
Chapter 6:

FixingtheViolations

Overview:

In Chapter 4, we examined the assumptions of ordinary
least squares and how to check that they are not vio-
lated by your model. The requirements (assumptions)
have different importance to our estimation method.
The most important requirement is that the model uni-
formly fits the data (constant expected value of the
residuals). In this chapter, we see some ways to fix
those violations.

Much of this chapter will deal with transforming
the dependent variable, because mis-identified models
is the greatest problem in modeling. Frequently, fixing
this problem also fixes other problems with assumption
violations.
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In the previous chapters, we introduced ordinary least squares (OLS) estima-
tion for the classical linear model (CLM) and its assumptions (requirements).
Last chapter, we looked at how to test that the requirements are sufficiently
met in our data and model. We also looked at the importance of the assump-
tions. In this chapter, we determine some methods for dealing with some
violations of those requirements. Hopefully, this extends the usefulness of
this simple and straight-forward estimation method.

The ordinary least squares estimation method (OLS) requires that the
error terms have a constant expected value, have a constant variance, and are
generated from a Normal (Gaussian) process. But, what happens when these
requirements are not met?

There are essentially three ways of handling violations, depending on
the type and the severity: First, you can ignore it. Ignoring the violations
is usually not too bad when you are dealing with predicting within the do-
main of the observed data, as the increase in bias and the loss of efficiency
are usually minor. However, if it is important to estimate parameters, you
definitely should not ignore this violation. Furthermore, if the assumption
of a constant expected value is practically violated, you need to fix it.

Second, we can use other methods (and modeling paradigms) for per-
forming regression. Two popular alternatives to the Classical Linear Model
paradigm are the Generalized Linear Model (GLM) and the Generalized Ad-
ditive Model (GAM). The former paradigm will be covered in Chapters 10
through 14. The latter is well examined in Wood (2006). The strength of
these models (and estimation methods) is that they extend the CLM to in-
clude (for instance) discrete dependent variables and non-linear relation-
ships (Nelder and Wedderburn 1972; Wood 2006). These unified paradigms
allow the computer to estimate the effect coefficients using a very powerful
method (called Maximum Likelihood Estimation). The drawback is that not
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all problems lend themselves to fitting using Maximum Likelihood Estima-
tion (MLE; Chapter 9). Luckily, most do. Even more luckily, new estimation
methods are developed frequently.

However, if we desire to stay within the realm of the classical linear
model, estimating the parameters using ordinary least squares, we can fix
many violations simply by transforming the dependent variable — especially
if the violations are minor.

These transformations are very flexible. Once you get used to working
in two different systems of units, you can easily use transformation methods two systems
to ‘Normalize’ many restricted dependent variable. Unfortunately, one can-
not transform an arbitrary dependent variable; there are types that cannot
be fit using this technique, such as categorical. To handle these types of
dependent variables, we will need to introduce a new modeling paradigm
(Chapter 10).

Finally, you can make adjustments to the estimates and their stan-
dard errors to “fix” or “adjust for” the violation. This is a common practice
in the presence of heteroskedasticity (Section 6.3) and multicollinearity (Sec-
tion 4.4.2). It does not work for violations of model fit (non-constant expected
residuals), however.

6.1: The Issue of Boundedness

We finished Chapter 5 with a model of vote proportions for ballot measures
concerning keeping cows in the city (Section 5.3). We applied that model to
an upcoming vote in Děčı́n to predict the outcome. Finally, we used Monte
Carlo methods to estimate the probability that the ballot measure would
pass. In the end, we predicted that the ballot measure had a 20% chance
of passing, with a point-prediction of 42% of the voters in favor of the bill.

Results, however, suggest that there may be something gravely wrong
with this model (Section 5.3.8). To see this more clearly, let us predict the
proportion of voters in support of a hypothetical 1994 ballot measure in
Venkovský (religious percent = 85) that also banned chickens (the results
table from our Cow-Vote model is in Table 5.4 on page 147).

From the results summarized in the table, the point-prediction for this
1994 Venkovský ballot measure is

p̂ = 0.1512 +−0.0201(yearPassed) +−0.0373(chicken) + 0.0095(religPct)
(6.1)
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Level Units: Y P
Transform: ỹ = f (y) ↓ ↑ Back-transform: p = f −1(p̃)

Transformed Units: Ỹ −→ P̃
regression

Figure 6.1: Schematic of a variable transformation procedure, such as described in the
text. Here, Y is the original values of the dependent variable, Ỹ is the transformed values
of the dependent variable, P̃ is the result from the regression in transformed units, and P
is the result in the original (level) units.

= 0.1512 +−0.0201(−6) +−0.0373(1) + 0.0095(85) (6.2)

= 1.0379 (6.3)

Thus, this model predicts that the ballot measure will pass with over 103%
of the vote — a physically impossible outcome. What went wrong? How can
we fix this model so that this cannot happen?

First, nothing “went wrong,” per se. The model did exactly what it
was supposed to do. The prediction, however, is based on assuming the ef-
fect (slope) is constant. If the slope is constant, one can find large enough
(or small enough) values for the independent variables to make the predic-
tion arbitrarily large or small. When we are predicting a bounded depen-
dent variable, this will necessarily lead to an impossible prediction, such as
a 103.79% support rate. Thus, the issue is with the linear (constant slope) as-
pect of the prediction equation or with the bounded nature of the dependent
variable (bounded below by 0 and above by 1).

