
Chapter 5:

ATime forSomeExamples

Overview:

We have covered a lot of theory and mathematics over
the past several chapters. Here, we will apply what we
have learned to help settle the theory into our minds. In
other words, we will perform the analysis process with
the information and skills we now have.

This means we will use data to answer our re-
search questions. Of course, we will need to examine
the research question to determine the appropriate
model, check the assumptions — both statistically and
graphically — and properly interpret the results.

That is a lot of summarizing to do!

Forsberg, Ole J. (November 18, 2023). “A Time for Some
Examples.” In Linear Models and Řurità Kràlovstvı̀. Version
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§ § §

And so, we have completed a majority of the important mathematics under-
lying ordinary least squares estimation. Be aware that OLS is how we esti-
mate the parameters. The models itself is referred to as the classical linear
model. It makes the usual four assumptions. The observations follow the
equation

yi = β0 + β1x1 + β2x2 + · · ·+ βp−1xp−1 + ε (5.1)

and the residuals follow this distribution

εi
iid∼ N

(
0; σ2

)
(5.2)

From those assumptions, we were able to use OLS to calculate formulas for
the estimators of β0,β1, . . . ,βp−1. The next chapter used the distribution to
determine the distribution of those estimators. This led to confidence inter-
vals for the parameters and test statistics for testing hypotheses about the
parameters. It also led to distributions and intervals and test statistics for
estimated and predicted values of y.

All of that from four small assumptions.

§ § §

This chapter will apply these results to different research questions to il-
lustrate the statistical research process. So, turn the page and begin seeing
applications of what we have done.
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5.1: Full Example: Violent Crime

To help settle all of this, let’s see a simple extended example of modeling the
violent crime rate in 2000 using just the violent crime rate in 1990.

The preamble is the part of the code that imports the extra functions,
loads the data, and gives us an overview of it. This is a typical preamble preamble—textbf

### Preamble
source("http://rfs.kvasaheim.com/rfs.R")
library(lawstat)
library(lmtest)

dt = read.csv("http://rur.kvasaheim.com/data/crime.csv")
attach(dt)

summary(dt)

Note that there are many variables in this data set. Since we are modeling
the violent crime rate in 2000 using the rate in 1990, we will only use the
variables vcrime00 and vcrime90. To fit the model and estimate the pa-
rameters using ordinary least squares, run this line: OLS

crimeMod = lm(vcrime00 ∼ vcrime90)

Nothing gets outputted by this line. R just echoes it if you typed it correctly.
However, a lot has happened behind the scenes. Inside R, the model was
fit using ordinary least squares (using matrices). The parameters were esti-
mated. All of this was done behind the scenes.

The next step is to check that the model does not violate any of the
assumptions/requirements.

5.1.1 Normality of the Residuals The first we will check is the Normal-
ity of the residuals:

e = residuals(crimeMod)

# Normal Residuals?
overlay(e)
shapiroTest(e)
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The histogram overlaid with the normal curve suggests the residuals are
slightly skewed to the right. The Shapiro-Wilk test strongly indicates a lack
of Normality (p-value = 0.004424). The sample size of n = 51, however, defi-
nitely seems large enough to ensure the sums of the residuals closely follows
a normal distribution (this is the actual requirement). If you would like to
check this, run the following code (first think what it does and why it an-
swers this problem):

et = numeric()
for(i in 1:1e3) {

x = sample(e, replace=TRUE)
et[i] = sum( x )

}
shapiroTest(et)

Since the reported p-value is much greater than α, we can conclude that the
sample sums are sufficiently Normal. And, it is the sample sums that affect
the distribution of b0 and b1.

Thus, the model passes the normality requirement.

5.1.2 Constant Expected Value (Functional Form) The second assump-
tion to test is constant expected value (proper model form):

# Constant Expected Value of Residuals
plot(vcrime90,e)
runs.test(e, order=vcrime90)

The residuals plot seems a bit inconclusive to me. This is mainly due to
the single point far to the right (the District of Columbia). The runs test,
however, indicates that there is no significant evidence the residuals follow
anything other than a horizontal line (p-value = 0.6732).

Thus, the model does not violate the second assumption.

5.1.3 Constant Variance The third assumption is that the variance of
the residuals is constant:

# Constant Variance of Residuals
plot(vcrime90,e)
bptest(crimeMod)
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For me, the graphic is inconclusive because of DC. The Breusch-Pagan test
did not detect significant heteroskedasticity (p-value = 0.1041).

Thus, the model passes the third and final requirement.

5.1.4 The Final Model This model seems appropriate, and we can now
see the estimates:

Call:
lm(formula = vcrime00 ∼ vcrime90)

Residuals:
Min 1Q Median 3Q Max

-241.32 -42.84 -18.04 40.97 208.41

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 109.52716 21.42679 5.112 5.27e-06 ***
vcrime90 0.58065 0.03107 18.689 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.10 1

Residual standard error: 85.55 on 49 degrees of freedom
Multiple R-squared: 0.877, Adjusted R-squared: 0.8745
F-statistic: 349.3 on 1 and 49 DF, p-value: < 2.2e-16

The first section reports the model you presented. Use it to double-check you
typed things in correctly or to remind you what the model is examining. The
second part produces the five-number summary of the residuals. Since the
mean (0) is greater than the median (−18.04), there is evidence of a positive
skew to the residuals. This, we discovered above.

The third section is the “regression table.” Each row corresponds to
a different independent variable (or the intercept). The columns are the es-
timates, the standard errors, the test statistic (estimate divided by standard
error), and the p-value.

In this example, there is very strong evidence that the relationship
between the violent crime rate in 1990 and in 2000 is positive (b1 = 0.58065).
If State A had a higher violent crime rates in 1990 than State B, then it also
tended to have a higher violent crime rates in 2000.

The intercept, b0 = 109.52716 indicates that for a state with 0 violent
crime in 1990, the expected violent crime rate in 2000 is 109.52716 crimes
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Figure 5.1: Plot of the violent crime rate in 2000 against that in 1990. The ordinary
least squares line of best fit is included. Red-colored states are those whose violent crime
rate increased from 1990 to 2000.

per 100,000 people. However, since no state was close to having a violent
crime rate in 1990 of 0, this interpretation does not make statistical sense.

