
Chapter 4:

Dood! ChecktheRequirements

Overview:

There are several requirements for ordinary least
squares regression to be applicable. In this chapter, we
cover them, their tests, and their relative importance.
Focus on the relationship between the assumption/re-
quirement and the tests used. As these assumptions
(requirements) are used for some other fitting meth-
ods, not just ordinary least squares, the lessons learned
here are helpful in the future.

However, realize that each fitting method has its
own set of assumptions/requirements. For instance,
median regression (Chapter 8) requires only the con-
stant expected residual value. Maximum likelihood for
Poisson regression (Chapter 13) requires that, plus a
specific relationship between the expected value and
variance.
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In Chapter 2, we created the ordinary least squares regression technique.
The mathematics of the situation required detX′X , 0. Because this corre-
sponds to the requirement that the design matrix X be of full column rank,
the requirement is met when the independent variables are not linear com-
binations of each other.

Chapter 3 included the requirement

εi
iid∼ N

(
0; σ2

)
(4.1)

This allowed us to move beyond the pure mathematics of Chapter 2 and
begin making inferences about the population based on the sample.

The requirement that εi
iid∼ N

(
0; σ2

)
, equivalently E ∼ N

(
0; σ2I

)
, hasequivalently

several parts to it: normality, constant expected value (of zero), constant vari-
ance, and independence. This chapter takes these assumptions and explores
them. Both graphical and numeric tests are presented. Throughout it all,
we will rely heavily on R to generate the residuals, create the graphics, and
perform the tests.

Note: Some R functions require an additional package to be loaded. When
such is the case, I indicate that in a special font. For example, the runs test
(Bradley 1968) is implemented in the lawstat package as the function
runs.test. The lmtest has the bptest, which performs the Breusch-
Pagan test.

80



Some R functions are not included in any package and must be
downloaded from the Internet each session. Such functions require you
to run

source("http://rfs.kvasaheim.com/rfs.R")

at the start of the script. Once that line is run, you can then run several
additional functions, like overlay, hetero.test, shapiroTest, and
an advanced version of runs.test.

4.1: Normality

Let us tackle the requirement of normality first. In Chapter 3, this assump-
tion allowed us to exactly determine the distribution of the test statistics,
which allowed us to exactly calculate p-values and confidence intervals. In
this section, let us look at how to test your model that this assumption/re-
quirement is met.

4.1.1 Graphical Tests From your elementary statistics course, you were
most likely introduced to a pair of graphical tests of normality: Q-Q plots
and histograms. In this section, we examine each when the residuals are
generated from a normal process and when they are not. To do this, let’s do
some experiments using R.

To begin, let us generate 100 residuals from a normal process, with
mean µ = 0 and standard deviation σ = 2:

e = rnorm(100, m=0, s=2)

The rnorm function generates n random values from a normal distribution
with mean m and standard deviation s. Running this line only stores those
100 random values in the e variable.

�Warning: Be aware that R, like most statistics programs, parameterizes the nor-
mal distribution using the standard deviation instead of the variance.
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Figure 4.1: Default normal quantile-quantile plots The left panel is for the randomly-
generated normal data. Note that the circles fall close to the diagonal target line. The
right panel is for the randomly-generated Exponential data. Note that the circles do not
tend to fall close to the diagonal target line. There is a distinct bow in them, which signifies
the residuals have a right (positive) skew.

With that one line, we have some ‘residuals’ to play with that are generated
“under the null hypothesis” that they are generated from a normal distribu-
tion. This will allow us to better understand what the normal distribution
looks like.

Q-Q Plot: So, let us look at how to generate a normal-based quantile-quantile
(Q-Q) plot using R.

qqnorm(e)

That’s it. After running that one line, R creates the usual Q-Q plot for the
normal quantiles. It is a default graphic, so it does not look awesome, but itquantile-quantile
does get the point across to the statistician.

One shortcoming of the default Q-Q plot in R is that it does not pro-
vide the diagonal line. You can add it by also running the command

qqline(e)

Figure 4.1, left panel, is the graphic produced by running these lines. Note
that most of the circles cluster around the diagonal target line. Let us com-
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pare that graphic to a Q-Q plot from a non-normal distribution. The non-
normal distribution will be the Exponential(λ = 0.10) distribution.1

enon = rexp(100, rate=1/10)
qqnorm(enon)
qqline(enon)

Compare the two graphics in Figure 4.1. Note that the shape of the Q-Q
plot from the normal residuals (left) is very different from the one generated
from a skewed distribution (right). This particular shape indicates that the
distribution of the residuals is positively skewed (right skewed).

Histogram: In the previous section, we examined quantile-quantile plots.
We saw that a Q-Q plot with the dots aligning closely to the diagonal target
line suggests Normality. In this section, we will use histograms to obtain a
better view of the distribution of the data.

Again, let us generate Normally-distributed residuals.

e = rnorm(100, m=0, s=2)

The function to create a basic histogram is just

hist(e)

or

overlay(e)

This basic histogram produced is provided as in the left panel of Figure 4.2.
Note that it has the stereotypical “bell shape” to it, thus suggesting the data
come from a normal distribution. This is the shape you are seeking when
using a histogram to explore the distribution of the residuals.

What does the histogram look like when the data come from a highly
skewed distribution like the Exponential(λ = 0.10) distribution above? See
Figure 4.2, right panel.

Note the lack of bell shape in the left histogram of Figure 4.2 (and
enhanced in Figure 4.3. In fact, one can easily see that the residuals are pos-

1This distribution is highly right-skewed. We will come back to the Exponential distribution
several times to better understand how assumption violations affect our conclusions.
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Figure 4.2: Default histograms for the randomly-generated residuals. In the left panel,
note the basic bell shape to the histogram. Such a shape suggests that the residuals come
from a normal distribution. In the right panel, note the lack of a bell shape to the his-
togram. Such a shape suggests that the residuals do not come from a normal distribution.

Figure 4.3: Enhanced histograms for the randomly-generated residuals. These are the
same data as in Figure 4.2. The difference is that these graphics also overlay the normal
density function to aid in comparison.

itively skewed. Recall that the direction of the skew is in the same direction
as the long tail.

Note: I find using the histogram much easier than using the Q-Q plot. I
can “see” how the residuals are distributed in the histogram. In the Q-
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Q plot, I have to interpret much more, remembering what the different
shapes indicate.

Note: With that said, however, a Q-Q plot is much more useful than
a histogram when there are few data points. So, if your sample size is
small, you will want to use a Q-Q plot. Otherwise, a histogram may be
best.

4.1.2 Numeric Tests Because of the importance of the normal distribu-
tion in Statistics, there are several Normality tests available, with more being
created yearly. I mean, we gotta award those Ph.D. degrees for something, PhDs? PhDd?
right?

