
Chapter 7:

OtherLeastSquares

Overview:

In Chapter 4, we examined the three assumptions and
how to check that they are not violated by your model.
In the previous chapter, we saw how to fix our model to
handle some of those violations. We were left, however,
with some violations we could not fix.

In this chapter, we jettison ordinary least squares
regression and examine other types of regressions that
rely on minimizing the sum of squared residuals. Each
of these techniques allows you to specify a different co-
variance matrix. The requirement is that you actually
know its structure without having to estimate it.
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In the past several chapters, we have examined the classical linear model and
how to estimate the parameters using ordinary least squares. That introduc-
tion came in Chapters 2 and 3. In Chapter 4, we discovered how to check the
requirements (assumptions) of the ordinary least squares method. Chapter 6
gave us some options for dealing with violations of the requirements.

However, it may be that those fixes do not fully succeed. This chapter
provides two estimation methods that offer advantages over ordinary least
squares, as long as you have sufficient knowledge (science) of the structure
of the problem — the data-generation process.

This chapter reintroduces ordinary least squares. It then focuses on
the covariance matrix of the residuals. As we reduce requirements on that
matrix, we move from ordinary least squares to weighted least squares to
generalized least squares.
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7.1: Ordinary Least Squares

First, let us review ordinary least squares. In ordinary least squares regres-
sion, we made the assumption that the residuals are independent and iden-
tically distributed Normal with constant zero expected value and variance.

In symbols, this is written as either

εi
iid∼ N

(
0; σ2

)
(7.1)

or as
E ∼ N

(
0; σ2I

)
(7.2)

The two statements are different ways of saying the same thing.

Note that the covariance matrix of E is σ2I:

V [E] = σ2



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 0
...

...
. . .

...
0 0 0 · · · 1


=



σ2 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ2 0
...

...
. . .

...
0 0 0 · · · σ2


(7.3)

The values along the diagonal represent the assumed variances of each resid-
ual. That they are the same value, σ2, indicates that the variance of the resid-
uals is constant. homoskedastic

The values off the diagonal represent the covariance between the resid-
uals; that is, the value at 1,2 is the covariance between ε1 and ε2. Since that
value is 0, we are specifying that the two are uncorrelated. independent

Thus, the covariance matrix above specifies that the variances of the
residuals are constant and that the residuals are independent of each other.
If this requirement is met, then we should use ordinary least squares regres-
sion. However, not always is this requirement met.
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7.2: Weighted Least Squares

It may be that the residuals are independent, but that their variance is not
constant. That is, we may have a model that leads to this assumption:

εi
ind∼ N

(
0; σ2

i

)
(7.4)

or as
E ∼ N

(
0; σ2D

)
(7.5)

Here, D is a diagonal matrix. Again, the two statements are different ways of
saying the same thing.

Note that the covariance matrix of this E is

V [E] = σ2



d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 0
...

...
. . .

...
0 0 0 · · · dn


=



σ2
1 0 0 · · · 0

0 σ2
2 0 · · · 0

0 0 σ2
3 0

...
...

. . .
...

0 0 0 · · · σ2
n


(7.6)

The values along the diagonal represent the assumed variances of each resid-
ual. That they are not necessarily the same value indicates that the variance
of the residuals can vary.heteroskedastic

The values off the diagonal represent the covariance between the val-
ues of the residuals. So, the value at 1,2 is the covariance between ε1 and ε2.
Since that value is 0, we are specifying that the two are uncorrelated.independent

Thus, the covariance matrix above specifies that the variances of the
residuals are allowed to vary and that the residuals are independent of each
other.

This assumption is the only difference between weighted least squares
and ordinary least squares. But, it is a big difference. Remember that the
value of σ2 can indicate the variance of the population residuals or our un-
certainty in the value of that residual.

To use weighted least squares, we need to know the structure of the
D matrix. We do not need to know the exact values, but we need to know
them up to a constant multiplier. That is, we need to know the structure of
that heteroskedasticity. This usually comes from understanding the data-
generating process.

198



There are cases when we would know this structure. For instance, if
we are working with a response variable that is a proportion arising from a
binomially-distributed variable, we know that the variance is

σ2
i = π(1−π)/ni (7.7)

Thus, the diagonal elements will be 1
ni

and the multiplier (constant part) will
be σ2 = π(1−π).