Remember that we should only use our models to predict and estimate
for values of the 1990 violent crime rate within the domain of the vcrime90
variable in our data.interpolation

5.1.5 Graphic The following lengthy code produces a graphic like that
at the top of the page:

plot.new()
plot.window( xlim=c(0,2500), ylim=c(0,2500) )

axis(1); axis(2)

title(xlab="Violent Crime Rate (1990)", line=2.75)
title(ylab="Violent Crime Rate (2000)", line=3.25)

xx = seq(0,2500)
yy = predict(crimeMod, newdata=data.frame(vcrime90=xx))
lines(xx,yy, col="steelblue", lwd=2)

points(vcrime90,vcrime00, pch=21, bg=1+(vcrime00>vcrime90))
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Note that the graphic also indicates which states had their violent crime rate
increase. It comes from this line:

points(vcrime90,vcrime00, pch=21, bg=1+(vcrime00>vcrime90))

The first two slots are the x- and y-values. The third slot specifies the plotting
character. A pch of 21 is a dot with its insides colorable. The fourth slot, bg,
specifies the color to fill the inside of the dots (bg = “background”).

The part (vcrime00>vcrime90) takes on value 1 if the violent crime
rate increased and 0 otherwise. Adding 1 to each ensures that the two colors
are 1 and 2 — black and red.

5.1.6 Confidence Interval for β1 In addition to calculating the point
estimates of the slope and intercept, we can also calculate confidence inter-
vals:

confint(crimeMod)

From this output, we are 95% confident that the effect of the violent crime
rate in 1990 on 2000 is between 0.518 and 0.643.

5.1.7 Confidence Interval for Y We can estimate the value of Y for a estimation
given value of x:

predict(crimeMod, newdata=data.frame(vcrime90=100), interval="
confidence")

We are 95% confident that the expected value of Y when x = 100 is between
129.5 and 205.6, with a point estimate of 167.6.

5.1.8 Prediction Interval for Y Finally, we can predict the value of Y prediction
for a new value of x:

predict(crimeMod, newdata=data.frame(vcrime90=100), interval="
prediction")

We are 95% sure that the next observation of the violent crime rate in 2000
for a state with a violent crime rate in 1990 of 100 is between −8.5 and 343.7,
with a prediction of 167.6.
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5.2: Full Example: Violent Crime, Wealth, Region

That was fun! Let’s now try this with two independent variables. We will
model the violent crime rate in 2000 using the GSP per capita in 1990 and
the region of the state. This will give us the opportunity to reiterate and
emphasize that these methods are not constrained to numeric independent
variables. As in Example 2.2 on page 24, we can represent categorical in-
dependent variables appropriately and model using ordinary least squares
estimation.

The following creates the interaction model between a numeric and a
categorical variable. This particular type of interaction analysis is referred to
as the Analysis of Covariance, ANCOVA:interaction

modEd1 = lm(vcrime00 ∼ gspcap90 * census9)
summary.aov(modEd1)

The interaction model allows for the effect to vary between the levels. In
terms of this problem, the interaction model allows the effect of the 1990
violent crime rate on the 2000 to be different for the Midwest, the Northeast,
the South, and the West.

It does not force it to be different. It only allows it to be.

Because of the writings of a 14th-Century monk by the name of William
of Ockham, there is a bias in science to create models that are as simple asOccam’s Razor
possible, without being too simple (his doctrine of efficient reasoning).1

Non sunt multiplicanda entia sine necessitate.

The usual translation is “Things are not to be multiplied without necessity.”
In other words, simpler models tend to be more helpful than complicated
ones. Realize that they are more “helpful” and not more “correct.” To drive
this point home, allow me to quote George E. P. Box (1976):

Since all models are wrong the scientist cannot obtain a “correct”
one by excessive elaboration. On the contrary following William
of Occam he should seek an economical description of natural
phenomena. Just as the ability to devise simple but evocative

1Note, however, that this doctrine/belief did not originate with William. It goes back to — at
least — Aristotle in his Posterior Analytics: “We may assume the superiority ceteris paribus of
the demonstration which derives from fewer postulates or hypotheses.”
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models is the signature of the great scientist so overelaboration
and overparameterization is often the mark of mediocrity.

The results from the above code are given here

Df Sum Sq Mean Sq F value Pr(>F)
gspcap90 1 816163 816163 26.149 1.32e-05 ***
census9 8 794820 99353 3.183 0.0087 **
gspcap90:census9 8 273868 34233 1.097 0.3901
Residuals 33 1029986 31212

Note that the p-value (last column) for the interaction term is greater than
our usual α = 0.05 (p− value = 0.3901). This tells us that the interaction
term is not statistically significant. In other words, we can remove it from
our model without adversely affecting our model.

When the model has no interaction terms, it is called an additive
model. The following code fits the additive model. additive

modEd2 = lm(vcrime00 ∼ gspcap90 + census9)

As usual, the next step is to test the assumptions. Note that this process is
the same, even if the particulars differ. The census9 variable is categorical,
not numeric. That requires we think a bit more about how to perform the
assumption testing.

5.2.1 Normality Again, the first assumption to test is the Normality of
the residuals:

e = residuals(modEd2)

# Normality checking
overlay(e)
shapiroTest(e)

According to the Shapiro-Wilk test there is no significant evidence that the
residuals come from a non-Normal distribution (p− value = 0.1732). Thus,
the model passes this test.

5.2.2 Constant Expected Value (Functional Form) The second require-
ment we test is that the expected value of the residuals is constant against
each of the independent variables.
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# Expected Value
plot(gspcap90, e)
runs.test(e, order=gspcap90)

The runs test indicates that there is no evidence the expected values are not
constant (p− value = 0.2038). Thus, this test is passed, too. Yippee!

But wait! This only tested for constant expected value of the residuals
against one of the two independent variables. It is required that the expected
value is constant against all of them.