The reality is that it matters little which Normality test you use. As
you will see in Section 4.1.3, the Normality assumption in OLS reflects the
Normality assumption in t-tests and the like. The Central Limit Theorem
ensures that a sufficiently large sample size makes the distribution of the CLT
data largely irrelevant; the distribution of sample sums is “close” to normal.

So, for me, I default to using the Shapiro-Wilk test as my Normality
test. In base R, this test is implemented as the function shapiro.test. In
the RFS package (or rfs file), it is implemented as shapiroTest. I recom-
mend the latter, because it adds additional functionality.

So, let us generate some Normally-distributed residuals and see how
we can use the Shapiro-Wilk test.

Let us first set the random number seed. Technically, there is no such
thing as a truly random number when they are generated by a computer. This
is because these pseudo-random numbers are functions of a number called a prng
seed. If the seed is specified, then our “random numbers” will be the same.

To check this out, run the following three lines:

set.seed(370)
e = rnorm(100, m=0, s=2)
head(e, 5)

The numbers you get are
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-0.5566842 -1.7264618 1.3320962 -0.5392740 0.3477423

Setting the random number seed ensured that your values are mine.

Note: The head function returns the first six values in the variable, by
default. A similar function is the tail function, which returns the last
six values in the variable. I included the number 5 to have R only return
five numbers.

To perform the Shapiro-Wilk test, just run the following line

shapiroTest(e)

The output you get will be

Shapiro-Wilk normality test

data: e
W = 0.98554, p-value = 0.3472

The p-value is interpreted in the usual way: If the p-value is greater than α,
then you fail to reject the null hypothesis. If the p-value is less than α, then
you reject the null hypothesis. The null hypothesis in this case is that the
data are generated from a normal process (that the data come from a normal
distribution).2

Since the p-value is greater than α = 0.05, we fail to reject the null
hypothesis. We do not have sufficient evidence that the data are non-normal.

Note: We did not conclude that the data do come from a normal distri-
bution. We only concluded that there is no significant evidence to the
contrary.

2The normal distribution is identical to the Gaussian distribution. The only difference is the
discipline. In much of statistics, it is known as the normal distribution. However, when
we get to generalized linear models (Chapter 10), this same distribution will be called the
Gaussian distribution. In the Francophone world, this distribution is routinely called the
Laplace-Gauss distribution.
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To drive home this point, let us generate our data from a non-normal distri- golf or car?
bution and perform the Shapiro-Wilk test:

set.seed(370)
e = rt(100, df=100)
shapiroTest(e)

By the way that we generated the data, the residuals do not come from a nor-
mal distribution; they come from a Student’s t distribution with 100 degrees
of freedom (ν = 100). Here is the output

Shapiro-Wilk normality test

data: y
W = 0.98979, p-value = 0.6474

Note that the p-value is greater than our α value of 0.05. As such, we again
fail to reject the null hypothesis. There is not sufficient evidence that the
residuals do not come from a normal distribution.

However, we absolutely know they don’t.

�Warning: The Lesson— Never accept the null hypothesis. The p-value depends
on how reasonable the null hypothesis is, as well as how good the test is and how
large the sample is.

Note: Remember that when making decisions, there are really three usual
decisions: Yes, No, and Maybe. In statistics, since we are just testing
how reasonable the null hypothesis is, we only have two possible deci-
sions: Reject and Don’t Reject. These correspond to “the null hypothesis
is wrong” and “the null hypothesis is right or we don’t know.”

Let us now generate severely non-normal residuals and use the Shapiro-Wilk
test to see if they do come from a normal distribution:

set.seed(370)
e = rexp(100, rate=1/10)
shapiroTest(e)
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Here are the results:

Shapiro-Wilk normality test

data: y
W = 0.68002, p-value = 1.891e-13

Note that the p-value of 1.891×10−13 = 0.000 000 000 000 189 1 is much less
than α = 0.05. That strongly indicates that the residuals were not generated
from a normal process.

Note: Remember the Central Limit Theorem (Section S.6.4) and the effect
of sample size on the Normality of the sample sums. In the next section,
we will explore the effects of non-Normality on our estimators and their
distributions.

Why should I invoke the holy CLT in this context? Recall that the CLT speaksthe holy hand
grenade of Antioch to the distribution of sums (and means) of independent random variables. As

the sample size increases, the distribution of that sum approaches Normality
(Section S.6.4).

Look at the formulas for b0 and b1. They both include the sum of yi .
Thus, it is the distribution of

∑
yi that we really care about. If the yi are from

a normal distribution, then this requirement is met. However, if the sample
size is large enough, this condition is also met, as long as the data are from a
distribution with a finite variance. In other words, the CLT rules the world.peace and love

4.1.3 Exploration of the Effects of Non-Normality Mathematically
speaking, if the Normality assumption does not hold, then nothing in Chap-
ter 3 is absolutely true for the model. However, the Central Limit Theorem
tells us that a large sample size mitigates the effects of non-Normality in theCLT
residuals.

Let us explore that here. . .
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An Appropriate Test?: Recall from your previous statistics course two main
types of errors: Type I and Type II. A Type I Error happens when the null
hypothesis is correct, but the test tells you to reject it. For a statistical test to
be appropriate, the first requirement is that the Type I Error rate is equal (or
sufficiently close to) the claimed α level.

Thus, to determine if OLS is an appropriate test, let us examine the
Type I Error rate to check that it is (close enough to) α. This means we gen-
erate our data from the null hypothesis while meeting the requirements.

Here is the script to generate the data once

set.seed(30)
beta0 = 3
beta1 = 0

x = 1:20
e = rnorm(20, m=0, s=1)

y = beta0 + beta1*x + e

This tests the null hypothesis that β1 = 0:

model = lm(y∼ x)
summary(model)

The p-value corresponding to the test of our hypothesis is 0.3784. We can
have R just give that number to us:

summary(model)[[4]][2,4]

That is one p-value. If the test is entirely appropriate, we would reject our
true null hypothesis about α of the time. This statement is equivalent to the
statement that the p-values follow a standard Uniform distribution.

P ∼ U (0,1) (4.2)

Why?

If the test is appropriate, and if we reject when the p-value is less than appropriate
α, what is the probability of rejecting? It should be α. Why?

In statistical symbols, this is

P [P ≤ α] = α (4.3)

This is just the cumulative distribution function for the standard Uniform
distribution. Thus, P ∼ U (0,1).
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The code above gave us one p-value. To investigate the distribution
of p-values, you need to obtain thousands of p-values. The easiest way to door millions
this is to loop through the above steps and save the p-value from each test.

That is what the following code does:

set.seed(30)

pval = numeric()

beta0 = 3
beta1 = 0
x = 1:20

for(i in 1:1e4) {
e = rnorm(20, m=0, s=1)
y = beta0 + beta1*x + e
model = lm(y∼ x)
pval[i] = summary(model)[[4]][2,4]

}

At the end of running this code, the variable pval contains 10,000 (1e4 =
1× 104) observed p-values.