A second time we would know the structure of the D matrix is when
we are working with a Poisson-distributed response variable. In such a case,
the variance is λi . Where do we see Poisson-distributed data? GDPs per
capita are close, as are crime rates and other such count and rate variables.

7.2.1 Fitting WLS Now that we know the structure of the D matrix, we
can determine all we need to about the WLS estimators and estimates. We
just reduce this problem to a previous problem.

To clarify the similarities and differences between ordinary and weighted
least squares, here is the model equation (for simple linear regression) for or-
dinary least squares:

Y = XB + E (7.8)

and for weighted least squares:

Y = XB + E (7.9)

Those are the same, whether one does OLS or WLS, because both come from
the fact you are using the classical linear model. The difference comes in the CLM
assumption. Here is the assumption for OLS:

E ∼ N
(
0; σ2I

)
(7.10)

Here is the assumption for WLS:

E ∼ N
(
0; σ2D

)
(7.11)

Remember that D is a diagonal matrix.
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The Transformation: There is a joke about how a mathematician solved the
problem of a hose connected to a fire hydrant:

A mathematician and a physicist were asked the following ques-
tion:

Suppose you walked by a burning house and saw a hydrant and a
hose not connected to the hydrant. What would you do?
P: I would attach the hose to the hydrant, turn on the water, and
put out the fire.
M: I would attach the hose to the hydrant, turn on the water, and
put out the fire.

Then they were asked this question:

Suppose you walked by a house and saw a hose connected to a
hydrant. What would you do?
P: I would keep walking, as there is no problem to solve.
M: I would disconnect the hose from the hydrant and set the
house on fire, reducing the problem to a previously solved form.

And so, in the spirit of mathematicians, let us reduce the weighted least
squares problem to that of ordinary least squares. If we can do this via
a bijective transformation, then we have our confidence intervals and test
statistics.

Define W = D−1/2. If we do that, then our problem is solved, sans
burning down the house:

Theorem 7.1. If W = D−1/2, then WE ∼ N
(
0; σ2I

)
Proof. Since W is a diagonal matrix and E has a Normal distribution, WE
will also follow a Normal distribution. Thus, we need to calculate E [WE]
and V [WE]. In doing this, note that W is not a random matrix; it is known.

The expected value of WE is

E [WE] = WE [E] (7.12)

= W0 (7.13)

= 0 (7.14)
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For the variance we have

V [WE] = WV [E]W′ (7.15)

= Wσ2DW′ (7.16)

= σ2DWW′ (7.17)

= σ2DD−1/2D−1/2 (7.18)

= σ2I (7.19)

In these steps, remember that matrix multiplication is commutative if the
matrices are diagonal (Theorem M.3). Also, the final simplification comes
from the definition of W.

Thus, putting these three parts together gives our conclusion.

How do we use this theorem? We pre-multiply the model equation by the
matrix W to obtain the following:

Y = XB + E (7.20)

WY = WXB + WE (7.21)

Now, redefine the parts to see how useful this result is

Y∗ = X∗B + E∗ (7.22)

with E∗ ∼ N
(
0; σ2I

)
from Theorem 7.1. Thus, we can apply all of our OLS

results to WLS, as long as we speak to the transformed response variable WY
and the transformed independent variable(s) WX.

This quickly leads to our weighted least squares estimators of B.

To prove this, we could proceed as we did back in Section 2.2 (page 30).
Or, since we have reduced the WLS problem to an OLS problem, we can just
write out the results and simplify:

b = (X∗′X∗)−1 X∗′Y∗ (7.23)

= ((WX)′WX)−1 WX′WY (7.24)

= (X′W′WX)−1 X′W′WY (7.25)

=
(
X′D−1X

)−1
X′D−1Y (7.26)

It also quickly leads to showing that the WLS estimator is unbiased for B:
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Theorem 7.2. Under the assumptions of weighted least squares, the WLS estima-
tor for B is unbiased.

Proof. I am tempted to give this to you as an exercise, but let’s see how to
prove it.

E [b] = E

[(
X′D−1X

)−1
X′D−1Y

]
(7.27)

Remember that the D matrix is known, is not a random variable.