Here is the problem with just using the runs test when the indepen-
dent variable is categorical: The ordering within each level is not uniquely
defined. For a hint2 on what to do, look at the graphic:

plot(census9,e)

Holy side-by-side box-and-whiskers plot, Batman! This makes sense, because
we are plotting a numeric variable (e) across nine levels. We need to test that
the expected value (mean) is the same in each group.

From your prior statistics class, this screams ANOVA!

summary(aov(e∼ census9))

The p-value returned is 1, which is greater than α. So we fail to reject the
null hypothesis of equal expected values.

Well, this result should not be surprising. Because of the mathematics
of OLS, the means in each group will be centered at zero. Thus, you should
expect p-values of 1 whenever doing this test.

5.2.3 Constant Variance The last requirement is that the residuals have
a constant variance against each of the independent variables. For the nu-
meric variable, this is not a problem:

# Heteroskedasticity
plot(gspcap90,e)
hetero.test(e,gspcap90)

With a p-value of 0.7008, this test is passed for the numeric independent
variable.

2When not sure what to do, plotting things frequently helps. It seems to force the researcher
into determining what needs to be examined. When in doubt: Graph and Interpret.
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For the categorical variable, remember that we need to test equality of
variance across several groups. From your previous statistics course, you may
recall that the Fligner-Killeen test does just this:

plot(census9,e)
fligner.test(e∼ census9)

According the the Fligner-Killeen test, there is no evidence of heteroskedas-
ticity (p− value = 0.7869).

Thus, this model passes the homoskedastic requirement. Vahooo!

Note: We could have taken care of both tests for heteroskedasticity using
the Breusch-Pagan test. However, if the model fails that test, we have no
clue as to how to fix it. Breaking it into two parts allows us the additional
information of which variable caused the issues.

Personally, I run the Breusch-Pagan test to determine if there is a
violation, then the separate tests to get information on where it issue lies.

5.2.4 The Final Model This model is appropriate, and we can now see
the estimates. However, if we are in the ‘model creation’ or ‘model selec-
tion’ mode, we need to determine if both variables are statistically signifi-
cant. If either is not, then that variable needs to be dropped and the new
model tested.

To get p-values for the variables, just run

summary.aov(modEd2)

Yeppers, that is summary.aov that you are using. It provides statistical sig-
nificance of the variables, while summary and summary.lm provide the sta-
tistical significance of the levels of the categorical variables.

The output from the summary.aov(modEd2) command is

Df Sum Sq Mean Sq F value Pr(>F)
gspcap90 1 816163 816163 25.664 9.07e-06 ***
census9 8 794820 99353 3.124 0.00753 **
Residuals 41 1303854 31801
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The p-value for the gspcap90 variable is less than alpha, so that variable has
a significant effect on the violent crime rate. The p-value for the census9
variable is also less than alpha, so it too needs to be included in the final
model.

In short, this is the model we need to use. The abbreviated regression
table from this model is

Coefficients:
Estimate Pr(>|t|)

(Intercept) 1.125e+02 0.308
gspcap90 1.550e-02 6.7e-05 ***
census9East South Central 7.518e+01 0.535
census9Middle Atlantic -6.777e+01 0.608
census9Mountain -1.707e+02 0.101
census9New England -1.708e+02 0.122
census9Pacific -1.316e+02 0.263
census9South Atlantic 1.590e+02 0.125
census9West North Central -4.953e+01 0.638
census9West South Central 1.197e+02 0.323

From this, we can conclude that there is a statistically significant, and posi-
tive (!), effect of average state wealth on the violent crime rate. We get that
conclusion from the gspcap90 line in the table.

The rest of the table compares the effect of each level of the census9
variable to the base category, East North Central. As no p-values is less thanbase category
alpha, we can conclude that none of the regions is statistically different in its
effect from the East North Central region.

What about when compared to the Mountain region?

First, we have to specify that we want the Mountain region to be the
base category against which everything else is calculated. Then, we need to
re-fit the model with the new base.

census9 = set.base(census9, "Mountain")
modEd3 = lm(vcrime00 ∼ gspcap90 + census9)
summary(modEd3)

The regression table now indicates that the violent crime rate in the Moun-
tain region is significantly lower than that in the East South Central, South
Atlantic, and West South Central regions.
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How does the violent crime rate in the different regions compare to
the Pacific region?

census9 = set.base(census9, "Pacific")
modEd3 = lm(vcrime00 ∼ gspcap90 + census9)
summary(modEd3)

The violent crime rate in the Pacific region is significantly lower than that in
the South Atlantic and the West South Central regions.

How do the regions compare to the South Atlantic region?

census9 = set.base(census9, "South Atlantic")
modEd3 = lm(vcrime00 ∼ gspcap90 + census9)
summary(modEd3)

The violent crime rate in the South Atlantic region is significantly higher
than in the Mountain, New England, Pacific, and West South Central regions.

Note: Be aware of the multiple comparisons issue (see Section S.6.2). Re-
member that these individual analyses only work if you perform only one
of them. Multiple comparisons require adjustment of the alpha-level. For
a reminder, see Appendix Section S.6.2.

5.2.5 The Graphic The following code generates the graphic at the top
of the next page:

par(mar=c(4,4,0,1)+0.5, family="serif", las=1)
par(xaxs="i", yaxs="i")
par(cex.lab=1.2, font.lab=2)

plot.new()
plot.window( xlim=c(0,75), ylim=c(0,2500) )

axis(1); axis(2)

title(xlab="GSP per Capita (1990) [$000]", line=2.75)
title(ylab="Violent Crime Rate (2000)", line=3.5)

xx = seq(15,70)*1000
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Figure 5.2: Plot of the violent crime rate in 2000 against the GSP per capita in 1990
(in thousands of dollars). The ordinary least squares line of best fit is included. The red-
colored line is the estimate for the South Atlantic states; blue, Pacific states; and gold,
Mountain states.

yyPac = predict(modEd2, newdata=data.frame(gspcap90=xx, census9
="Pacific"))

yyMtn = predict(modEd2, newdata=data.frame(gspcap90=xx, census9
="Mountain"))

yySAt = predict(modEd2, newdata=data.frame(gspcap90=xx, census9
="South Atlantic"))

lines(xx/1000,yyPac, col="steelblue", lwd=2)
lines(xx/1000,yyMtn, col="gold", lwd=2)
lines(xx/1000,yySAt, col="pink", lwd=2)

points(gspcap90/1000,vcrime00, pch=21, bg="lightsteelblue")

It would be helpful to have a legend, but let us leave that for another day!