Thus, to improve the model, we can either model using non-linear co-
efficient functions (Chapter 10) or eliminate the boundedness. At this point,
the easier of the two is to eliminate this boundedness; that is, we need to
change the dependent variable so that all values make physical sense. This is
done through the process of variable transformation. There are three steps:
First, transform the dependent variable from a restricted range to an unre-
stricted range. Second, perform the analysis on this transformed variable.
Finally, back-transform the estimated values (not estimated effects) into the
original units. The overview of this plan is shown in Figure 6.1.

The key is the transformation. It must change the range of Y from its
current limited version to an unlimited version, denoted Ỹ . Luckily, there
are two transformations that take care of most of our needs, in general: the
logit (LOH-jit) and the logarithm transformations.
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6.1.1 Data Bounded by 0 and 1 One type of data you may come across in
your research is proportion data, data where the values are bounded below
and above (by 0 and 1, respectively); that is, if Y is the dependent variable,
then 0 < Y < 1. One appropriate function that transforms this bounded do-
main into an unbounded range is the logit function:

ỹ = logit(y) := log
(
y

1− y

)
(6.4)

The logit function transforms (maps) variables bounded by 0 and 1 into un-
bounded variables; in symbols,

logit : (0,1) 7→R (6.5)

The logit’s inverse, which maps it from logit units back into level units is
called the logistic function:

y = logistic(ỹ) :=
1

1 + exp(−ỹ)
=

exp(ỹ)
1 + exp(ỹ)

(6.6)

The logistic function transforms unbounded variables into variables bounded
by 0 and 1:

logistic : R 7→ (0,1) (6.7)

Other transforms are available, but the logit is frequently used for the fol-
lowing three reasons:

1. The transformation and its inverse are both functions (the transform is
a bijective function). This means that the results are always commen-
surate to the original problem.

2. The transformation is symmetric. This means that the ‘stretching’ is
the same for values near 0 as they are for values near 1.

3. The function is exact, as opposed to the probit transform which re-
quires numerical approximations. This increases the speed and accu-
racy of your predictions.

A careful reader will note that the domain of Y includes neither 0 nor 1.
This is because there is no way of transforming a closed (or a half-closed)
interval into an open interval such as R while ensuring that the inverse is
also a function. This is a provable fact of mathematics (Strichartz 2000).
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But, what do we do if there are y-values that are zero or one? One
solution is to add (subtract) an extremely small number, δ, to the zero (one).
A second solution is to completely drop those data from the analysis.Delta

Adjustment

Note: None of these solutions is perfect. If you insist on using linear
regression, then you should use both methods and see how much your
answer changes. A general rule of thumb is that if your underlying re-rule of thumb
search model is correct then the results should not vary wildly based on
similar models. That is, if we know Y depends on X1 and X2, then all
appropriate modeling techniques should give approximately the same re-
sults. If they do not, then there is something seriously wrong with our
assumptions about the underlying relationships — the model.

A third solution is to change the proportion into a bounded count and use
a different paradigm (Chapter 12). While this is the best option, it requires
more background before we can cover it.

Example 6.1: Let us return to the cows data file and the example of Sec-
tion 5.3. The voters of Děčı́n are being sent to the polls to vote on a consti-
tutional referendum that proposes to limit the number of cows kept in the
city. This was not the first time that Ruritanians were sent to the polls to vote
on this or a closely related issue. Given the information from previous votes,
what is the estimated probability that this ballot measure will pass in Děčı́n?

•

Solution: Let us now answer this question more correctly. Recall that with-
out performing a transformation of the dependent variable, there existed
predictions which fell outside possible reality. To fix this, let us transform
the dependent variable using the logit function, repeat the analysis, back-
transform these transformed results to the original units, and compare re-
sults.steps
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Estimate Std. Error t-value p-value

Constant Term -1.8909 0.2898 -6.53 � 0.0001
Year Passed (after 2000) -0.0885 0.0157 -5.64 � 0.0001
Contains a Chicken Ban -0.2318 0.0878 -2.64 0.0134
Percent Religious in Kraj 0.4750 0.0047 10.06 � 0.0001

Table 6.1: Results table of the results of regression on the dependent variable, using a
logit transformation of the dependent variable.

The first step is to transform the dependent variable. As the depen-
dent variable is a proportion, let us use the logit transform (from the RFS
package). If we decide to call the new variable logitWin, then the command
will be

logitWin = logit(propWin)

Now, this is our new dependent variable. As such, we perform the same
analysis as in Chapter 5:

modLgt = lm(logitWin ∼ yearPassed + chickens + religPct)

The summary(modLgt) command provides the results summarized in Ta-
ble 6.1. Note that all three independent variables are more statistically sig-
nificant than in the non-transformed model, Table 5.4. Also note that the
effect directions are the same as before. �

How shall we interpret the results? There are a few ways. The graphic is
the best. However, an older manner relies on the “log odds ratio.” The odds
ratio is frequently used to illustrate the strength of the association between
two variables. For every increase of 1 in the percent religious in Kraj, the log
of the odds of the vote passing increases by 0.4750. Said another way, the
odds of it passing increases by approximately exp0.4750 = 1.6080 for each
increase of 1.

An increase of 2 percent religious increases the odds by exp(2× 0.4750) =
2.5857. [As an aside, this is also the same as 1.60802.]