=
(
X′D−1X

)−1
X′D−1

E [Y] (7.28)

Since WY = WXB + WE, and since W and D are invertible (why?), we have

=
(
X′D−1X

)−1
X′D−1XB (7.29)

= B (7.30)

Thus, the WLS estimator is unbiased if D is invertible and if D is knownexercise
(non-random). I will leave it as an exercise for you to prove this theorem if
D is a random variable independent of X.

Theorem 7.3. Under the assumptions of weighted least squares, the variance of

the WLS estimator for B is σ2
(
X′D−1X

)−1
.

Proof. There should be no surprises with this proof. All you have to do isexercise
figure out what is a random variable and what is not. As such, I leave it as an
exercise for you.

So very generous of me. =)

Note that the WLS estimator of B is a linear combination of independent Nor-
mal random variables. With that final observation, we have the distribution
of the WLS estimator of B:

bWLS ∼ N
(
B; σ2

(
X′D−1X

)−1
)

(7.31)

7.2.2 Results We again note that the individual estimators are not in-
dependent of each other under typical circumstances. We also note that theexercises
confidence intervals for the estimators, estimates of y, etc. can easily be de-
termined in the WLS realm. Nothing new is here, only the mathematics is a
bit more involved.
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7.2.3 The Real Question Weighted least squares takes care of the prob-
lem of heteroskedasticity in our data without introducing any major change
in our modeling process or understanding. It just requires we determine W
and transform our dependent and independent variables by premultiplying
by that weighting matrix.

How do we obtain that weighting matrix?

The best way of obtaining it is through theory. The second best way is
to utilize the hat matrix.

Theory: Frequently, knowledge of the problem suggests the weighting ma-
trix. Recall that the V [E] covariance matrix measures our uncertainty in the
residuals. If that uncertainty is known by the way the experiment is con-
structed, then W can be determined.

For instance, if the dependent variable is the result of a Binomial ex-
periment, perhaps it is the number of successes out of a given number of
trials (which may change), then the weighting matrix is just a diagonal ma-
trix of the square root of trial sizes.

Why? Recall that the variance of a binomially-distributed random
variable is σ2 = π(1−π)

N . The π are the unknown (constant) population propor-
tion. The N is the (known) size within group i. The population parameter is
assumed constant. The sample size is measurable.

This leads to the D matrix being of the form

D =



1/N1 0 0 · · · 0
0 1/N2 0 · · · 0
0 0 1/N3 0
...

...
. . .

...
0 0 0 · · · 1/Nn


(7.32)

The Hat Matrix: When we do not have the theory to know the structure of
the D matrix, one may want to use the hat matrix to give us a hint about its
structure.

�Warning: Make no mistake. This process is not perfect. . . but what statistics pro-
cedure is perfect? Statistics stands astride the real and the ideal, trying to get as
much information about the real while acknowledging its limitations. Remember-
ing Chapter 4, not all violations affect inferences the same. Perhaps a good thing
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for you to do is to use the processes of Chapter 4 to see how much using the hat
matrix in lieu of a theoretically-driven D matrix affects the estimates, confidence
intervals, and p-values.

Let us use the symbol e to represent the observed residuals. Until this point,
we have only been working with the theoretical residuals, E. The conceptual
difference between the two is really just the difference between the popula-
tion (theoretical) and the sample (observations). In effect, the difference is in
terms of the variances.

What is the variance of e?

Theorem 7.4. The variance of e is V [e] = σ2(I−H).

Proof.

V [e] = V [(I−H)Y] (7.33)

= (I−H)V [Y] (I−H)′ (7.34)

= (I−H)σ2I(I−H) (7.35)

= σ2(I−H) (7.36)

So, that was totes cool. What was its purpose?

Remember how we can interpret that variance. It is either the variance
of a gazillion observed residuals, or we can see it as the uncertainty inherent
in the measured residual.uncertainty

For example, the inherent uncertainty in the first residual is estimated
as MSE

(
1− h1,1

)
, where h1,1 is the first element of the diagonal of the hat

matrix.

That means, those diagonal elements of I −H indicate (are estimates
of) the precision of the y estimate for a given value of x. An estimate of theprecision
structure of the D matrix is just the diagonal of the I−H matrix.