Also, you need to be able to determine what each line of this script
does.
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5.2.6 Confidence Interval for Slope We can obtain confidence intervals
for the effects using the same method as before. The interpretation follows
the same rules, but the table is much bigger:

confint(modEd2)

We are 95% confident that the effect of the GSP per capita on the violent
crime rate is between 8 and 23 additional violent crimes (per 100,000 popu-
lation) for every $10,000 increase in GSP per capita.

The confidence intervals for the effects of each of the levels is as com-
pared to the base level. Thus, we are 95% confident that the average violent
crime rate in the West North Central region is between 21 and 396 lower than
that in the South Atlantic region (the base level).

5.2.7 Confidence Interval for ŷ Again, we can estimate the expected
value of a violent crime rate, given the GSP per capita and the region.

predict(modEd2, newdata=data.frame(gspcap90=50000, census9="
Pacific"), interval="confidence")

We are 95% confident that the expected violent crime rate in a Pacific-region
state with a GSP per capita of $50,000 is between 537 and 975, with a point
estimate of 756 violent crimes per 100,000 people.

5.2.8 Prediction Interval for ynew Finally, we can also calculate a pre-
diction interval for a new observation:

predict(modEd2, newdata=data.frame(gspcap90=50000, census9="
Pacific"), interval="prediction")

We are 95% sure that the violent crime rate for a new observation of a Pacific-
region state with a GSP per capita of $50,000 is between 334 and 1177, with
a best guess of 756 violent crimes per 100,000 people.

Note: As is always the case, the width of the prediction interval is larger
than the width of the confidence interval. Remember why this is the case.
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5.3: Full Example: Cows in the City of Děčı́n

To illustrate the process of model selection, let us examine Děčı́n’s ballot
measure of 2016. That ballot measure sought to constitutionally restrict the
number of cows that can be housed within the city limits. While this ex-
tended example seems rather dated, it does cover some interesting issues in
statistical modeling and questions we can answer with our model.

Example 5.1: The voters of Děčı́n are being sent to the polls to vote on a con-
stitutional referendum that proposes to limit the number of cows that could
be housed within the city limits. This was not the first time that Ruritanians
were sent to the polls to vote on this or a closely related issue. Given the in-
formation from previous votes, and the demographics of Děčı́n voters, what
is the probability that this ballot measure will pass?

•

Before attempting any analysis, there needs to be a search of the literature
to inform us as to which variables should be present, and which directions
those variables should affect the dependent variable. From that literature
review, we hypothesize that the vote in favor of such ballot measures depends
on three variables: age of the population, religiosity of the population, and
whether the ballot measure also restricts chickens. The effect direction for
each is that kraj that are more religious should vote against cow-housing at
a higher rate; Measures that also ban chickens should have a harder time
passing; Measures passed more recently should have a more difficult chance
of passing, as the young tend to support cows, and the elderly tend to oppose
them (wanting quiet, dung-free neighborhoods).directional hypotheses

With this theory and the resulting hypotheses, we can take our next
step: Getting to know the data.
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Year Passed Chicken Ban Religious Percent

Minimum 1998 0 51.00
Maximum 2008 1 85.00
Median 2004 1 67.50
Mean 2004 0.5938 66.75
Variance 6.0650 0.2490 88.1935
Coefficient of Variation 0.5794 0.8404 0.1407

Table 5.1: Descriptive statistics on the variables in the cows dataset.

5.3.1 Get to Know the Data Before we begin trying to answer this ques-
tion, we must get to know our data. There are several functions available
to us to visualize the data: histogram, scatter plots, and quantile-quantile
plots. In addition to visualizing the data, we should calculate several of the
descriptive statistics for the variables of interest.

source("http://rfs.kvasaheim.com/rfs.R")

cows = read.csv("http://rur.kvasaheim.com/data/cows.csv")
summary(cows)

Variability: Since we have multiple independent variables, we should cal-
culate both univariate and bivariate descriptive statistics. Table 5.1 provides
the univariate descriptive statistics. The primary univariate question to ask
about the independent variables here is whether there is sufficient variation.
The two measures we need to examine are the variance and the coefficient of variation
variation. If both of these numbers are small, then there may be an issue.

In this data, the variance of the Chicken Ban variable is small and
potentially worrisome; however, its coefficient of variation (a scaled standard coefficient of variation
deviation, cv =

∣∣∣ s
x

∣∣∣) indicates that there is no serious issue (the value is close
to 1).3 None of the three variables have small enough variation to cause us
concern.

3As this is a dichotomous variable, the mean is the percent of the values equal to 1. Thus, there
are about 60% of the values 1 and 40% of the values 0 — more than sufficient variation.
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Year Passed Chicken Ban Religious Percent

Year Passed 0.1903 0.2399
Chicken Ban 0.1903 0.5146
Religious Percent 0.2399 0.5146

Table 5.2: The correlations between the variables in the cows data. The correlation
between Chicken Ban and Percent Religious is statistically significant (t = 3.2869;ν =
30;p = 0.0026). This is the sole statistically significant correlation.

Relationships: After getting to know the variables individually, it is impor-
tant to get to know the relationships between the variables. This can be done
through correlation tests and bivariate scatter plots. Independent variables
with strong correlations with the dependent variable should be considered
for inclusion in the model. Independent variables with strong correlations
with other independent variables should be of concern. Remember that one
of the assumptions of OLS regression is that the independent variables are
statistically independent of each other. If independent variables are highly
correlated, the statistical properties of the method weaken.correlated

The pairwise correlations are provided in Table 5.2. Of the three in-
dependent variables, only Chicken Ban and Religious Percent have a statisti-
cally significant correlation (t = 3.2869;ν = 30;p = 0.0026). Should the level
of correlation be a concern? Perhaps. While their correlation is r = 0.5146,
this corresponds to an R2 value of just 0.2648. As such, the correlation
may not be large enough to severely affect our coefficient estimates (see Sec-
tions 2.2.1 and 2.5). Let us just remember this relationship for the future.