To determine if it follows a standard Uniform distribution, we can
create a histogram. When you do so, you note that it appears to closely fol-
low a standard Uniform distribution, although not exactly. We would not
expect it to follow the distribution exactly; those p-values are based on ran-
dom samples and are therefore random values and the results will therefore
be random.

Understanding the meaning of the p-value (above), we can check if
the test is appropriate for α = 0.05 by checking that the rejection rate is suffi-
ciently close to 0.05. In other words, we can test if the proportion of p-values
less than α is close enough to α. The Binomial test can accomplish this:3

binom.test( x=sum(pval<0.05), n=length(pval), p=0.05 )

The null hypothesis is that the proportion of rejections is equal to 0.05. The
p-value of 0.9817 indicates that the test seems reasonable. In other words,
the test appears to be find for α = 0.05.

3The Binomial test is the exact test for checking that the rejection rate is equal to the claimed
rate, 0.05. In your introductory course, you may have learned either the proportions test
or the Wald test. Both are approcimate tests that rely on the normal approximation to the
Binomial distribution.
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To determine if the test is appropriate for all possible α-values, we
could repeat the above for every possible value of α. That would only take
∞ years. On the other hand, we can test all possible α values at once by
recognizing that the p-values should follow a standard Uniform distribution
and testing if they do.

We can perform a statistical test to determine if the distribution of the
observed p-values is sufficiently non-Uniform:

ks.test(pval, "punif")

This line performs the Kolmogorov-Smirnov test (Massey 1951). Its null hy-
pothesis is that the observed values follow the distribution stated. Because
the p-value is 0.4361, we fail to reject the null hypothesis that the p-values
follow a standard Uniform distribution.

In other words: the test appears to be universally appropriate. That
is, it seems to be appropriate for any value of α you select.

Thus, we know that the test associated with testing the null hypothesis
β1 = 0 is appropriate for our usual value of α as well as for all values of α.

It is good to know that OLS works when the assumptions are met.

�Warning: When running tests, you will tend to just look for the p-value and draw
conclusions based on that one number. If you do, be very clear what that p-value
measures. In the previous example, there were 10,002 different p-values. The first
10,000 were p-values for the test that β1 = 0 for 10,000 different sets of data.
The 10,001th p-value determined if the distribution of those p-value was standard
Uniform. The last p-value determined if the proportion of those p-values less than
α = 0.05 was 0.05.

There were 10,002 different tests in this example.
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Non-Normal Residuals I: Now, what about if the Normality assumption is
not met? What if the residuals follow an Exponential distribution? The fol-
lowing code generates 10,000 p-values where the residuals follow an Exponential(λ =
1) distribution. Be able to compare it to the previous code listing and find
the one difference.

set.seed(30)

pval = numeric()

beta0 = 3
beta1 = 0
x = 1:20

for(i in 1:1e4) {
e = rexp(20, rate=1)
y = beta0 + beta1*x + e
model = lm(y∼ x)
pval[i] = summary(model)[[4]][2,4]

}

binom.test( x=sum(pval<0.05), n=length(pval), p=0.05 )

ks.test(pval, "punif")

The Binomial test returns a p-value of 0.422, which suggests to us that the
OLS test is appropriate for α = 0.05. Furthermore, the Kolmogorov-Smirnov
test returns a p-value of 0.2867. Thus, even if the residuals are skewed this
much (γ1 = 2), the tests arising from the ordinary least squares estimation
method (Theorem 3.8) appear universally appropriate.4

Note: The sample size in these test is n = 20. This is much lower than the
usual “rule of thumb” of n = 30.

Note: Also note that what we actually discovered is that OLS is very ro-
bust to violations of some of its requirements.

4The parameter γ1 is a measure of skew. It is defined as the third standardized central moment.
See Appendix S.6.5.
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Non-Normal Residuals II: Now, let’s create a different skewed distribution
for the residuals that is even more skewed: a Chi-Square(ν = 1) distribution
(γ1 =

√
8 ≈ 2.8). Again, be able to compare it to the previous code listing and

find the one difference.

set.seed(30)

pval = numeric()

beta0 = 3
beta1 = 0
x = 1:20

for(i in 1:1e4) {
e = rchisq(20, df=1)
y = beta0 + beta1*x + e
model = lm(y∼ x)
pval[i] = summary(model)[[4]][2,4]

}

The Kolmogorov-Smirnov test returns a p-value of 0.2667. Thus, even if the
residuals are this skewed, the tests arising from OLS appear universally ap-
propriate. The Binomial test returns a p-value of 0.0939, which tells us that
the OLS test appears to be appropriate for α = 0.05.2f@R functions!ks.test

Thus, even when the residuals follow this heavily skewed distribution,
the conclusions based on our OLS tests (Theorem 3.8) seem to be appropriate
for a sample size of n = 20.

Non-Normal Residuals III: Now, let’s create a symmetric distribution for
the residuals. Because its variance is not finite, the Central Limit Theorem
does not apply: It is the Cauchy distribution (Section S.4.7). Again, be able
to compare it to the previous code listing and find the one difference.

set.seed(30)

pval = numeric()

beta0 = 3
beta1 = 0
x = 1:20

for(i in 1:1e4) {
e = rcauchy(20)
y = beta0 + beta1*x + e
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model = lm(y∼ x)
pval[i] = summary(model)[[4]][2,4]

}

The Kolmogorov-Smirnov test returns a p-value of essentially 0. The Bino-
mial test also returns a p-value of essentially 0. This tells us that the OLS test
is not appropriate everywhere or even at α = 0.05 when the residuals come
from a Cauchy distribution.

Increasing the sample size will not fix this issue, either:

set.seed(30)

pval = numeric()

beta0 = 3
beta1 = 0
x = 1:5000

for(i in 1:1e4) {
e = rcauchy(5000)
y = beta0 + beta1*x + e
model = lm(y∼ x)
pval[i] = summary(model)[[4]][2,4]

}

hist(pval)

In this code, the sample size is 5000. The conclusions are the same.

Looking at the histogram, you see that the first bar is much smaller
than the others. This means the OLS tests reject at a lower rate than 0.05.rejection rate

Note: When the underlying distribution does not have a finite variance,
such as the Cauchy distribution, the Central Limit Theorem does not ap-
ply. That means increasing the sample size has absolutely no effect on the
normality of the sums. The sample sums are never normally distributed.
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4.2: Constant Expected Value

A second requirement of ordinary least squares (OLS) is that the expected
value of the residuals is constant (and zero). From the gut, this means that the
residuals evenly bounce above and below our estimates (regression curve). If
the residuals are above (or below) our estimates more than expected, then
the curve should be moved up (or down) to provide a “better” fit.

We used this requirement in many places in Chapters 2 and 3. This re-
quirement is entirely equivalent to the assumption that the underlying model equivalent
(expected/predicted values) consistently fits the data, that there is no system-
atic error.