Note: The problem is that weighted least squares requires us to know the
D matrix, not that we estimate it from the data. This explains why the
hat matrix technique is used only until something better comes along. It
does work nicely, but we statisticians like to “see the math” sometimes.
Also, if we are trying to draw important conclusions, using approximate
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methods tends to undercut the conclusions for many, especially for those
who do not really understand statistics.

7.3: Generalized Least Squares

Both ordinary least squares and weighted least squares requires the errors be
independent. Reality does not always meet this requirement. If the depen-
dent variable consists of repeated measures on one unit over time, such as in
modeling stock prices, it is quite likely that the residuals will be correlated.
Also, if the dependent variable is measured on geographic structure, such as
states in a country or trees in a forest, it is also likely that errors of near units
are correlated.

In such examples, the covariance matrix of E will not be diagonal.
Thankfully, it is a covariance matrix, and therefore positive definite (Ap-
pendix M, Section M.5.1). Since it is positive definite, it is invertible. Thus,
we can do a trick not unlike what we did for weighted least squares.

For a reminder, here are the model equations for ordinary, weighted,
and general least squares:

Ordinary Least Squares Y = XB + E
Weighted Least Squares Y = XB + E
General Least Squares Y = XB + E

They sure do look similar. That’s because this is the classical linear model
(CLM). The requirements on the residuals differs, however:

Ordinary Least Squares E ∼ N
(
0; σ2I

)
Weighted Least Squares E ∼ N

(
0; σ2D

)
General Least Squares E ∼ N (0; Σ/Σ/Σ/ )

For ordinary least squares, the covariance matrix of the residuals is a constant
multiple of the identity matrix, I. This indicates the residuals are indepen-
dent and have the same variance (uncertainty). For weighted least squares,
the covariance matrix of the residuals is a constant multiple of a diagonal
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matrix, D. This indicates the residuals are independent, but possibly un-
equal.

For generalized least squares, the covariance matrix is a constant mul-
tiple of a symmetric, positive definite matrix, Σ/Σ/Σ/ . This indicates the residuals
are possibly correlated and unequal.

As with weighted least squares, you do need to know the structure of
the covariance matrix. This requirement is sometimes met by the structure
of the problem. The following are two examples showing how one can deter-
mine the Σ/Σ/Σ/ matrix. An understanding of these examples is not needed. They
are here only to illustrate that there are times Σ/Σ/Σ/ can be determined from the
data.

7.3.1 Time Series Issues When data are collected on a single unit over
time, the measurements will tend to be correlated. For instance, the un-
employment rate in Ruritania over the past 20 years is 11.35, 11.41, 11.12,
11.08, 10.93, 10.86, 10.96, 11.05, 11.10, 10.87, 10.79, 10.76, 10.94, 10.94,
10.92, 11.01, 11.04, 11.16, 11.13, and 11.14.

Solution: Let us fit this using ordinary least squares regression, then exam-
ine the residuals for autocorrelation (correlation between subsequent values).

unemp = c(11.35, 11.41, 11.12, 11.08, 10.93, 10.86, 10.96,
11.05, 11.10, 10.87, 10.79, 10.76, 10.94, 10.94, 10.92,
11.01, 11.04, 11.16, 11.13, 11.14)

year = 1:20

mod = lm(unemp∼ year)
E = residuals(mod)

autocor.test(E)

Note the sample autocorrelation is 0.719 with a p-value of 0.0005 and a 95%
confidence interval from 0.393 to 0.884. The p-value indicates the autocor-
relation is not 0. The confidence interval indicates that the residuals are
moderately-to-highly correlated.

In other words, they are not independent, as both ordinary and weighted
least squares require. Really, this makes sense because next year’s unemploy-
ment rate will be heavily influenced by this year’s rate.

There are many ways of modeling such a situation. One is called
“Autoregressive-1” or AR(1). This model assumes that the primary corre-
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lation is only directly between adjacent years. The covariance matrix, Σ/Σ/Σ/ ,
would have this structure if the correlation between those adjacent years is
ρ = 0.500:

Σ/Σ/Σ/ = σ2



1 0.5 0.25 0.125 · · · 0
0.5 1 0.5 0.25 · · · 0

0.25 0.5 1 0.5 · · · 0
0.125 0.25 0.5 1 0
...

