? •

Solution: Here is the code to perform this estimation:

mod6 = rq(pcrime00∼ pcrime90, tau=0.90)
summary(mod6)

The following is the output:

Call: rq(formula = pcrime00 ∼ pcrime90, tau = 0.9)

tau: [1] 0.9

Coefficients:
coefficients lower bd upper bd

(Intercept) 1761.72465 327.54503 2436.15997
pcrime90 0.53326 0.40262 0.84489

Thus, for those near the 90th percentile, the relationship between the 1990
and 2000 property crime rate is between 0.403 and 0.845, with a point es-
timate of 0.533. This differs a little from the median results (Example 8.2),
which suggests those states that are more (property) crime-ridden (at the
90th percentile) followed a similar “rule” with respect to violent crime rate
changes between 1990 and 2000. Their rates dropped slightly more than did
the typical (median) state. �

By the way, Figure 8.3 is a graphic of the deciles from 10 to 90% for the rela-
tionship between property crime rates in 1990 and 2000. Note that the effect
does appear to change as one looks at middle-rate states. The highest levels,
quantiles 80 and 90, are very similar in effect to the lower levels, quantile
10 and 20. However, those states near quantile 50 seem to have a greater
slope. If we had only looked at the median, we would have only reported
these steeper effects. This may have overstated the effect.
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Figure 8.3: Graphic illustrating the changing effect based on the quantile examined. The
nine lines are regression lines for the deciles 0.10 through 0.90, with darker lines corre-
sponding to higher quantiles.

Example 8.5: What is the relationship between the state’s wealth in 1990 and
the property crime rate in 2000? Show the effects at the first, second, and
third quartiles. •

Solution: We will use the GSP per capita as a proxy measure of wealth in the
state. I leave the coding to you. Here is the appropriate output for the initial proxy
question:

Call: rq(formula = pcrime00 ∼ gspcap90)

tau: [1] 0.5
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Coefficients:
coefficients lower bd upper bd

(Intercept) 3061.50674 2383.13082 4989.55600
gspcap90 0.02403 -0.08109 0.04996

Interpreting the table indicates that there is no significant evidence that there
is a relationship between the average wealth in 1990 and the property crime
rate in 2000; the confidence interval contains 0. �

I leave it as an exercise for you to show that ordinary least squares indicates
a statistical significant relationship (p− value = 0.0475). It also provides a
point estimate of that relationship of b1 = 0.03025).

Figure 8.4 provides the results from the second question. Note that the
slopes also seem to vary according to the quantile examined. Thus, the effect
of wealth on property crime rates seem to be a function of those property
crime rates. The lowest quantiles suggest the steepest effect.

8.2.1 The Ultimate Question So, is there a relationship between average
wealth in 1990 and the property crime rate in 2000? One thing we know is
that if there is a relationship, then it is minor.

It is not surprising that median regression does not detect a relation-
ship while ordinary least squares does. Median regression, like all statistics
based on the median (ranks), has a lower power than ordinary least squares
(statistics assuming Normality).

So, the answer to the ultimate question is “I’m not sure.” This is un-
satisfying. It is also reality. By using both OLS and median regression, we
have a better understanding of the relationship between average wealth and
property crime rates. That is the goal of statistics, not coming up with binary
answers.

8.2.2 The Ultimate Answer 42Douglas Adams
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Figure 8.4: Graphic illustrating the changing effect based on the quantile examined. The
nine lines are regression lines for the quantiles 0.10 through 0.90, with darker lines cor-
responding to higher quantiles.

8.3: Conclusion

In this chapter, we covered quantile regression. We initially motivated the
topic by modifying our definition of “best fit” to focus on the absolute value
of the residuals in lieu of the square of the residuals. This led to an iterative
process that allowed us to obtain estimates to any desired accuracy — at the
cost of time and computing power.

This chapter then noted that median regression was just a specific in-
stance of quantile regression, one in which the quantile was 0.500. This set
the stage to introduce the results of quantile regression, in general. One may
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see quantile regression in research that focuses on better understanding the
“wings” of the distribution instead of its middle.

Quantile regression uses the entire data set. It does not look at only
the data corresponding to the qth quantile. Such data may not actually exist.
What states are at the 10th quantile of the property crime rates in 1990 and
2000? That’s not enough data to obtain any meaningful estimates.

Quantile regression estimates the qth quantile of the response variable
given the value of the independent variable.
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8.4: End-of-Chapter Materials

8.4.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in quantile regression. These are listed here.

Packages:

quantreg This package contains many functions associated with quantile re-
gression. This chapter just skimmed the surface of what can be done
and what should be checked. As this package is not a part of the base R,
you will need to install it before loading it with library(quantreg).

Statistics:

rq(formula) This is the function that performs quantile regression. The for-
mula is required. By default, the quantile examined is τ = 0.50, but
that can be changed by specifying the value of that τ .

summary(model) This is the familiar command that allows us to see the re-
gression table produced by the regression method. Here, it provides
the effect estimates (coefficients) and the central 95% confidence inter-
val for that effect.
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8.4.2 Exercises

1. In the setting of Example 8.1, perform ordinary least squares regression
to calculate the effect estimate and its 95% confidence interval.
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