Note: Beyond this, one cannot directly compare the magnitudes of these
coefficients with the magnitudes of the previous coefficients; these effect
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Level Units: propWin voteEst

logit() ↓ ↑ logistic()

Transformed Units: logitWin −→ modLgt
lm()

Figure 6.2: Schematic of the variable transformation procedure used in Example 6.1.
Note that the results table, Table 6.1, displays the coefficients of modLgt, which is in the
transformed units, not the original units. As such you cannot compare these magnitudes
with the magnitudes in Table 5.4.

estimates are in different units. The coefficients seen in Table 5.4 predict
in the original units (proportions). The coefficients in Table 6.1 predict
in logit (of proportions) units. Furthermore, merely taking the logistic
of the coefficients will not put them in level units; the transform is non-
linear, as we designed, thus the effect of any depends on the values of
all. In order to compare the two models, we need to perform predictions
(remembering to back-transform them). Refer to Figure 6.2 for the steps
we use in this particular example.

Predicting the proportion of the vote for the Děčı́n ballot measure is almost
as easy as it was before. The only additional step is that we need to back-
transform the prediction to get it in proportion units.

So, according to this transformed model, what is the expected vote in
Děčı́n? To answer this, we need the Děčı́n information: yearPassed = 9,
chickens = 0, religPct = 48. With this information, and under the as-
sumption that the model is correct, we have our prediction of −0.4091 logits.
Back-transforming this value gives a prediction of logistic(−0.4091) = 40%
of the population will vote in favor of this ballot measure — just slightly
different from our original prediction of 42%.

DECIN = data.frame(yearPassed=9, chickens=0, religPct=48)
voteLgt = predict(modLgt, newdata=DECIN)
voteEst = logistic(voteLgt)

However, remember that the original question was not this point estimate, it
was a probability of the ballot measure passing. To determine this probabil-
ity, we just need to repeat the same steps as we did answering this question
before (Section 5.3.7), but remembering to back-transform the results.
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Figure 6.3: Histogram of the results of the Monte Carlo experiment described in the
text. Note that the distribution has a slight right-skew as a result of the transformation
process. Also note that there are no predicted vote outcomes less than 0 or greater than
1, as compared to the original untransformed model of Section 5.3.8. In fact, the lowest
prediction is 9.0%, while the largest is 81.6%.

The Monte Carlo results of the transformed model indicate that there
is a 15% chance that the ballot measure will pass in Děčı́n. The histogram of
a million predictions is presented as Figure 6.3. From this information, we
can conclude that there is a definite possibility that the cow ballot measure
will pass in Děčı́n (15%), with a predicted 40% vote in favor.

If we were into betting, we could also conclude that this model pre-
dicts that the odds of this ballot measure passing is 1.00−0.15

0.15 , 5.67-to-1 against.

Thus, a ‘fair’ bet would pay $5.67 for every $1.00 bet in favor of the
ballot measure and $1/5.67 = $0.176 for every dollar bet against the ballot
measure passing.

Regardless, since the probability of the measure passing is 15%, a pass
would not be wholly unexpected. Its probability is more likely than flipping
a fair coin three times and having it come up heads all three times — defi-
nitely not unheard of.

The 95% prediction interval for the Děčı́n referendum outcome, ac-
cording to our model, is from 23.5% to 59.0%. The observed value of 53% is
well-within that interval.
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Note: From this past discussion, we were able to estimate success proba-
bilities and fair betting odds. This is yet another use of statistical model-
ing.

Note that we are estimating the probability of an event. Unless
that probability is 0 or 1, there is always a chance the event will (or will
not) happen. Thus, the passing of the Děčı́n referendum in 2009 does not
directly detract from our model. There was a 15% chance it would pass,
according to our model.

� Warning: Stay aware of what statistical model says and does not say — the
choice is humility or humiliation.

6.1.2 Data Bounded Below by 0 When the dependent variable repre-
sents a proportion (bounded by 0 and 1), we can use the logit function to
transform it into an unbounded variable, perform the usual analysis, and
back-transform those results into level units (the previous section). However,
not all bounded variables fit this bounding, e.g., age, height, income. These
variables are bounded below by 0 and have no theoretical upper bound. For
such variables, we may want to use the logarithm transform.1

The logarithm function transforms variables bounded below by 0 into
unbounded variables; in symbols, log : (0,∞) 7→ R. Its inverse is the expo-
nential function, exp : R 7→ (0,∞) . Both functions are bijections and strictly
increasing and so are appropriate functions for transforming our variables.

Note that values of 0 are problematic for the logarithm in much the
same way that values of 0 and 1 were problematic for the logistic function.
Solutions are similar (Section 6.1.1, page 164).

Example 6.2: The gross domestic product (GDP) per capita is one of many
measures of average wealth in countries. If extant theory is correct, then
the wealth in the country is directly affected by the level of honesty in the
government — countries with high levels of honesty (low levels of corrup-

1By “theoretical upper bound,” we mean there exists a limit (a single value) such that the
variable can get sufficiently close to that limit, but no greater.
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tion) should be wealthier than those with low levels of honesty (high levels
of corruption). Furthermore, if theory is correct, the level of democracy in a
country should also influence the country’s level of wealth — countries with
higher levels of democracy should be wealthier than countries with low lev-
els of democracy.

Let us determine if reality (in the form of the data in the gdp data file)
supports the current theory or if current theory needs to explain the severe
discrepancies. Furthermore, let us estimate the GDP per capita for Ruritania
and provide a 95% confidence interval for that estimate. •

Solution: For this section, recall that the level of honesty in government for
Ruritania is 5.1 and the level of democracy is -7. With that information, I
leave it as an exercise for you to model the data without transforming the
dependent variable and discovering the predicted GDP per capita for Ruri-
tania is $26,795.64. This seems awesome for Ruritania. The 95% prediction
interval is from $5232 to $48,360. That’s rather wide. It is a function of the
high level of variation in the data.