Note: The issue is actually more than a statistics issue. If two indepen-
dent variables are highly correlated with each other, it is logically impos-
sible to determine which affects the dependent variable or how much of
the effect to partition to each independent variable. Statistics is, however,
able to tease out the independent relationships better than not. As a rule
of thumb, if the correlation is greater than r = 0.90, there may be a seri-
ous logical issue. If two variables are so highly correlated, which of the
two is the “correct” independent variable? How can one tell? Can both be
good? Is the commonality between them the real independent variable?
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Figure 5.3: Correlation plots between the three independent variables. The correlation
between Civil Ban and Percent Religious was statistically significant according
to the Pearson product-moment correlation test. This is evident in this graph, as well.
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5.3.2 Variance Inflation Factor This problem is a bit more extensive
than suggested above. Recall that one of the mathematical requirements isVIF
that the rank of the design matrix equals p (the number of parameters to
be estimated). This can happen if one variable is perfectly correlated with
(linear function of) another variable. It can also happen if a variable is a
linear function of the other variables.

Thus, while checking the bivariate correlations is helpful, it is not the
answer we need. We need to check if the independent variable is a linear
function of (or close to) a combination of the others.

To determine the level of multicollinearity we can use the “variance
inflation factor” (VIF). Recall from Section 4.4.2 how to calculate the VIF for
a given independent variable: Regress all other independent variables on it,
calculate the R2

i , and calculate the VIF from

VIFi =
1

1−R2
i

(5.3)

Once you have calculated the VIF for each independent variable, compare
the values to the “usual” Rule of Thumb.4

There is nothing magical about using the R2 value to calculate your
variance inflation factor. One could advocate using the adjusted-R2. How-
ever, in doing so, the Rules of Thumb may need to be adjusted.

Of course, if we think about the effects of multicollinearity, rather than
just detecting “severe levels,” then we may wish to eschew such tests, assume
multicollinearity is an issue, and adjust for it. On the other hand, if there is
no reason to think that the model should suffer from multicollinearity, we
will want to avoid such adjustments.

These are science questions, not statistics questions.

Know the science behind your theory.

4This Rule of Thumb depends on the discipline. The three typical boundaries are 5, 8, and 10.
If all of your VIF scores are greater than 10, then there is an issue with multicollinearity. If all
are less than 5, then there is no issue. If it is between those extremes, then you should think
about the effect of multicollinearity on your estimators. What do those VIF values correspond
to? A VIF of 5 means the R2 value is 0.80. A VIF of 10 means the R2 is 0.90. Keep that in
mind. In other words, the other independent variables explain 90% of the variation in this
independent variable.
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∼ Separates the dependent variable (left-hand side) and the
independent variables (right-hand side)

+ Indicates the following variable is added to the formula
− Indicates the following variable is removed from the for-

mula
: Indicates the following and the preceding variable are mul-

tiplied in the formula
∗ Indicates the following and the preceding variable are

crossed in the formula
∧ Includes the specified level of interactions.
I() Replaces the formula grammar of what is in the parenthe-

ses with algebraic grammar.

Table 5.3: The symbols and their meanings in the grammar of formulas. I sure wish I
could locate the book that created these, but I cannot find it anymore. It is in the Oklahoma
State University library. . . somewhere.

5.3.3 Model the Data The example asked us to determine the probabil-
ity that the ballot measure will pass. Before we can answer that question,
we need to model the proportion of the vote in favor of the ballot measure
using our independent variables; that is, we need to be able to predict the prediction
proportion of the vote in favor of the ballot measure with the information we
have.

Thus, the dependent variable will be propWin and the independent
variables will be yearPassed, chickens, and religPct. For now, let us
assume a linear relationship between the independent variables and the de-
pendent variable.

Model Selection: Unless you have a lot of independent variables, I recom-
mend you start with the interaction model.5 The interaction model includes interaction model
the effects of each independent variable singly (main effects) as well as all
possible combinations of those variables (interaction effects).

R uses the usual formula grammar (Table 5.3). Its use takes prac- grammar

5Some will disagree and recommend starting with the simplest model and building complexity
from that. There tends to be little difference between the two model-building methods. On
either case, one has to worry about the multiple comparisons issue (Appendix S.6.2). How
we should address it in the realm of model building is still unknown. We are certain of
two things, however. First, the Bonferroni procedure is far too conservative. Second, doing
nothing is not an acceptable option.
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tice. For instance, if you wish to fit the model y = β0 + β1x + ε, you would
use y ∼ x. If you wish to fit the model y = β1x + ε, you would use either
y ∼ x - 1 (my usual) or y ∼ x + 0.

Some other examples include:

Algebraic form Formula form
y = β0 + β1x1 + β2x2 + β3x1x2 y ∼ x1*x2
y = β0 + β1x1 + β2x2 + β3x1x2 y ∼ x1 + x2 + x1:x2
y = β0 + β1x1 + β2x2 + β3x1x2 y ∼ (x1 + x2)∧2
y = β0 + β1x1x2 y ∼ x1:x2
y = β0 + β1x13 + β2 sin(x2) y ∼ I(x1∧3) + I(sin(x2))
y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2+ y ∼ x1*x2*x3

β5x1x3 + β6x2x3 + β7x1x2x3

With this brief introduction to the grammar of formulas, we can return to
our example. We have three independent variables; the formula to give a full
interaction model isasterisk

propWin ∼ yearPassed * chickens * religPct

As we will use this model a bit, we save the linear regression results into a
variable. Thus, the two lines to run are

mod1 = lm(propWin ∼ yearPassed * chickens * religPct)
summary(mod1)

These lines give the following output (well the first, fourth, and fifth column
of that output):

t value Pr(>|t|)
(Intercept) 1.148 0.262
yearPassed -0.901 0.377
chickens -1.084 0.289
religPct 1.557 0.133
yearPassed:chickens 0.950 0.352
yearPassed:religPct 0.510 0.615
chickens:religPct 0.979 0.338
yearPassed:chickens:religPct -0.895 0.379

The line starting yearPassed:chickens:religPct is the three-way in-
teraction term. As it is the highest interaction, it is the only one we can in-three-way
terpret here. Note that it is not statistically significant (p = 0.379). Thus,
removing that term will do two things. First, it will simplify the model.Occam
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Second, it will not significantly harm the model’s descriptive (or predictive)
ability.