Note: Be aware, however, that the mathematics behind OLS will force
the average residual to be zero. This means two things. First, the OLS
model is “self-correcting,” in that the “line of best fit” will provide the
best linear fit. Second, the OLS model ensure that it is impossible to
detect a systematic error in the measurements.

4.2.1 Graphical Test Graph the residuals against each of the indepen-
dent variables. Look for non-linear patterns in the plot (parabolas, cubics,
etc.). If such exists, your model is misspecified. A fix is to transform the
independent variable to eliminate that pattern. This is one place where the
graphical “test” is superior to the numeric test. If you can identify the pat-
tern, you have the fix.

For instance, if the residuals have the pattern in Figure 4.4, then the residuals plot
solution may be to use x2 in place of (or in addition to) x. To see this, run the
following code to obtain Figure 4.4.

set.seed(370)
x = seq(0,3,length=20)
n = length(x)
e = rnorm(n)
y = 4 + 2*xˆ2 + e

mod = lm(y ∼ x)
E = residuals(mod)

plot(x, E) ## residuals plot
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Figure 4.4: A residuals plot for a misspecified model. Note that the residuals show a
definite quadratic form to them. Fixing this issue may be as simple as including x2 as an
additional independent variable.

Note the strong quadratic shape to the residuals plot (Figure 4.4). This strongly
suggests that the model is misspecified.

Note: As an aside, note that there are only three ‘runs’ in the residuals. Arun
run is a sequence of values on one side of the prediction line. According
to Figure 4.4, the first run consists of the first 5 values; the second, the
next 12 values; and the third, the last 3 values.

Since the number of runs is based on the Binomial distribution,
we can calculate the probability of observing this number of runs under
the null hypothesis. Thus, we can calculate a p-value for the hypothesis
that the model is properly specified (see Section S.6.3).

This example clearly shows that the model is misspecified. There
is still some information contained in the residuals. It would be wrong to
ignore that information.
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Figure 4.5: Residuals plots for the properly specified model. There is one residuals plot
per independent variable. Note that the residuals in neither plot suggest anything other
than a lack of pattern.

Since the residuals plot has a prominent quadratic shape, a solution is to
include x2 in the model:

x2 = xˆ2
mod = lm(y ∼ x + x2)
E2 = residuals(mod)

plot(x, E2) ## residuals plot

With this change, we re-examine the residuals plot — one residuals plot for
each independent variable. Since we have two (one?), we need to examine one?
two (one?) residuals plots (Figure 4.5). Note the transformation was success-
ful. Neither plot shows anything other than random bouncing across the line
y = 0.

Note: There is a habit to feel sad that some requirement is not met by
the model/data, such as above. However, do not feel sad. Feel happy,
because you have learned something new about the relationships in the
data! We know more! Celebrate! Happiness!
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4.2.2 A Numeric Test That last sentence leads us to a numeric test. Com-
pare the plots of Figure 4.4 and 4.5. The residual is colored blue if it is posi-
tive and pink otherwise. In Figure 4.4, there are long unbroken streaks (runs)
of blue and pink. In Figure 4.5, the length of those runs is much reduced andrun
the number is increased.

The test suggested by the above is not-surprisingly called the runs test
(Section S.6.3). It is implemented in the lawstat package as the function
runs.test. It takes just one piece of information: the residuals in the order
of the independent variable.

It is also implemented in the randtests and snpar packages, as well
as the rfs add-on, which is what I use in this book.

Here, I demonstrate the runs.test function in the rfs add-on. Note
that this function currently requires the lawstat package to be installed.
This restriction may change in the future.

source("http://rfs.kvasaheim.com/rfs.R")
library(lawstat)

set.seed(370)
x = runif(100)
e = rnorm(100)

runs.test(e, order=x) ## The runs test

In this version of the runs.test function, the first slot goes to the residuals,
and the second slot goes to the independent variable.

The output of this code is

Runs Test - Two sided

data: e, as ordered by x
Standardized Runs Statistic = 1.6081, p-value = 0.1078

As usual, check the p-value. Since the p-value of 0.1078 is greater than the α
level of 0.05, we fail to reject the null hypothesis that the expected value of
the residuals is constant and zero. Thus, since the p-value is greater than α,
the model passes this test.
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4.2.3 Exploration of the Effects of Non-Constant Expected Value To
see the effect of a non-constant expected value, let us revisit one of the proofs
from Chapter 2.

What is the expected value of b1 (the slope)?

E [b1] = E

[∑n
i=1(xi − x )(Yi − Y )∑n

i=1(xi − x )2

]
(4.4)

= E

[∑n
i=1(xi − x )Yi∑n
i=1(xi − x )2

]
(4.5)

=
∑n
i=1(xi − x )E [Yi]∑n
i=1(xi − x )2 (4.6)

=
∑n
i=1(xi − x )(β0 + β1xi +E [εi])∑n

i=1(xi − x )2 (4.7)

= β0

∑n
i=1(xi − x )∑n
i=1(xi − x )2 + β1

∑n
i=1(xi − x )xi∑n
i=1(xi − x )2 +

∑n
i=1(xi − x )E [εi]∑n
i=1(xi − x )2 (4.8)

= β0
0∑n

i=1(xi − x )2 + β1

∑n
i=1(xi − x )(xi − x )∑n

i=1(xi − x )2 +
∑n
i=1(xi − x )E [εi]∑n
i=1(xi − x )2 (4.9)

= β1 +
∑n
i=1(xi − x )E [εi]∑n
i=1(xi − x )2 (4.10)

Now, this last line is β1 if ε is independent of x. So, if the expected value is
constant zero, the OLS estimator of β1 is clearly unbiased. I leave it as an
exercise to show that if it is constant, but non-zero, then the OLS estimator exercise
of β1 remains unbiased.

Think of it this way: If the residuals are also a function of x, then their
effect is also captured in the b1 estimator.

If the assumption of a constant expected residual value is violated,
the OLS estimate of β1 is biased. This is not a good thing. It means that your
predictions are wrong. . . even “on average.”

But, what about the OLS estimator of β0, the y-intercept? What effect
does a non-constant expected value have on it? To see, let us revisit the proof
of the unbiasedness of b0.
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E [b0] = E

[
Y − xb1

]
(4.11)

= E

[
Y

]
− x E [b1] (4.12)

= (β0 + xβ1 +E [εi])− x
(
β1 +

∑n
i=1(xi − x )E [εi]∑n
i=1(xi − x )2

)
(4.13)

The last term is the expected value of b1 from above. With that, we have

E [b0] = β0 +E [εi]− x
∑n
i=1(xi − x )E [εi]∑n
i=1(xi − x )2 (4.14)

Thus, there are two places that the non-constant variance affects the OLS
estimator of β0. If E [εi] = 0, the expected value of the errors is zero, then b0
is unbiased for β0. If E [εi] is constant, but non-zero, then E [b0] = β0 +E [εi].
If E [εi] is a function of x, then E [b0] is β0 +E [εi] plus some function of x.