However, to see a problem with the model, let us estimate the GDP
per capita for Papua New Guinea (democracy=10, hig=2.1). According to
the model, the predicted GDP per capita is -$2337, which is not physically
possible. If nothing else, this prediction should suggest to you that the data
needs transformation before being modeled.

The process to estimate the GDP per capita in Ruritania using a trans-
formed model is formulaic for us by now: transform the dependent variable
by applying the logarithm function, model the transformed variable, esti-
mate in the transformed units, back-transformed into level units — here,
dollars.

One feature of R that is shared by few other statistical packages is
that you do not have to actually create a new variable; you can perform the
transformation within the modeling command; e.g.,

modLog = lm(log(gdpcap) ∼ democracy + hig)

The results table for this model is provided in Table 6.2. Again, as we have
transformed the dependent variable, the coefficients are not in units of dol-
lars. As such, their magnitudes cannot be directly compared to those in the
untransformed model. Their directions, however, can be compared because
the transformation we used was strictly increasing. Thus, this model tells
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us that higher levels of honesty in government correspond to countries with
higher GDPs per capita (in this sample). Additionally, countries with higher
democracy scores correspond to countries with lower GDPs per capita (in this
sample).

The first finding is so strong in this sample that we can conclude that
there is evidence of this relationship in the population. This second finding,
which conflicts with current theory, is not statistically significant at the usual
α = 0.05 level. Thus, we cannot conclude that the effect in the population is
negative, positive, or null (zero). All we can conclude is that we did not
detect an effect with this data. Whether this is due to a lack of effect in the
population, the sample selected, the sample size, no one can tell.

With this model, we can estimate the GDP per capita in Ruritania
using the standard method, but remembering that we must back-transform
the final estimate. That is, if we used the commands

RUR = data.frame(hig=5.1, democracy=-7)}
estLog = predict(modLog, newdata=RUR)

then we would report Ruritania’s GDP per capita as an estimated value of
$11,508 (using exp(estLog)). �

Note: From your mathematics course, you may recall that log(1 + x) ≈ x
for small values of x. This means we can interpret the coefficients in the
log-model as percent increases/decreases. For instance, the coefficient for
the level of democracy in the country is -0.0028. We can interpret this as
“one increase in the level of democracy decreases the GDP per capita by
0.28%, on average.” The coefficient of the level of honesty in government
is 0.4702. We could interpret this as “one increase in the level of honesty

Estimate Std. Error t-value p-value

Constant term 6.9333 0.1479 46.89 � 0.0001
Level of Democracy -0.0028 0.0113 -0.25 0.8055
Honesty in Government 0.4702 0.0359 13.11 � 0.0001

Table 6.2: Results table for the GDP per capita modeling exercise. As the model is a
transformed model, these effects estimates are not in units of dollars.
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in the government increases the GDP per capita by approximately 47%,
on average.”

However, what do we mean by “small values of x”? Anything less
than 0.2 is usually fine. Our interpretation of the honesty-in-government
coefficient probably should not have been done. A log-coefficient value of
0.4702 really corresponds to a percent increase of only 38.5%. It is more
accurate, but less spiffy.

Here is my code to explore the relationship log(1 + x) ≈ x:

x = seq(0,1, length=1e4)
y = log(1+x)
plot(x,y, col="blue1")
abline(0,1, col="orange")

§ § §

The question asked us to calculate the estimate, but to also provide a 95%
confidence interval. One way of doing this is to use Monte Carlo methods.
The steps are all the same, with the additional step of back-transforming the
estimates (last line).

b.int = 6.933298
b.dem = -0.002776
b.hig = 0.470225

s.int = 0.147873
s.dem = 0.011253
s.hig = 0.035855

e.int = rnorm(trials, m=b.int, s=s.int)
e.dem = rnorm(trials, m=b.dem, s=s.dem)
e.hig = rnorm(trials, m=b.hig, s=s.hig)

outcome = e.int + e.dem*-7 + e.hig*5.1
est = exp(outcome)

The assignments in the second and third group are the coefficient estimates
and standard errors from the model (Table 6.2). The histogram of these re-
sults are provided in Figure 6.4. To calculate a 95% confidence interval, we
merely find the values of est for which 2.5% and 97.5% of the data are less.
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Figure 6.4: Results of the Monte Carlo experiment estimating the GDP per capita for
Ruritania and its 95% confidence interval. Note that 5% of the estimates fall in the
rejection (tan) region, 2.5% above and 2.5% below. The median of this distribution is
designated by x̃.

quantile(est, c(0.025,0.975))

From this, we can conclude that our model estimates the GDP per capita for
Ruritania is $11,508, with a 95% confidence interval being from $7075 to
$18,733. It is interesting to note that the actual GDP per capita in Ruritania
is $55,000, which is well above our confidence interval. Thus, our question
is this: Is our model that weak, or is Ruritania doing that well?

Note: Here, I use the original estimate as the point estimate for the GDP
per capita of Ruritania ($11,508). It would have also been appropriate
to use the mean of the Monte Carlo trials ($11,870) or the median of the
Monte Carlo trials ($11,510). All three are acceptable measures of the
center. It is usual, however, to use the original prediction.
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Here is an interesting question. In the previous example, we estimated a
confidence interval. How could we estimate a prediction interval?

To answer this, we need to remember the only difference between con-
fidence and prediction intervals. In a confidence interval, we are estimating
an expected value. In a prediction interval, we are predicting a new outcome.
That new outcome is a combination of the expected value and the σ2 from the
ε term.