...
...

...
. . .

0 0 0 0 1


(7.37)

You can get this particular matrix using this R code:

Sigma = diag(20)
Sigma = 0.5ˆabs(row(Sigma)-col(Sigma))

Note that the matrix has 1s along the diagonal and higher powers of 0.5 far-
ther from the diagonal. The zeroes arise from the fact that the matrix is
20× 20; that is, e.g., the entry in cell (1,20) is actually 0.5019 ≈ 0. �

Note: Again, this was just an example to show that the structure of Σ/Σ/Σ/
can be determined from the problem. There are entire sub-disciplines
of statistics that examine such serial correlation. This sub-discipline is
called “time series.”

7.3.2 Geographic Issues When data are collected from geographical units,
such as neighborhoods, counties, and states, the residuals may be spatially
correlated. This is a violation of the independence assumption of ordinary
least squares.

How that geographic correlation is modeled is up to the expert (re-
searcher). The subject of spatial modeling is extensive and quite interest-
ing. . . and important. It can, with appropriate matrices, be extended to mod-
eling three-dimensional spatial correlation over time. If you have the oppor-
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Figure 7.1: A map showing the administrative divisions (kraj) or the Kingdom of Ruri-
tania. For this example, note that no kraj abuts all other kraj.

tunity, I suggest studying this topic (Bivand, Pebesma, and Gómez-Rubio
2013, Blangiardo and Cameletti 2013, Sen 2016).

Example 7.1: Figure 7.1 is a map of Ruritania showing the nine Kraj. Note
that some kraj abut some kraj but not others. For instance, region CS does
not touch region CC.

If we are trying to model the spread of something (disease, unemploy-
ment, wealth), we may decide to take into consideration the fact that some
units neighbor others.1 Thus, from the map above, we know there is a first-
level transmission between CS and CD but not between CS and CF.

Let us determine the matrix describing the adjacencies for the nine
kraj. •

1One area of geographical analysis tries to decide what adjacency rules are appropriate for
a given research question. This example uses a simple 0-1 scheme. Other schemes include
distances.
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Solution: Check that the following is the adjacency matrix for Ruritania

Σ/Σ/Σ/ =



1 1 0 0 0 0 0 0 1
1 1 0 1 1 1 0 1 1
0 0 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0
0 1 0 1 1 1 1 0 0
0 1 1 0 1 1 1 0 1
0 0 0 0 1 1 1 0 0
0 1 0 1 0 0 0 1 0
1 1 1 0 0 1 0 0 1


(7.38)

It is important to ensure the kraj order for the columns is the same as for the
rows. The kraj ordering is: CA, CB, CC, CD, CF, CI, CM, CS, CSM. �

Note that the adjacency matrix is symmetric. Why will this matrix always be
symmetric, regardless of the map? Now, that we know Σ/Σ/Σ/ is symmetric, we symmetry
can use the discussion following Lemma M.8 to conclude that Σ/Σ/Σ/ is positive
definite, which indicates it is allowable as a covariance matrix.

And so, we have the structure of Σ/Σ/Σ/ and can perform general least
squares correctly.

Note: We do not know the constant multiplier, σ2. No probs. We only
need to know the structure of the covariance matrix. We use the data to
estimate the constant multiplier σ2.

Also, note that the analysis based on this covariance structure is only
as good as our assumption that the contagion spreads through touch. If it
spreads based on distance, then the Σ/Σ/Σ/ is not correct and we will need to
create an appropriate Σ/Σ/Σ/ given our scientific understanding. . . if such exists.

Finally, let me reiterate a point I made above. The purpose of this ex-
ample is only to illustrate that these covariance structures can be determined
from the problem without resorting to estimating them from the data.
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Note: However, there is a lesson for all of us here. If we do not know the
correct structure of the correlation matrix, then we should use several
and see how sensitive our estimates, confidence intervals, and p-values
are to that matrix. The results may be very sensitive, which is not a good
position to be in, especially if we do not know the right mode of trans-
mission.

If the estimates, etc. are not sensitive to our choice of covariance
matrix, then we need not be as concerned.