That second model can be written as either

mod2 = lm(propWin ∼ yearPassed * chickens * religPct -
yearPassed:chickens:religPct)

or as

mod2 = lm( propWin ∼ (yearPassed + chickens + religPct)ˆ2 )

The two formulas are equivalent. formula grammar

Note that the summary.aov(mod2) command indicates that none of
the three two-way interactions are statistically significant. Thus, these two- two-ways
way interactions should be removed from the model.6 This leaves a model
with no interactions—an additive model. Fitting the additive model and additive model
checking the statistical significance of the variables is as above

mod3 = lm(propWin ∼ yearPassed + chickens + religPct)
summary.aov(mod3)

Note that all three variables are significant according to this output (the
chicken variable is statistically significant because we specified an effect di-
rection). Thus, this is our provisional model. provisional model

The Additive Model: That is, the equation we will use to fit the data is

propWin = β0 +β1(yearPassed)+β2(chickens)+β3(religPct)+ε (5.4)

If ε ∼ N (0,σ2), then we know

E [propWin] = β0 + β1(yearPassed) + β2(chickens) + β3(religPct)
(5.5)

Check the Assumptions: But, does this model violate any of the assump-
tions of OLS regression? All of the usual tests (Shapiro-Wilk, Breusch-Pagan,
and runs) pass.

6Again, some would alternatively advocate removing just the least significant effect, then refit
the new model. Others would suggest refitting with three different models, one for each
combination of interaction. There is no “always best” answer, other than the one that your
science suggests.
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What about multicollinearity? Remember that the effect of multi-
collinearity is to inflate the standard errors (reduce the t-value, increase the
p-value). Thus, if multicollinearity exists, fixing it will make the variables
even more statistically significant.

How do we test it? We can do it the hard way or the easy way. The
hard way is to estimate three regression equations, calculate the individual
R2 values, and calculate the resulting VIF values.

vif1 = lm(yearPassed ∼ chickens + religPct)
vif2 = lm(chickens ∼ yearPassed + religPct)
vif3 = lm(religPct ∼ yearPassed + chickens)

1/(1-summary(vif1)$r.squared)
1/(1-summary(vif2)$r.squared)
1/(1-summary(vif3)$r.squared)

Or, you can use the car package:

library(car)
vif(mod3)

The results of these VIF checks are

yearPassed chickens religPct
1.067965 1.368963 1.399954

None of these three are even close to the lowest “Rule of Thumb.” As such,
multicollinearity is not an issue in this model.

5.3.4 Results The regression table for model mod3, produced using summary(mod3),
is given in Table 5.4. Notice that all three variables of interest are statisti-

cally significant at the α = 0.05 level.7 Additionally, the model has an R
2

ofdirectional hypothesis
0.7565, which is a great fit in most of the social sciences. The direction of the
coefficients also agrees with theory.research hypotheses

7You may claim that the Chicken variable is not statistically significant at the α = 0.05 level.
However, the provided p-values are two-tailed p-values. Our hypotheses were all directional
hypotheses (one-tailed). Thus, to get the one-tailed p-values just halve the two-tailed p-
values. With that, all three independent variables are statistically significant.
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Estimate Std. Error t-value p-value

Constant Term 0.1512 0.0659 2.293 0.0295
Year Passed (post 2000) -0.0201 0.0036 -5.618 � 0.0001
Banned Chickens -0.0373 0.0200 -1.868 0.0723
Percent Religious 0.0095 0.0011 8.801 � 0.0001

Table 5.4: Results table for the regression of proportion support of a generic ballot lim-
iting the number of cows housed in the city against the three included variables. The R2

for the model is 0.7801; the R
2
, 0.7565. The p-values calculated are based on two-tailed

test. The hypotheses were one-tailed hypotheses. As such, all three explanatory variables
are statistically significant at the standard level of significance (α = 0.05).

Thus, the equation for the line of best fit is approximately prediction line

E [propWin] = 0.1512 (5.6)

− 0.0201(yearPassed) (5.7)

− 0.0373(chickens) (5.8)

+ 0.0095(religPct) (5.9)

5.3.5 Predicting Děčı́n According to this model, what is the expected
vote in Děčı́n? To answer this, we need information about the Děčı́n ballot
measure, specifically the value of the independent variables: yearPassed
= 9, chickens = 0, religPct = 48. With this information, and under the
assumption that the model is correct, we have our prediction that 42% of the
Děčı́n voters will vote in favor of this ballot measure.

Thankfully, R does not require us to do this calculation by hand. The
R code for predicting the percent of Děčı́n voters voting in favor of this ballot
measure can be

DECIN = data.frame(yearPassed=9, chickens=0, religPct=48)
predict(mod3, newdata=DECIN)

The first line was used to make the code more readable. It is also helpful to
first define the variable DECIN if you are going to make predictions for Děčı́n
using several models.
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If neither of these appeal to you and you wish to do this in one line, that line
would be

predict(mod3, newdata=data.frame(yearPassed=9, chickens=0,
religPct=48))

Note the inclusion of the predict function, which predicts the dependentpredict
variable value given values for each of the independent variables (read the
help file on predict; we will use this function frequently).

5.3.6 Graphing the Results Now that we have confidence in our model,
we can use it to predict the effects of each of the three independent variables
on the vote in favor of these ballot measures. There are three independent
variables, so we cannot create a single graph that displays the results. How-
ever, as one of the variables is dichotomous, we can show the results in just
two graphs (the number of continuous independent variables).