And so, to get a prediction interval, we use the following. Check to
see the difference between this and the previous script.

b.int = 6.933298
b.dem = -0.002776
b.hig = 0.470225
b.err = 0

s.int = 0.147873
s.dem = 0.011253
s.hig = 0.035855
s.err = 0.8841

e.int = rnorm(trials, m=b.int, s=s.int)
e.dem = rnorm(trials, m=b.dem, s=s.dem)
e.hig = rnorm(trials, m=b.hig, s=s.hig)
e.err = rnorm(trials, m=b.err, s=s.err)

outcome = e.int + e.dem*-7 + e.hig*5.1 + e.err
est = exp(outcome)

From this, the 95% prediction interval is from $1907 to $69,345. Note that
it is much wider than the confidence interval. Also note that this should not
surprise us at all. Prediction intervals are always wider than the correspond-
ing confidence interval.

6.1.3 Additional Bounds Thus far, we have looked at transformation of
a dependent variable when it is bounded above and below by 0 and 1 (two
bounds), and when it is only bounded below by 0 (one bound). Other bounds
are possible.2 In this section, we figure out how to handle all types of bounds.
The basic steps are to determine if the variable is bounded on one side or two.
If one, then perform an algebraic transformation so that the new variable is

2While other bounds are possible, the number of bounds can only be 0, 1, or 2. This makes
this section so important.
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bounded below by 0, then use the log transform. If two, then perform an
algebraic transformation so that the new variable is bounded by 0 and 1,
then use the logit transform. In either case, you will need to remember to
back-transform the predictions with this algebraic transformation.

Note: The only bounds I frequently come across in my own research are
those bounded by 0 and 1, bounded by 0 and 100 (percentages), bounded
by 0 and 4 (GPAs), and bounded below by 0. The quick solution for per-
centages is to divide them by 100 to make them proportions, then multi-
ply the predictions by 100 to turn the predictions back into percentages.

Bounded by L and U: What if our data has a theoretic lower bound L and a
theoretic upper bound U? As it is bounded above and below, we will change
it into a proportion and using the logit transform as in Section 6.1.1, remem-
bering to back-transform with the additional transformation. The algebraic
transformation is

a(y) = p =
y −L
U −L

(6.8)

The back-transform is

a−1(p) = y = p(U −L) +L (6.9)

Example 6.3: The scores on the quantitative portion of the Graduate Record
Examination (GRE) range from L = 200 to U = 800. If we wished to properly
model a person’s GRE quantitative score, we would first subtract 200 from
each score, then divide by 800 − 200 = 600. The new variable would range
from 0 to 1, a proportion. •

Example 6.4: The grade point averages (GPAs) are bounded below by L =
0 and above by U = 4. To appropriately model GPAs, we would have to
subtract 0, then divide by 4. This new variable would now be a proportion.

•
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Bounded Below by L: It may be that your dependent variables is bounded
below by a specific value, L, but not bounded above. As it is bounded on
only one side, we will transform it into a variable bounded below by 0 and
then apply the logarithm transform as in Section 6.1.2, remembering to back-
transform with the additional transformation. The algebraic transformation
is

a(y) = p = y −L (6.10)

The back-transform is
a−1(p) = y = p+L (6.11)

Example 6.5: Hourly workers make at least $7.25 per hour. To model excess
hourly wage, we would subtract off L = 7.25 from each hourly wage. This
new variable is bounded below by 0, so we can apply the log transformation
to it. •

Bounded Above by U: It may be that your dependent variable is theoreti-
cally bounded above by U . As there is only one bound, we will perform an
algebraic transformation so that it is bounded below by 0 and then apply the
log transform as in Section 6.1.2, remembering to back-transform with the
additional transformation. The algebraic transformation is

a(y) = p =U − y (6.12)

The back-transform is
a−1(p) = y =U − p (6.13)

Example 6.6: In the ocean, different species live at different depths. In fact,
we can predict the depth based solely on the species observed. Ocean depth is
bounded above by 0 and has no theoretic lower bound (although it certainly
has a genuine lower bound at the Challenger Deep in the Mariana Trench,
which has a depth of -35,994 ft). To transform the depths into a variable
upon which we can perform a log transform, we subtract each value from
U = 0. After we predict, we will have to back-transform by again subtracting
each prediction from U = 0. •
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Of course, the transformation in this last example is equivalent to measuring
depth in terms of ‘distance below the surface’, which is a positive number
requiring no additional transformation.

6.2: Full Example: The South Sudanese Referendum

Free and fair elections are one of the requirements for a legitimate demo-
cratic system; furthermore, being a legitimate democratic State is necessary
for some forms of external assistance. As such, many not-so-democratic
States wish to appear democratic. They hold elections, but the elections are
either fraudulent or the electoral system (rules governing the elections) is
unfair.

There are many definitions for fairness in an election, but they all
contain the same requirement that a person’s vote has the same probability of
being counted as anyone else’s. In other words, the probability of a vote being
invalidated is independent of the characteristics of the person casting the
vote — including who the vote was for. This aspect of fairness can actually
be tested in elections where the number of invalidated votes is counted: If the
proportion of the vote for a specific candidate or position is not independent
of the proportion of the vote invalidated in the electoral division, then there
is evidence against the assumption of fairness.

Does the 2011 independence referendum in southern Sudan indicate
an issue with fairness?

Narrative Solution: As one of the conditions to the 2005 Naivasha Agree-
ment, which ended the civil war in Sudan, the South was allowed to vote
on independence from the North. That referendum was held January 9–15,
2011. Official results stated that 98.83% of the South Sudanese voted against
unity and in favor of independence.