I leave it as an exercise for you to show that E [b0] = β0 +E [εi] if x =exercise
0, regardless of whether the residuals are correlated with the independent
variable. This is yet another reason some disciplines center their data before
analyzing it.

� Warning: The actual assumption is that the expected value of the residual is
constantly zero. However, because of the mathematics of OLS, the mean residual
is guaranteed to be zero (page 41). So, there is no way to test if the expected value
of the residuals is constantly zero, only that it is constant.

Of all assumptions/requirements, this is the most important to meet. If yourimportant?
residuals depend on the value of x, then both the b0 and b1 estimators are
biased. If the expected value of the residuals is not zero, then the b0 estimator
is biased.

It is even worse. Because OLS mathematically forces e = 0, one cannot
test if the expected value of the residuals really is zero (page 41). One must
rely on the assumption that the data were collected without systematic error.
That is, the statistician must trust the scientist to measure things correctly.

Note: When would the residuals be a function of the residuals? This is
an excellent question that you need to grapple with. It fundamentally
means that you are missing an important variable from your model. Per-
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haps that variable is not an independent variable. Perhaps it is a con-
founding variable. Perhaps it is another dependent variable, which re-
quires multivariate regression (beyond the scope of this book). It defi-
nitely means your model is fatally weak and should be rejected.

4.3: Constant Variance

The last assumption/requirement we will explore is the assumption that the
residuals have a constant variance, σ2. We used this in many places in Chap-
ter 3. In fact, every place you saw a σ2, we relied on the assumption it was a
constant, that it was not really σ2

i .

If the variance is not constant with respect to the independent vari-
ables, neither the test statistic nor the confidence intervals will be correct.

Note: A note on vocabulary. If the variance of the residuals is constant,
we claim the residuals are “homoskedastic.” Otherwise, they are “het-
eroskedastic.” Recall that ‘homo’ means same, ‘hetero’ means different,
and ‘skedastic’ means scatter.

4.3.1 Graphical Test The graphical test is very similar to that for check-
ing constant expected value. In that assumption, a residual plot was created.
The middle of the vertical spread was traced out and checked to see if it was
always near the zero line.

For testing constant variance, a residual plot can be used. The vertical
spread of the data is traced out and checked that it does not vary too much.
Note that the “vertical spread” is not the range, but the middle portion that
contains about two-thirds of the data.

There are three stereotypical shapes that suggest heteroskedasticity.
These three shapes, along with a shape suggesting homoskedasticity, are pre-
sented in Figure 4.6.
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Figure 4.6: Residual plots illustrating homoskedasticity (top-left) and three typical types
of heteroskedasticity: trumpet (top-right), funnel (bottom-left), and bulge (bottom-right).
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4.3.2 Numeric Test In addition to what your eyes may tell you, it may
be better to also perform a numeric test of homoskedasticity.5 There are a
couple. The main test used in the regression area is the Breusch-Pagan test.

The way that the Breusch-Pagan test works is to refit the model includ-
ing higher-order terms of the independent variables and compare the ratio
of the two SSE values to a specific distribution. Since the null hypothesis
is homoskedasticity (constant variance), a ratio close to one (large p-value)
indicates that the model passes this test (the higher-order terms add little to
the predictive ability of the model). A sufficiently small p-value indicates the
presence of heteroskedasticity (those larger-order terms should be included
to the model), which means the model should not be used.

So, to examine the Breusch-Pagan test, let us generate our data, first
according to our assumptions, then in violation of them. The Breusch-Pagan
test is contained in the lmtest package as the function bptest. bptest

set.seed(30)
x = seq(0,100)
n = length(x)
e = rnorm(n, m=0, s=1)
y = 3 + 2*x + e

plot(x,y, pch=21, bg="dodgerblue")

The scatter plot of this data does not really seem to suggest a changing vari-
ation in the residuals. Let us perform the Breusch-Pagan test to see if this
numeric test also fails to detect a problem with the constant-variance as-
sumption.

mod = lm(y∼ x)
bptest(mod)

If you get a Error: could not find function "bptest" message,
then you need to load (or install and load) the lmtest package first.

5I recommend performing both, when possible. If the p-value on the numeric test is too low,
then the graphical test either gives you clues on where the problem is, or that the problem is
practically minor and can be ignored.
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Once you do, your output should look exactly like this

studentized Breusch-Pagan test

data: mod
BP = 0.23429, df = 1, p-value = 0.6284

Because the p-value is greater than α, we cannot reject the null hypothesis of
homoskedasticity. The model passes the test.

Let us look at what happens when the residuals are heteroskedastic.

set.seed(30)
x = seq(0,100)
n = length(x)
e = rnorm(n, m=0, s=sqrt(x))
y = 3 + 2*x + e

plot(x,y, pch=21,bg="dodgerblue")

The scatter plot of this data definitely suggests increasing variation in the
residuals, a trumpet shape that indicates heteroskedasticity. Let us perform
the Breusch-Pagan test to see if this numeric test also detects a problem with
the constant-variance assumption.

mod = lm(y∼ x)
bptest(mod)

Your output should look like this

studentized Breusch-Pagan test

data: mod
BP = 8.0992, df = 1, p-value = 0.004428

Because the p-value is less than α, we reject the null hypothesis of homoske-
dasticity. The model does not pass the test.

Note: Recall from your previous statistics course that a true null hypoth-
esis will be rejected α proportion of the time and a false null hypothesis
will be accepted β proportion of the time, where α is the Type I error
rate and β is the Type II error rate. Neither of these numbers can be zero
without making the other 1. So, be aware that you may be accepting or
rejecting incorrectly.
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4.3.3 Exploration of the Effects of Non-Constant Variance (coverage)

Instead of looking at proofs or the distribution of p-values, let us generate
data and look at the confidence intervals estimated using OLS. While it is
easy to see that there is an effect using proofs, this method may make it eas-
ier to see how serious those effects are.

The first thing to do is to generate heteroskedastic data, calculate the
95% confidence intervals, and check if the true population parameters β0
and β1 are in the intervals. The second thing is to repeat this step many,
many, many times to approximate the probability that the confidence inter-
vals contains the population parameters. If the coverage of the estimated coverage
intervals are close to 95%, then the effect of heteroskedasticity is minor.

Here is the entire code

set.seed(30)
b0covered = numeric()
b1covered = numeric()

for(i in 1:1e4) {
x = seq(0,10,0.5)
n = length(x)
e = rnorm(n, m=0, s=sqrt(x))
y = 3 + 2*x + e
mod = lm(y∼ x)
ci = confint(mod)
b0covered[i] = (3>ci[1,1]) && (3<ci[1,2])
b1covered[i] = (2>ci[2,1]) && (2<ci[2,2])

}

Running this may take anywhere from a few seconds to a minute or more.
At the end, you will have two variables, b0covered and b1covered, that
contain 10,000 Boolean values (TRUE and FALSE). A TRUE indicates the pop-
ulation parameter was covered by the confidence interval. A FALSE indicates
it was not. The proportion of TRUE values can quickly be calculated using
mean(b0covered) and mean(b1covered).