The rule is to explore all models that make sense and see how
important our assumptions are to our results.

7.4: Full Example: May the Strong Force be with You

Ruritania is a patron of high-energy physics — and of Star Wars enthusi-
asts. King Rudolph donated several million crowns to Switzerland to aid in
researching the strong force.

That money was used at CERN (the Conseil Européen pour la Recherche
Nucléaire) for several experiments. Each experiment consisted of a beam of
protons crashing into a target. That beam had a constant energy level. What
changed were the target sizes and the energy level of the proton after the
collision. Many experiments were run at each energy level, and the standard
deviation of the energies was measured.

In a theory proposed by Ruritanian scientists that is not entirely clear
to His Majesty (or to your author), there should be a linear relationship be-
tween the cross sectional area and the inverse of the energy. The data are
given in Table 7.1.

The first column is the value of the independent variable. The second
column is the mean of the energy level of the photon after the collision. The
third column is the standard deviation in those energy levels. Note that the
variability at each cross-section differs. This is based on both the number of
experiments and the inherent variability at that area.
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7.4.1 Ordinary Least Squares Let us ignore the different uncertainties
in each energy level (the standard deviations). That is, let us just fit this as
an OLS model. Here is the code:

barns = 1:8
energy = c(848.9,476.9,350.9,289.2,251.7,225.8,209.7,193.9)
barns1 = 1/barns

modOLS = lm(energy∼ barns1)
summary(modOLS)
confint(modOLS)

The output suggests that the relationship between the cross sectional area of
the target and the inverse of the resulting energy of the photon is statistically
significant.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 101.9148 0.5464 186.5 1.60e-12 ***
barns1 747.5306 1.2505 597.8 1.48e-15 ***
---

Residual standard error: 0.9719 on 6 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 3.574e+05 on 1 and 6 DF, p-value: 1.479e-15

A 95% confidence interval for the relationship is from 744.5 to 750.6 (with
units of b MeV).

Cross Section [b] Energy [MeV] Std. Dev. [MeV]

1 848.9 7.8
2 476.9 9.2
3 350.9 9.4
4 289.2 10.2
5 251.7 7.4
6 225.8 9.3
7 209.7 7.2
8 193.9 5.3

Table 7.1: Data for the example regarding the strong nuclear force. Units are given in
brackets.
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7.4.2 Weighted Least Squares Note, however, that the uncertainty in
the measurements varies. We are more uncertain with some of our estimated
energy than with others. If we do not take this uncertainty into consider-
ation, we may be biasing our results. To include this information, we use
weighted least squares regression.

The code to fit with weighted least regression is as follows:

barns = 1:8
energy = c(848.9,476.9,350.9,289.2,251.7,225.8,209.7,193.9)
stdev = c(7.8,9.2,9.4,10.2,7.4,9.3,7.2,5.3)

barns1 = 1/barns

modWLS = lm(energy∼ barns1, weight=stdev)
summary(modWLS)
confint(modWLS)

Note that we are 95% confident the effect of the target’s cross section on the
resulting energy is from 744.5 to 750.4 barns MeV.

Note: In R, as in most statistical programs, you weight based on the stan-
dard deviation.

The difference between the effects estimated from using ordinary least squares
and using weighted least squares is rather minor in this example. It need not
be, as the next example shows.

7.5: Full Example: Elections in Ruritania

Even though it is an absolute monarchy, national elections are held in Rurita-
nia to elect members of the Ruritanian parliament, the Národnı́ Shromážděnı́
(National Assembly). There are many parties represented in the parliament,
but the party that consistently receives a majority of the seats and votes is
the monarchist Pohyb pro Ruritánii (PR; Movement for Ruritania).

The main opposition party is the Demokratické Hnutı́ (DH; Democratic
Movement) party, but votes are also usually received by the Socialistická (SP;
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Socialist Party), Křstanská Demokratická (KD, Christian Democratic), and Re-
publikánská (RS, Republican) parties.

It is fortuitous that Ruritania does not use computerized ballots. They
use ballot papers for the parliamentary election that consist of the party
names, symbols, and abbreviations. . . and a box for the voter to check next to
the party. After voting, the ballot is placed in a ballot box to await counting.