The xsd2011referendum data contains the number of votes in fa-
vor of independence (Secession), the number of votes declared invalid
(Invalid), and the total number of votes cast (Votes). Load it and save
it into the xsd variable without attaching the data. Because we need to de-
termine if there is a (linear) relationship between the proportion of the vote
for a specific side and the proportion of the vote invalidated in the electoral
division, and because we just have vote counts, we need to create those pro-
portions. The proportion of the vote for the candidate is the number of votes
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Figure 6.5: A scatterplot of the results of the 2011 referendum on independence for South
Sudan. Note the apparent presence of a relationship between these two variables. As
such, there appears to be evidence that the election was not fair for those voting against
independence.

for the candidate divided by the number of valid votes. The invalidation rate
is the number of invalid ballots divided by the number of cast ballots (recall
Section 6.1.3).

Once that is done, we need to transform these proportions using the
logit transformation, perform linear regression, and check for a relationship.
If one exists in the transformed variables, then one exists in the untrans-
formed variables. First, however, it is always a good idea to plot the variables
to see if there is an obvious answer to the question. Figure 6.5 a the plot of
proportion of the vote invalidated against the proportion of the vote in favor
of independence.

Suggested by the plot, there appears to be a strong relationship be-
tween the two variables, evidence of an election that is not fair. Because
of the direction of the slope, it appears as though those areas voting most
strongly in favor of independence had a much lower probability of having
their votes rejected.
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Note: As we are using the logit transform, we must drop any electoral
division (here, county) which has zero invalid votes or zero votes in favor
of secession. We need to do this because the domain of the logit function
is p ∈ (0,1).

To easily do this in R, we can use the which function, which determines
which entries have the provided condition. Thus,

dr = which(xsd$Invalid==0)

returns a vector of values
{
15,19,23,24,28,46,47,49,50,57,72,73

}
. These

numbers correspond to the counties that had zero invalid votes cast. Stor-
ing this vector in the variable dr allows us to remove those counties from
any subsequent calculations. As such, our proportion calculations are:

p.ind = xsd$Secession[-dr]/xsd$Votes[-dr]
p.inv = xsd$Invalid[-dr]/xsd$Votes[-dr]

The negative signs tells R to return values in the vector other than these en-
tries.

And so, the two lines to transform the dependent variable and fit the
OLS model are

l.inv = logit(p.inv)
model.xsd = lm(l.inv ∼ p.ind)

The results of the linear regression on the transformed dependent variable
are given in Table 6.3. There is a very strong relationship between the pro-
portion of the vote invalidated in the county and the proportion of the vote in
favor of secession: Those counties with a greater proportion of people voting
for independence also had a lower proportion of the vote invalidated. That
there is a strong relationship between these two variables is troubling.

To make this relationship more obvious, and to make our point stronger,
we can plot the data, the prediction curve, and the 95% Working-Hotelling
confidence bands on the same plot.
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Estimate Std. Error t-value p-value

Constant term 1.8978 0.7690 2.468 0.0155
Proportion of Vote for Independence -9.3991 0.8287 -11.342 � 0.0001

Table 6.3: Results table for the South Sudan referendum. The results are in logit units.
Note the high level of statistical significance in the effect of the proportion of the vote in
favor of independence. This is very indicative of a lack of fairness in the election.

Note: What confidence intervals are to univariate data, confidence bands
are to bivariate data. We briefly saw the Working-Hotelling confidence
bands in Section 3.4.

6.2.1 Graphing Philosophy of R In R, the philosophy behind graphing is
to start with a fresh plot and paint successive layers on top of it. This allows
us to create graphs that tell the story and to do so easily. To make the graph
described above, we need to

1. Plot the points (displayed in proportion units),

2. Plot the prediction curve (displayed in proportion units, but calculated
in logit units),

3. Plot the 95% confidence bands (displayed in proportion units, but cal-
culated in logit units).

The first step has been done already (Figure 6.5).

The second step requires the repeated use of the predict function.
First, to make things easier, let us define newX as a series of “proportion of
vote in favor of independence” values for which we want to make predic-
tions: newX = seq(0, 1, length=1e4). This creates a vector contain-
ing 10,000 values equally spaced between 0 and 1.

With this, our predict statement will be

l.pred = predict(model.xsd,
newdata=data.frame(p.ind=newX),
se.fit=TRUE)
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Note: The se.fit=TRUE parameter, which calculates the standard error
of the fit at that x-value, will be important for calculating the confidence
bands. This is just a courtesy from R, as we know how to calculate this
value from Theorem 3.14.

Remember that these predictions are in logit units. To get them into level
units, we just apply the logistic function to these point predictions:

p.pred = logistic(l.pred$fit)

Note: The $fit selects only the fitted predictions from the l.pred vari-
able. This is necessary as we are also using the se.fit=TRUE parameter.

Now that we have the predictions in the original units, we merely paint it on
the current plot (from Step 1):

lines(newX, p.pred)

The third step requires us to calculate the 95% confidence bands and paint
them on the plot as well. For want of better estimates, let us use the Working-
Hotelling bands (Section 3.4). The formula to calculate the upper 95% con-
fidence bands is

ucb.l = l.pred$fit+W*l.pred$se.fit

the lower,

lcb.l = l.pred$fit-W*l.pred$se.fit

Here, W =
√

2F(1−α,2,n− 2), which translates to

W = sqrt( 2 * qf(1-0.05, 2, n-2) )

Note: The form of these formulas should look vaguely familiar. They are
of the same form as when we calculated the upper and lower limits for
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Figure 6.6: A plot of the results of the South Sudan referendum. Included are the pre-
diction line (in black) and the 95% confidence bands (in grey). Note that a horizontal
line cannot fit between the confidence bands. This indicates a statistically significant re-
lationship between the proportion of the votes invalidated and the proportion of the votes
in favor of independence. This, in turn, supports the conclusion of an unfair election.