The proportion of times the β0 parameter was covered by the confi-
dence interval was 0.996. Thus, the estimated coverage for β0 when the data
are heteroskedastic in this manner is 99.6%. The coverage rate for β1 is about
95.1%. Both should be close to 1−α, 95%.

From these results, we know a couple of things. First, this amount interpretation
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of heteroskedasticity did not (practically) significantly affect the confidence
intervals for the slope parameter, β1. Second, it did (practically) significantly
affect it for the intercept parameter. In fact, because the reported confidence
interval is much wider that the “true” confidence interval, a researcher will
reject too infrequently. This means the power of the test is too low.

Let us try a greater level of heteroskedasticity. And, let us make it
funnel instead of the above trumpet:

set.seed(30)
b0covered = b1covered = numeric()

for(i in 1:1e4) {
x = seq(0,10,0.5)
n = length(x)
e = rnorm(n, m=0, s=15-x)
y = 3 + 2*x + e
mod = lm(y∼ x)
ci = confint(mod)
b0covered[i] = (3>ci[1,1]) && (3<ci[1,2])
b1covered[i] = (2>ci[2,1]) && (2<ci[2,2])

}

Note what changed: the standard deviation of the residuals. It starts high
and gets smaller — a funnel shape.

This scheme produces a coverage estimate of 88.8% for the interceptinterpretation
parameter and 93.9% for the slope parameter. Thus, the confidence interval
for the intercept is again affected more than that of the slope parameter. In
fact, the slope parameter is relatively unchanged.

Let us try once more. This time, let us look at bulge heteroskedasticity.

set.seed(30)
b0covered = b1covered = numeric()

for(i in 1:1e4) {
x = seq(0,10,0.5)
n = length(x)
e = rnorm(n, m=0, s=11-2*abs(x-5))
y = 3 + 2*x + e
mod = lm(y∼ x)
ci = confint(mod)
b0covered[i] = (3>ci[1,1]) && (3<ci[1,2])
b1covered[i] = (2>ci[2,1]) && (2<ci[2,2])

}
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Again, note the common code and the slight changes. Here, the variance
starts low (1), gets higher (11), then decreases again to 1 — a bulge hetero-
skedasticity.

The coverage for both parameters are far from 95%. For β0, the cover- interpretation
age is 99.3%; for β1, 99.8%. Both indicate that the researcher will reject the
hypotheses far too infrequently.

Test Statstics: The test statistics for β0 and β1 are calculated using the MSE.
That test statistic, if all of the assumptions are true, follows the Student’s t
distribution with n − p degrees of freedom. However, if the variance is a
function of the independent variable, the distribution of the test statistic is
also a function of the independent variable. This is a problem, because the
“correct” p-values and confidence intervals would also be functions of x.

The analysis of the effect of heteroskdasticity can be repeated for the
distribution of test statistics. Or, we can realize that we reject the null hy- rejection
pothesis when the confidence interval does not contain our hypothesized
value. That is, the analysis for the confidence interval is sufficient for our
understanding of the p-value:

1. If the confidence interval is too wide, then the p-values will be too high
(reject the null hypothesis too infrequently).

2. If the confidence intervals are too narrow, then the p-values are too low
(reject too frequently).

Of the two possibilities, the first (which produces a higher Type I error rate)
may be better from the researcher’s point of view in some cases: While the
researcher would end up rejecting too infrequently, those rejections are more
sure because the true p-value is less than the observed p-value. One may
prefer this when it worse to commit a Type I error (rejecting a true null hy-
pothesis).

On the other hand, however, the second may be better in certain cir-
cumstances. It will have a lower Type II error rate. If it is more important to
protect against a Type II error, then this will be the better scenario.

Note: These findings regarding the hypothesis tests about β strictly relate
only to these particular three types of heteroskedasticity at these three
particular levels. If you find your heteroskedasticity is much higher than
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those used in these examples, you should run a coverage analysis similar
to these to see how bad the heteroskedasticity really affects the confi-
dence intervals.

The above analysis examined the effects of heteroskedasticity on the parame-
ter estimates. It did not examine its effect on the prediction of y-values. Those
effects are much more pronounced and are also a function of the variance at the
x-value.

To see this in one example, let us generate trumpet-shaped heteroskedas-
tic residuals, predict the value of y at three points along the x-axis, and deter-
mine how frequently those points are covered by the calculated confidence
intervals.

Before we do this, let us see if we can determine what to expect. For
low values of x, there is very little true variation in the predicted value. Thus,
we would expect the predicted value to fall in the calculated confidence in-
terval very frequently.

For middling values of x, the true and estimated variances are close to
each other. Thus, we would expect coverage to be close to the nominal 95%.

For large values of x, the true variation is much higher than the esti-
mated variation. Thus, a lot of the predicted y-values should fall outside the
confidence interval. We should expect the coverage to be relatively low. Let’s
see if these expectations are met by reality.coverage
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Here is the entire code

set.seed(30)

y1covered = numeric()
y2covered = numeric()
y3covered = numeric()

for(i in 1:1e4) {
x = seq(0,10,0.5)
n = length(x)
e = rnorm(n, m=0, s=sqrt(x))
y = 3 + 2*x + e
mod = lm(y∼ x)

ypr = predict(mod, newdata=data.frame(x=c(0,5,10)), interval=
"confidence")

y1covered[i] = ( 3>ypr[1,2]) && ( 3<ypr[1,3])
y2covered[i] = (13>ypr[2,2]) && (13<ypr[2,3])
y3covered[i] = (23>ypr[3,2]) && (23<ypr[3,3])

}

mean(y1covered)
mean(y2covered)
mean(y3covered)

The coverage for y when x is very low is 99.6%, which is very high. The interpretation
coverage for y when x is in the middle is 94.5%, which is about what we
want. The coverage for y when x is very high is 88.7%, which is relatively
low.

These results are what we expected.

Note: Realize again the connection between p-values and confidence in-
tervals. To ensure that our p-values are “protected” — are no more than
estimated — we need to limit ourselves to the areas where the true spread
is no larger than the average.
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4.4: Multicollinearity

Recall that there was just one requirement of the mathematics on ordinary
least squares estimation: The independent variables could not be linear com-
binations of each other (Section 2.2.1). If this is the case, then we cannot do
the mathematics behind OLS estimation.

However, such perfect multicollinearity is not the only problem thatsupercollinearity
can occur. If two (or more) independent variables are highly correlated, then
problems can arise. These problems can be examined in terms of either the
computer science or the experimental logic.