At the end of the evening, the ballot papers at each precinct are se-
curely transported to the division headquarters, where they are counted by
electoral officials. Each ballot is checked by that official to ensure that it was
lawfully cast and that the “will of the voter” can be discerned.

When the division is finished counting the ballots, the totals are then
telephoned to the Independent Electoral Commission (Nezávislá Volebnı́ Kom-
ise, NVK) in the capital. With much pomp and circumstance, and not a little
fanfare, the division totals are added and reported to the people.

After the last election, the exiles in Denmark claimed that the ballot
boxes were stuffed. That is, the ballot boxes had votes for the PR party in
them before voting began. Because guarantees of the “secret ballot” are built
into the Ruritanian Constitution, the ballot boxes are opaque.

In other words, direct evidence of ballot box stuffing does not exist,
only claims by those who live in exile in another country. However, if bal-
lot box stuffing existed in this election to any great extent, it would leave
evidence. Why?

What do stuffing ballots have that naturally cast ballots do not? The
stuffing ballots are all for the ruling PR party and they are all completed
(filled in) correctly; they will not be declared invalid at the division head-
quarters. The naturally cast ballots will consist of votes for all parties and
will include ballots not filled in correctly.

And so, in the presence of ballot box stuffing, there will be a mathe-
matical relationship between the invalidation rate and the level of support
for the ruling party.

That is the theory. The exiles are paying for this analysis. We like the
money, so we need to be confident — and clear — in our conclusions. The
NVK is providing the official counts in the rur2013parl data file, so we
need to ensure that the statistical analysis is clean. That is, it is up to us to
do the analysis correctly, neither concluding too much or too little. And, as
always, being clear in our rationale.
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7.5.1 Ordinary Least Squares The first analysis we will do is ordinary
least squares. The dependent variable is the invalidation rate; the indepen-
dent variable is the support for the Movement for Ruritania (PR) party. Why
them? Since they are in charge before the election, they are in position to
stuff the ballot boxes.

Here is the code to load the data, create the variables, fit the model,
and determine if a relationship between the invalidation rate and PR support
rate can be detected.

votes=read.csv("http://rur.kvasaheim.com/data/rur2013parl.csv")
attach(votes)

Valid = Total-Invalid
pPR = PR/Valid
pInv = Invalid/Total
modOLS = lm(pInv∼ pPR)
summary(modOLS)

The results indicate that we did not detect a relationship. . . at the α = 0.05
level (p = 0.0668). Thus, ordinary least squares did not detect unfairness in
the vote.

Note: Remember to check the assumptions. This point cannot be over-
emphasized. If the assumptions are not met, then the model is not cor-
rect. Well, not perfectly correct. See Chapter 4 for a discussion of this
point.

7.5.2 Weighted Least Squares Note that ordinary least squares is not be
the best option here. The invalidation rate has greater inherent variability
in smaller divisions than in larger. We know this because of the distribu-
tion of the invalidation rate. Invalidation counts follow something akin to a
Binomial distribution. Its two parameters are sample size (number of votes
cast) and success probability (invalidation rate). The variance of a Binomial
random variable is nπ(1−π).

Dividing the invalidation count by the number of votes cast gives the
invalidation rate. The distribution of the invalidation rate can be approx-
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imated with a Normal distribution (see the Central Limit Theorem, Sec-
tion S.6.4). The expected value of the observed invalidation rate is π, the
inherent invalidation rate. The standard deviation is

√
π(1−π)/n.

Because the data are heteroskedastic in nature, and because the struc-
ture of the heteroskedasticity is known, weighted least squares will be more
appropriate here.

Here is the code. Compare it to the ordinary least squares code from
above.

Valid = Total-Invalid
pPR = PR/Valid
pInv = Invalid/Total

modWLS = lm(pInv∼ pPR, weights=sqrt(Total))
summary(modWLS)

This produces the following (abbreviated) output:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.9561 0.7744 2.526 0.0395 *
pPR -2.7146 1.1079 -2.450 0.0441 *
---

Residual standard error: 0.2613 on 7 degrees of freedom
Multiple R-squared: 0.4617, Adjusted R-squared: 0.3848
F-statistic: 6.004 on 1 and 7 DF, p-value: 0.04409

Note that this method did detect a relationship between the invalidation rate
and the PR party support rate. This is consistent with the exile claim of ballot
box stuffing. Figure 7.2 illustrates this.