Normal confidence intervals,

u = x + 1.96sx and l = x − 1.96sx

The W distributional multiplier comes from Working-Hotelling (1929)
and its Scheffé extension (1959).

Once again, we must back-transform these two variables using the logistic
function. So, our final confidence bands are

ucb = logistic(ucb.l)
lcb = logistic(lcb.l)

Finally, we paint this on the current plot with

lines(newX, ucb, col="grey")
lines(newX, lcb, col="grey")

Putting all this together gives us Figure 6.6. Note that the predictions are
curved in these units; they are straight in logit units. Also note the confidence
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bands are wider where the value of x is farther from x (Theorem 3.14). Lastly,
note that no horizontal line can fit between the two confidence bands. This
illustrates that there is a statistically significant relationship between the two
variables at the α = 0.05 level. (Why?) It says the same thing as Table 6.3, but
in a graphical manner. Graphs often makes the points more manifest.

6.3: Heteroskedastic Adjustments

The above transformations also work well on fixing problems with heteroske-
dasticity and non-Normality. Unfortunately, if you perform an appropriate
transformation to fix the problem with model fit, further transformations to
fix heteroskedasticity may end up creating a new problem with model fit.

Thus, it may happen that you cannot find a way of fixing the hetero-
skedasticity without breaking something else. In such cases, we can adjust
the standard errors using a technique introduced by White in 1980.

Recall from ordinary least squares estimation (page 31) that our esti-
mator for B is

b = (X′X)−1 X′Y (6.14)

From this we showed in Theorem 2.10 that this estimator was unbiased; that
is, E [b] = B. In Theorem 2.11, we also calculated the variance of the estima-
tor as

V [b] = σ2 (X′X)−1 (6.15)

That result, however, required that V [Y] = σ2I. This is the assumption of
homoskedasticity (Section 2.2.2). Under heteroskedasticity, V [Y] cannot be
reduced. This leaves the variance of our OLS estimators as

V [b] = (X′X)−1 X′ V [Y | X] X (X′X)−1 (6.16)

So, to better estimate V [b], we need to estimate V [Y | X] from the data. (Ev-
erything else in Equation 6.16 is known.) How do we estimate V [Y | X] from
the data? We recall that V [Y | X] = V [E]. Thus, we estimate V [Y] from the
residuals, specifically from how large each residual is. If the ith residual is
large, then the value of V [Yi] will be large; if ei is small, then V [Yi] will be
small.

6.3.1 Having R Do This for Us Instead of performing the above calcu-
lations by hand, we can have R do the adjustments for us. That helps with
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Estimate Std. Error t-value p-value

Constant term 1.8978 0.6704 2.831 0.0045
Proportion of Vote for Independence -9.3991 0.7420 -12.667 � 0.0001

Table 6.4: Results table for the South Sudan referendum using White (heteroskedastic-
consistent) standard errors. Compare this to Table 6.3. The results are in logit units. Note
the high level of statistical significance in the effect of the proportion of the vote in favor
of independence. This is very indicative of a lack of fairness in the election.

the accuracy and precision. The summaryHCE function in the RFS package
provides the adjustment and presents it in the form of our usual regression
table.

Example 6.7: To illustrate the operation of the summaryHCE function, let us
calculate the White-adjusted standard errors for the South Sudanese model
above. •

Solution: We have already calculated the regression table for the logit model
(Table 6.3). From looking at the graphic, it seems as though there may be
heteroskedasticity. There appears to be a lot more variation in the invali-
dation rate for smaller values of secession support than for larger values of
secession support.

Running the following adjusts the standard errors to reflect the ob-
served heteroskedasticity.

summaryHCE(model.xsd)

The heteroskedasticity-adjusted regression table is given in Table 6.4. Note
that the estimates remain the same. That is because heteroskedasticity does
not affect the estimates. The only changes are in the standard errors (and the
test statistics and the p-values). �

Notice that adjusting the standard errors is rather easy using R. It is just a
single line. Also notice that we did not model the heteroskedasticity, we
merely adjusted for it.
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At some level, it is unsettling to adjust for model weaknesses. It is a
strong model that does not need fixes. Thus, if you can avoid using White
standard errors, I recommend it strongly. Heteroskedasticity is an important
part of the data/model. It seems sinful to ignore it.apple

6.4: Conclusion

In this chapter, we focused on transforming bounded variables so that they
did not violate the Normality assumptions as strongly as they did without
the transformation. To accomplish this, we noted that there are three ba-
sic types of continuous variables: unbounded, bounded on one side, and
bounded on two sides. If the dependent variable is unbounded, we do not
necessarily need to transform it (although some transforms may reduce the
non-Normality of the residuals). If the variable is bounded on one side, we
performed an algebraic transformation so that it is bounded below by zero,
then applied a log transformation. If the variable is bounded on two sides,
we performed an algebraic transformation so that it was bounded by 0 and
1, then applied a logit transformation.

In either case, we needed to ensure that we back-transformed to the
original units, first using an exponential or a logistic back-transform, then
the inverse of our algebraic transform — order matters.