4.4.1 The CS of Multicollinearity Note that we are using a computer
to perform our calculations. Because a computer is not able to store numbers
in memory perfectly, rounding errors creep into the calculations. While this
will always happen when the number does not have a finite binary represen-
tation, it is most important to understand when the decimal is close to zero,
when it is less than the “machine epsilon.” When this is the case, the num-
ber rounds to zero. In other words, if the value is between −ε and +ε, the
computer treats it as a zero.

On 64-bit computers, the value of epsilon is approximately 2.220446×
10−16. However, if the determinant of the matrix is this value or less in mag-
nitude, the computer will claim it is singular (Appendix page 428).

solve( matrix( c(1,0, 0,2.220446e-16), ncol=2) )

Mathematically, we can calculate the determinant as 2.220446×10−16, which
means the matrix is not singular. However, calculating the inverse returns
the following:

Error in solve.default(matrix(c(1, 0, 0, 2.220446e-17), ncol
= 2)) :

system is computationally singular: reciprocal condition
number = 2.22045e-17

The lesson to take beyond this specific case is that the matrix does not have
to be singular for the computer to tell you it is. All that is needed is that the
determinant of the X′X matrix is close to zero.
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This is the Computer Science result. The next section looks at what
multicollinearity means in terms of the logic of experimental design and in-
terpretation.

4.4.2 The Logic of Multicollinearity The previous section examined
the effects of multicollinearity on calculations, specifically of the inverse of
the X′X matrix. If its determinant is sufficiently close to zero, then the com-
puter will treat is as a zero, meaning the matrix will be effectively singular.
However, this is only a CS problem. A good statistician will pay attention to
the conditions that cause multicollinearity. . . even minor amounts of it.

Recall that multicollinearity occurs when a column in the data matrix
is a linear combination of the other columns; that is, it happens when one
variable is a linear combination of the others; that is, it happens when one
variable adds no new information beyond what the other variables contain.
For instance, if one variable is a person’s height in inches and another vari-
able is a person’s height in centimeters, then multicollinearity exists. The
first variable offer no information that is not contained in the second.

A statistician cares about the independent variables in the model.
They are designed to explain the dependent variable. Each independent vari-
able is supposed to be independent of the others, because each is designed to
explain a different aspect of the response variable. If two explanatory vari-
ables are highly correlated with each other, then it will be logically impos-
sible to determine which of the two is causing the change in the dependent
variable:

• Is it the logarithm of a person’s height in inches or the logarithm of
the square of a person’s height in inches that can be used to estimate
weight?

• Is it average daily temperature or ice cream consumption that can be
used to estimate the violent crime rate?

• Is it educational attainment or parental income that can be used to es-
timate a person’s future income?

These three exemplify the issue with multicollinearity in practice. The first
example produces mathematical (“super-”) multicollinearity because the log-
arithm of the square of a variable is exactly twice the logarithm of the vari-
able. The first column is twice the second.
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The second example does not exemplify mathematical multicollinear-
ity. There is no function of average daily temperature that gives the ice cream
consumption. However, there is a very strong linear relationship between
the two. Because of this, one cannot statisticall tell if it is the temperature
or the ice cream that is affecting violent crime. With this said, unless the
dairy farmers are attacking the very foundation of society, the substantive
scientific theory suggests that the temperature is likely the factor affecting
the crime rate, not the cold dairy.

The third example is more subtle. There is also a strong relationship
between a person’s education attainment and the parent’s income (at least in
the United States). Because of this, we are unable to statistically determine if
it is the person’s educational attainment or the income of the person’s parents
that affects the person’s future income. Social science theories suggest each.
The statistics with each explanatory variable also suggest each. What can we
do in this case?

Indications of Multicollinearity: To see some statistical indications of
multicollinearity, try the following code.

set.seed(30)

b0 = 3
b1 = 2
b2 = 3

x1 = seq(0,10,length=8)
x2 = c(1,2,3,4,6,7,8,9)
e = rnorm(8)

y = b0 + b1*x1 + b2*x2 + e

mod1 = lm(y∼ x1)
mod2 = lm(y∼ x2)
modA = lm(y∼ x1+x2)

Clearly, from how this experiment is set up, we know the following:

• There is a strong relationship between x1 and y.

• There is a strong relationship between x2 and y.

• There is a strong relationship between x1 and x2.
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Running summary(mod1) shows us that the first statement is true, if we ig-
nore the effect of x2. Similarly, running summary(mod2) shows us that the
second statement is true, if we ignore the effect of x1. Combining the two
explanatory variables in modA is confusing if we do not think about multi-
collinearity. summary(modA) gives the following results:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.814 1.898 1.483 0.198
x1 2.145 1.681 1.276 0.258
x2 2.861 2.009 1.424 0.214

Residual standard error: 1.386 on 5 degrees of freedom
Multiple R-squared: 0.9946, Adjusted R-squared: 0.9924
F-statistic: 458.7 on 2 and 5 DF, p-value: 2.164e-06

Note that this model shows that neither independent variable is valuable in
modeling the dependent variable. Since a scientist will usually put all the ex-
planatory variables in the model, this is a lesson for us to pay attention to the
relationships among the independent variables. By the way, the correlation
between the two independent variables is ρ = 0.9960238, which is incredibly
high.

A Test of Multicollinearity: How do we statistically detect this type of
multicollinearity? A simple correlation test will not suffice if we have more
than two independent variables because correlation is between only two vari-
ables.

The answer comes from the cause of the multicollinearity: If there is
multicollinearity, then one independent variable should be linearly related
to the others. A linear regression will be able to detect this. Technically, a
linear regression for each independent variable will detect this. To make this
process easy, there is the vif function in the car package. This function
calculates the “variance inflation factor” for each independent variable. The
variance inflation factor for independent variable i is defined as

VIFi :=
1

1−R2
i

(4.15)

Here, R2
i is the R-squared value for the model regressing the independent

variables on independent variable i.
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In our example above, one can calculate the VIF by hand:

summary( lm(x1∼ x2) )
1/(1-0.9921)

The higher the value of R2, the more independent variable i can be explained
by the other independent variables. In other words, the higher the VIF, the
less new information that variable adds to the model.

As in much of the field, this description leads to the question How
high is too high? The “rule of thumb” depends on the discipline. Typical
cut-offs are 5, 8, and 10. If the VIF for any of the variables is greater than the
cut-off, then there is “too much multicollinearity in the the model.”

Fixing Multicollinearity: So, let’s say that you have detected multicollinear-
ity in your model. What can you do?

The presence of multicollinearity means that one of your independent
variables is highly correlated with a linear function of the others. It adds
little to the understanding of the response variable. However, is it variable i
that should be examined or the others?

From a statistical standpoint, the model is not helpful. Multiple vari-
ables are trying to explain the same aspects of the dependent variable. In
other words,

• Is it educational attainment or parent’s income that affects the respon-
dent’s income?

• Is it race or poverty that affects violent crime?