Both of these graphs will have the vote in favor as the dependent vari-
able (vertical axis). One of the two graphs will have percent religious as the
primary independent variable, whereas the other will have the year passed
as the primary independent variable. The chicken variable will be present in
both graphs, signified by two separate curves, one where the ballot measure
banned chickens and one where it did not (Figure 5.4).

The graphs illustrate the results of the model — this is their purpose.
Although the graphs “illustrate the story,” we must still “tell the story” of
the graphics, including numbers from the prediction table (Table 5.4). The
following paragraphs explain the graphics.

Both graphics show that the effect of adding a chicken ban to thetell the story
referendum tends to reduce the vote in favor of the referendum.
All things being equal, a ballot measure banning chickens will
have 3.7% fewer people vote for it than a like measure not banning
chickens (s = 1.9988, t = −1.87,p = 0.0723).

The top graphic illustrates the effect of passing time on the
proportion of the vote in favor of these referenda: As the year
increases by one, the proportion voting in favor of the referendum
decreases by 2% on average (t = −5.62,p� 0.0001).

The bottom graphic shows the effect of religiosity on the ballot
outcome: those kraj with higher levels of religiosity tend to vote
in favor of these measures at a higher level than kraj with lower
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Figure 5.4: Prediction graphs of our cows model. These graphs contain two indepen-
dent variables plotted against the dependent variable, with the dichotomous independent
variable included as separate lines. Note that the effect of each of the three independent
variables is made manifest by these two graphs.

levels of religiosity. In fact, increasing the level of religiosity in
the kraj by 1% will tend to increase the vote in favor of the ballot
measure by 0.95% (t = 8.80,p� 0.0001).

Note the interweaving of the graphic discussion with concrete, numerical
effects (and statistical significance in parentheses) from the prediction table.
This combination aids the reader in interpreting the graphic(s) in terms of regression table
statistical language.
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5.3.7 Answering the Question* Thus, we have a prediction of 42% of
the voters will support the ballot measure. However, this is not an answer topoint prediction
the original question, which asked about the probability of the ballot measure
passing. From a modeling standpoint, this probability depends on the coef-
ficient estimates, which are just estimates of the true population value, and
the standard errors, which are measures of our certainty in those estimates.

In the ordinary least squares method, those parameter estimates are
random variables, since they are functions of the data. In other words, if werandom variable
re-ran human history, the estimated effect would be different, since reality
would be different. Furthermore, as these are random variables, they have an
associated distribution — the normal distribution. In fact, the distribution
of each parameter estimate is normal, with expected value equal to the esti-
mate and standard deviation equal to the standard error. Thus, for example,distribution

of estimators the effect of yearPassed is β̂1 ∼ N (µ = −0.0201,σ = 0.0036); of chicken,
β̂2 ∼ N (µ = −0.0373,σ = 0.0200); and of pctRelig, β̂3 ∼ N (µ = 0.0095,σ =
0.0011).

Let us leverage these facts to (virtually) re-run human history multiple
times, get the parameter estimates for each history, and predict the outcome
of the ballot measure in Děčı́n.8 In other words, let us perform a Monte
Carlo analysis. The steps are the same as with any Monte Carlo analysis weMonte Carlo
have done (Kennedy 2008). The only difference is what we do within the
loop. Here, we draw random numbers from the appropriate distribution and
calculate the predicted vote.

Before you look at the following algorithm, write your own and com-
pare it to the one below:

1. Initialize variables

2. Perform loop

a) Draw from the four distributions

b) Predict the Děčı́n outcome

3. Calculate the number of times the ballot measure garnered more than
50% of the vote

8Note that this process assumes the parameter estimates are independent of each other. This is
not the case. See Theorem 2.11. The effects are dependent on each other, as is the intercept. As
such, treat this sub-section as a pedagogical exercise rather than a statistical exercise. There
are a lot of questions dealt with here that help better understand things.
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One can also store the random numbers inside the loop and predict outside
the loop. Also, if the statistical program allows it, you can avoid the loop and
just draw all the numbers at once. This last has the advantage of being very
fast.

It is also the method I use here, in the R script:

# Initialize variables
outcome <- numeric()
trials <- 1000000

# Coefficient estimates
b.intc <- 0.151221
b.year <- -0.020095
b.cban <- -0.037331
b.rpct <- 0.009452

# Coefficient standard errors
s.intc <- 0.065938
s.year <- 0.003577
s.cban <- 0.019988
s.rpct <- 0.001074

# Distributions (the "loop")
e.intc <- rnorm(trials, m=b.intc, s=s.intc)
e.year <- rnorm(trials, m=b.year, s=s.year)
e.cban <- rnorm(trials, m=b.cban, s=s.cban)
e.rpct <- rnorm(trials, m=b.rpct, s=s.rpct)
outcome <- e.intc + e.year*9 + e.cban*0 + e.rpct*48

At this point, the variable outcome holds the proportion of people voting
in favor of the ballot measure in one million simulated elections. To answer
the question, we just need to determine the proportion of those elections in
which the outcome is greater than 0.50: mean(outcome>0.50) will work.

Of course the numbers are nice, but a histogram may tell a better story.
The following code will give a histogram simliar that in Figure 5.5.

hist(outcome, main="", xlab="Proportion Vote for Ballot Measure
", breaks=-1:99/100)

hist(outcome[outcome>0.50], main="", yaxt="n", breaks=-1:99/
100, col=2, add=TRUE)

axis(1, at=0.50, labels="50%")

The histogram of the Děčı́n predictions is presented in Figure 5.5.
Note that the expected outcome is still 42%, which we found above, but that
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Figure 5.5: Plot of the predicted vote outcomes from the Monte Carlo experiment de-
scribed in the text. Note that, while the expected proportion of the vote in favor of the
ballot measure is 42%, there is still a 20% chance of the ballot measure passing, given
that our model is correct.

there is a spread to that prediction the histogram makes manifest, which theconfidence interval
single prediction did not. In fact, prior to this analysis, we may have con-
cluded that there was no possibility that the ballot measure would pass in
Děčı́n based on our model; now, we see that there is a 20% chance of the
ballot measure passing.9

§ § §

Thus, we have an estimated answer to our original question. Given that our
model is correct, there is approximately a 20% chance that the ballot mea-
sure to limit the number of cows in the city will pass in Děčı́n, with a point
prediction of 42% in favor of the bill.point estimate

The actual results of the 2009 ballot measure in Děčı́n was that the
ballot measure passed with 53% of the vote. This result is well within the
95% prediction interval suggested by Figure 5.5. Also, the fact that the bal-
lot measure passed should not be too surprising, since this model gave it a

9As with all statistical analysis, the caveat is that the model and the assumptions must be
correct.
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20% probability of passing. 20% is not a rare event by any stretch of the
imagination.