While this chapter does not exactly mark the end of continuous de-
pendent variables, it does end our view of them in terms of the Classical
Linear Model (CLM). This chapter already shows why the CLM needs to be
replaced. Here, we were able to stay within the framework, but we had to per-
form variable transformations to make it work. Once we stray from contin-
uous data, the CLM cannot work; there is no way of transforming a discrete
dependent variable into a Normally distributed random variable. As such,
we need an new paradigm — Generalized Linear Models (GLMs). The next
chapter introduces GLMs, while still using a continuous dependent variable.
This is done to show that GLMs can do anything CLMs can do. In fact, if you
had used the glm function in this and the previous chapter, in lieu of the lm
function, the results would be exactly the same, only the table layout would
be different.
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6.5: End-of-Chapter Materials

6.5.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Packages:

RFS This package does not yet exist. It is a package that adds much gen-
eral functionality to R. In lieu of using library(RFS) to access these
functions, run the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Statistics:

lm(formula) This function performs linear modeling on the data, with the
supplied formula. As there is much information contained in this func-
tion, you will want to save the results in a variable, to retrieve the in-
formation through the summary and names functions.

predict(model) The predict function calculates the value of the depen-
dent variable in the model given the independent variables used to
create the model. If new predictions are required, the newdata= pa-
rameter must be used. This parameter takes a new set of data as its
argument. Make sure that all independent variables used in the model
are defined in the newdata= parameter. If not, an error message will
results. Finally, the se.fit=TRUE parameter calculates the standard
error at each prediction point.

summaryHCE(model) This function, a part of the RFS package, allows us to
easily calculate the heteroskedastic-consistent standard errors (White
1980).

Probability:

pnorm(x) This function is the cumulative distribution function (CDF) for
the Normal distribution. It returns a probability that a Normally-distributed
variable will be less than or equal to x. This function has two addi-
tional parameters that remove the requirement that x has undergone
the z-transformation, m and s.
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rnorm(n, m, s) This function returns n draws from a Normal distribution
centered at m and with a standard deviation s. This function is the
cornerstone of much Monte Carlo analysis.

Graphics:

lines(x,y) This is an extremely handy line-generating function, painting a
line on the current plot (or returns an error if no plot exists). It first
invisibly plots the pairs of points (x,y) then connects the points with
drawn line segments.

If the col parameter is not set, then the line will be black. Otherwise,
the line will be the color specified. There are three ways of stating
the color: using the Windows 1-16 values, using names, and using the
rgb values. The following all refer to ‘red’: col=2, col="red", and
col="#ff0000".

plot() This function produces a scatterplot of the two-dimensional data.
The call can be either plot(x,y) or plot(y∼x); both give identi-
cal results. This function can produce graphs that are very customized.
The R help file for par is invaluable. Some important parameters in-
clude xlab="" (label for the x-axis), ylab="" (label for the y-axis),
xlim=c(min,max) and ylim=c(min,max) (axis limits, min and max,
for the x- and y-axis), and las=1 (makes axis values painted horizon-
tal).

Mathematics:

log(x, b) This returns the logarithm of x, with a base of b. If you omit the b,
this function returns the natural logarithm of x. To calculate the com-
mon logarithm, set b=10. The logarithm function is used to transform
variables bounded on one side into variables bounded on neither side.

exp(x) This function returns the exponential of the argument, x; that is, it
returns ex. The exponential function is the inverse of the logarithm
function.

logit(x) This function returns the logit of the provided number. This num-
ber must be between 0 and 1, not including either 0 or 1. The logit
function is frequently used to transform proportions into unbounded
data. It is available through the RFS package.
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logistic(x) This function returns the logistic of a given number. The range
of the logistic function is 0 to 1, exclusive. it is the inverse of the logit
function. As such, it is often used to transform predictions from logit
units to proportion units. It is available through the RFS package.

cloglog(x) The complementary log-log function is a second appropriate trans-
formation for proportion data. It is, however, not a symmetric function.
It is available through the RFS package.

cloglog.inv(x) This function is the inverse of the complementary log-log
function. It is available through the RFS package.

Programming:

which(condition) This function returns a vector of indices corresponding to
the original vector’s values meeting the criteria. Thus, which(x==4)
returns the indices of all elements in vector x that equal 4. Note that
equality is checked with a double equals, ==. Other comparisons in-
clude: >, <, >=, <=, !=, &, |, and !. The last four are ‘not equal to’,
‘and’, ‘or’, and ‘not’.
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6.5.2 Exercises This section offers suggestions on things you can practice
from this chapter.

1. Predict the Venkovský 1994 cow ballot measure vote using the trans-
formed vote model. Is this prediction physically possible?

2. Determine a 95% confidence interval, with the untransformed cow vote
model, for predicting Děčı́n’s vote. Is the actual outcome within the
95% confidence interval?

3. Determine a 95% confidence interval, with the transformed cow vote
model, for predicting Děčı́n’s vote. Is the actual outcome within the
95% confidence interval?

4. Determine if the assumptions of OLS are violated in the transformed
cow vote model.

5. The actual vote share for Děčı́n was 52.8%. Explain why both models
failed in predicting the actual vote outcome. How bad was the error?
What can be done to improve the predictions?

6. The logit transformation is not the only possible choice. There is also
the asymmetric complementary log-log transformation (cloglog in
the RFS package). Use this function as the transformation to predict
Děčı́n’s vote, its 95% confidence interval, and the probability of the
cow ballot measure passing. The inverse of the complementary log-log
transform has no name, but the R function is cloglog.inv, also in
the RFS package.

7. Estimate the GDP per capita for Papua New Guinea using the untrans-
formed model, as well as the 95% confidence interval. How close is this
estimate to the real answer, and it the real answer within the predicted
confidence interval?
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