Note: Nothing in statistics ever constitutes proof. Nothing. Ever. Period.
End of thought. Žádné dalšı́! proof

Statistics only provides evidence in favor of — or against — the
null hypothesis. In this case, the p-value is 0.04409. If the null hypothesis
is correct, then we would observed results this extreme or more so 4.41%
of the time. This is not too rare, especially when you realize you are
claiming the government cheated. Cheating is a more serious claim than
just that someone was mistaken.
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Figure 7.2: An invalidation plot for the 2013 Ruritanian parliamentary election. The
lines of best fit are provided. The OLS fit is in brown and the WLS is in red.

It is always better to report the results, interpret the results, be
explicit that there is no proof and that the null hypothesis has a non-zero
probability of being reality.

Do not live your statistical life ruled by α = 0.05. Realize — and
accept — that the p-value is a measure of how well the data support the
null hypothesis, the hypothesis of no relationship/difference/effect/evi-
dence.
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7.6: Conclusion

In the previous chapters, we focused on ordinary least squares. This method
required that the residuals were independent and identically distributed.
From that assumption, we were able to generate a series of rich conclusions.

However, it is not true that residuals are always identically distributed
or independent. While we did find a way of “fixing” the problem of hetero-
skedasticity, it is frequently better to use a modeling scheme that uses that
heteroskedasticity instead of merely finding a way of ignoring it. This is
what weighted least squares does. If you have theory behind how the vari-
ances should vary for each record, you can use this method. If not, then you
are reduced to the “fixes” of Chapter 6.

Similarly, if your data are not independent, but you understand the
structure of that dependence, you can use generalized least squares to model
the relationship better.
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7.7: End-of-Chapter Materials

7.7.1 R Functions In this chapter, we were introduced to a few R func-
tions that will be useful in the future. These are listed here.

Packages:

nlme This package gives R the functionality to fit generalized least squares
using the gls function. It actually has many other useful functions that
allow us to fit non-linear models and random-effects models. Those are
beyond the scope of this book, however.

RFS This package does not yet exist. It is a package that adds much gen-
eral functionality to R. In lieu of using library(RFS) to access these
functions, run the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Statistics:

autocor.test(e) This function calculates the auto-correlation, which is just
the correlation between sequential values in the vector. It is a part of
the RFS package.

gls(formula) This function performs generalized least squares regression. It
even allows you to specify the correlation structure via the correlation
parameter.

lm(formula) This function performs linear regression on the data, with the
supplied formula. If you specify the weights, then they are applied
and you are fitting the model using weighted least squares. As there is
much information contained in this function, you will want to save the
results in a variable.

residuals(mod) This calculates the simple residuals in a model, the observed
values minus the predicted values.
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Mathematics:

%*% This multiplies two matrices in R. Thus, running the command A%*%B
will return the matrix product AB.

abs(x) This returns the absolute value of x, | ( |x).

column(A) This returns the column number of the matrix A.

diag(n) This returns the In identity matrix.

row(A) This returns the row number of the matrix A.
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7.7.2 Exercises

1. Let E ∼ N
(
0; σ2D

)
be the residuals. Prove that if D is a diagonal ma-

trix, then it is invertible.

2. Let E ∼ N
(
0; σ2D

)
be the residuals. Here, D is a diagonal matrix.

Determine a matrix W such that WW = D.

3. Prove Theorem 7.2.

4. Under the assumptions of weighted least squares, determine the for-
mula for a confidence interval for β1.

5. What is the difference between e and E?

6. Under the assumptions of generalized least squares, determine the for-
mula for the estimator of B.

7. Under the assumptions of generalized least squares, determine the for-
mula for a confidence interval for β1.

8. Determine if Theorem 7.1 holds if the weights matrix D is a random
matrix independent of X. If it does not, what is the distribution of WE?

9. Prove Theorem 7.2 if D is independent of X.

10. Theorem 7.3 requires D is non-random. Determine the variance of bwls
if D is random, but independent of X.

11. In Example 7.1, I state that the adjacency matrix is symmetric. Explain
why this is so.
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