5.3.8 A Fundamental Problem There is a really big problem with these
results, however. Run the following code and interpret it.

mean(outcome>1) + mean(outcome<0)

This is an important exercise: Always check that predictions make sense.

5.4: Conclusion

In this chapter, we performed full analyses, demonstrating the entire process.

�Warning: Again, be aware of the multiple comparisons issue discussed in Ap-
pendix S.6.2. It explains why you need to either adjust your p-value or your alpha
level when performing multiple tests, such as when you are testing both β0 = 4
and β1 = 0.
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5.5: End-of-Chapter Materials

5.5.1 R Functions In this chapter, we were introduced to many, many,
many R functions that will be useful in regression. In fact, this chapter uses
more R functions than any other chapter in this book. Here are the many.

Packages:

car This package provides several statistical tests used in the book “An R
Companion to Applied Regression” by J. Fox and S. Weisberg. It is a
great package that provides a lot of additional functionality for R.

lawstat This package provides several statistical tests used in law and public
policy analysis. It provides the runs.test function for us.

lmtest This package provides many tests related to linear models. It pro-
vides an implementation of the Breusch-Pagan test, bptest, which
tests for heteroskedasticity in the residuals.

RFS This package does not yet exist. It is a package that adds much gen-
eral functionality to R. In lieu of using library(RFS) to access these
functions, run the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Statistics:

source(filename) This function runs an R script from a separate file. That
file may be local or on the Internet.

runs.test(E, order) This alteration to the lawstat function tests whether
the variable E, as ordered by order exhibits fit issues.

shapiroTest(E) This tests the null hypothesis that the variable E comes from
a Normal distribution. It is based on the shapiro.test function in
the basic R installation. It adds capabilities to test Normality in several
groups.

lm(formula) This is the function that performs ordinary least squares esti-
mation on linear models.
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bptest(mod) This function from the lmtest package performs the Bresuch-
Pagan test for heteroskedasticity.

confint(mod) This calculates confidence intervals for the parameters in or-
dinary least squares regression.

mean(x) This calculates the mean of a sample.

summary(x) This produces the six-number summary or a frequency table
of the provided variable, depending on the type of variable.

summary.lm(mod) When applied to a linear model fit using either the aov
function or the lm function, provides estimates of the effects of the nu-
meric variables and the levels of the categorical variables in the model.

summary.aov(mod) When applied to a linear model fit using either the aov
function or the lm function, provides estimates of the statistical signif-
icance of the variables in the model.

predict(mod) This predicts the values of the dependent variable at each
point in the dataset or for the values specified.

fligner.test(formula) This tests for heteroskedasticity when the indepen-
dent variable is categorical.

aov(formula) This function performs ordinary least squares estimation on
linear models.

vif(model) This function calculates the variance inflation factor (VIF) for
each of the independent variables in the model.

set.base(var,level) This RFS package function redefines the base category in
the provided level. By default, the base category is the first according
to the alphabet.

Probability:

set.seed(x) This sets the random number seed.

rexp(n, rate) This generates n random values from an Exponential distribu-
tion with the specified rate parameter.
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rnorm(n, mean, sd) This generates n random values from a Normal distri-
bution with specified mean and standard deviation. By default the
mean is 0 and the standard deviation is 1.

runif(n, min, max) This generates n random values from a Uniform distri-
bution with specified minimum and maximum values. By default, the
minimum is 0 and the maximum is 1.

Mathematics:

head(x) This returns the first six values in the variable.

foot(x) This returns the last six values in the variable.

seq(from, to, by, length) This returns a vector of sequential values, where
by indicates the step size and length specifies the vector length.

length(x) This calculates the length of a vector (variable), which is the sam-
ple size, n.

residuals(mod) This calculates the residuals in the model, which is the dif-
ference between the observed and the predicted.

Graphics:

qqnorm(x) This creates a Normal quantile-quantile plot for the given val-
ues.

qqline(x) This adds the diagonal line to the quantile-quantile plot.

overlay(x) This, from the RFS package, produces a histogram with a Normal
curve overlaying it.

par(. . . ) This sets parameters on the next graphic started. Look through the
help page for this function to see all you can specify.

plot(x,y) This produces a scatter plot of the y-values against the x-values.

axis(side) When a plot is already drawn, this adds values along axis number
side.

title(. . . ) When a plot is already drawn, this adds the x- and y-labels.
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lines(x,y) When a plot is already drawn, this draws lines between each sub-
sequent (x,y) pair.

points(x,y) When a plot is already drawn, this draws points at each (x,y)
pair.

Programming:

attach(dataframe) This allows you to access the variables in the datarame
without having to prefix each with dataframe$.

library(package) This loads an external package that you have already in-
stalled on your computer. It allows access to all functions and data sets
in the package package.

as.character(x) This changes the values in variable x to be characters.

as.numeric(x) This changes the values in variable x to be numbers.
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5.5.2 Exercises

1. In the two panels in Figure 5.4, the lines of best fit do not go beyond
the data. Why?

2. Section 5.3.8 mentioned that there was a really big problem with this
analysis. Run the following code.

mean(outcome>1) + mean(outcome<0)

What value is given, what does it mean, and why does it imply there is
something fundamentally wrong with the analysis?
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