• Is it intelligence or birth position (oldest, youngest, middle, etc. child)
that affects success?

• Is it the ranch or the cattle feed that affects the weight?

• Is it race or income or religion or parental income orhome state that
affects voting behavior?

• Is it nordic ancestry or blood type or neanderthal genes that affect the
severity of CoViD-19?

In each of these, the explanatory variables are highly correlated and have
been used to model the response variable. Because of the correlations, con-
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Figure 4.7: Diagram to illustrate multicollinearity. The left circle is the effect of the first
independent variable on the dependent variable; the right, the second. The purple overlap
is the similarity of the two variables.

clusions about what really affects the dependent variable are unclear. Statis-
tically, the answer is “yes, each does.”

However, since each of the independent variables above are corre-
lated, their effects overlap. This is represented as the purple overlapping
area in Figure 4.7. While each variable has an effect on the dependent vari-
able (red and blue), that effect is also split with the other variable (or vari-
ables). As such, the key is trying to separate the three sections to determine
whether it is the red, the blue, or the purple that is affecting the response
variable.

Unfortunately, this is beyond the scope of this course. For those who
are interested, you may want to investigate factor analysis (FA) and princi-
pal component analysis (PCA). These are two methods for dealing with that
overlap (purple area). The first focuses on estimating the purple area; the
second, on creating two other variables that combine the two independent
variables into their independent components (the parts that are purely red
and blue). The advantage is that the independent variables become inde-
pendent (VIF = 0). The disadvantage is that the newly-created independent
variables are only related to the original explanatory variables; thus, inter-
pretation is made more complicated.
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4.5: Conclusion

In this chapter, we looked at violating the primary assumptions of ordinary
least squares, as well as the effects of multicollinearity. Once we violated
those requirements, we looked to see what effect that violation had on our
parameters of interest.

We saw that violations of the Normality assumption cause very mi-
nor changes to our test statistics, unless the residuals were generated from a
distribution with non-finite variance. In such a case, the tests were all but
worthless.

Violations of constant expected value (proper model fit) were bad.
They cause the OLS estimators, test statistics, and confidence intervals to be
biased. The lesson here is to make sure that your measuring stick is properly
calibrated.

Heteroskedasticity is not an issue for the estimators. They remain un-
biased. They are an issue, however, for any testing done. This includes both
the test statistic and the confidence interval. This is because the standard
error used is the average, not the actual value for a general point.

Multicollinearity arises from independent variables that measure highly
similar concepts. Thus, the statistical effect is that the standard errors are in-
flated. The logical effect is that we are unsure which of the two variables
actually affects the dependent variable.

� Warning: Again, be aware of the multiple comparisons issue discussed in Ap-
pendix S.6.2. It explains why you need to either adjust your p-value or your alpha
level when performing multiple tests, such as when you are testing both β0 = 4
and β1 = 0.
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4.6: End-of-Chapter Materials

4.6.1 R Functions In this chapter, we were introduced to many, many,
many R functions that will be useful in regression. In fact, this chapter uses
more R functions than any other chapter in this book. Here are the many.

Packages:

car This package provides several statistical tests used in the book “An R
Companion to Applied Regression” by J. Fox and S. Weisberg. It is a
great package that provides a lot of additional functionality for R.

lawstat This package provides several statistical tests used in law and public
policy analysis. It provides the runs.test function for us.

lmtest This package provides many tests related to linear models. It pro-
vides an implementation of the Breusch-Pagan test, bptest, which
tests for heteroskedasticity in the residuals.

RFS This package does not yet exist. It is a package that adds much gen-
eral functionality to R. In lieu of using library(RFS) to access these
functions, run the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Statistics:

source(filename) This function runs an R script from a separate file. That
file may be local or on the Internet.

runs.test(E, order) This alteration to the lawstat function tests whether
the variable E, as ordered by order exhibits fit issues.

shapiroTest(E) This tests the null hypothesis that the variable E comes from
a Normal distribution. It is based on the shapiro.test function in
the basic R installation. It adds capabilities to test Normality in several
groups.

lm(formula) This is the function that performs ordinary least squares esti-
mation on linear models.
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bptest(mod) This function from the lmtest package performs the Bresuch-
Pagan test for heteroskedasticity.

confint(mod) This calculates confidence intervals for the parameters in or-
dinary least squares regression.

mean(x) This calculates the mean of a sample.

summary(x) This produces the six-number summary or a frequency table
of the provided variable, depending on the type of variable.

summary.lm(mod) When applied to a linear model fit using either the aov
function or the lm function, provides estimates of the effects of the nu-
meric variables and the levels of the categorical variables in the model.

summary.aov(mod) When applied to a linear model fit using either the aov
function or the lm function, provides estimates of the statistical signif-
icance of the variables in the model.

predict(mod) This predicts the values of the dependent variable at each
point in the dataset or for the values specified.

fligner.test(formula) This tests for heteroskedasticity when the indepen-
dent variable is categorical.

aov(formula) This function performs ordinary least squares estimation on
linear models.

vif(model) This function calculates the variance inflation factor (VIF) for
each of the independent variables in the model.

set.base(var,level) This RFS package function redefines the base category in
the provided level. By default, the base category is the first according
to the alphabet.

Probability:

set.seed(x) This sets the random number seed.

rexp(n, rate) This generates n random values from an Exponential distribu-
tion with the specified rate parameter.
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rnorm(n, mean, sd) This generates n random values from a Normal distri-
bution with specified mean and standard deviation. By default the
mean is 0 and the standard deviation is 1.

runif(n, min, max) This generates n random values from a Uniform distri-
bution with specified minimum and maximum values. By default, the
minimum is 0 and the maximum is 1.

Mathematics:

head(x) This returns the first six values in the variable.

foot(x) This returns the last six values in the variable.

seq(from, to, by, length) This returns a vector of sequential values, where
by indicates the step size and length specifies the vector length.

length(x) This calculates the length of a vector (variable), which is the sam-
ple size, n.

residuals(mod) This calculates the residuals in the model, which is the dif-
ference between the observed and the predicted.

Graphics:

qqnorm(x) This creates a Normal quantile-quantile plot for the given val-
ues.

qqline(x) This adds the diagonal line to the quantile-quantile plot.

overlay(x) This, from the RFS package, produces a histogram with a Normal
curve overlaying it.

par(. . . ) This sets parameters on the next graphic started. Look through the
help page for this function to see all you can specify.

plot(x,y) This produces a scatter plot of the y-values against the x-values.

axis(side) When a plot is already drawn, this adds values along axis number
side.

title(. . . ) When a plot is already drawn, this adds the x- and y-labels.
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lines(x,y) When a plot is already drawn, this draws lines between each sub-
sequent (x,y) pair.

points(x,y) When a plot is already drawn, this draws points at each (x,y)
pair.

Programming:

attach(dataframe) This allows you to access the variables in the datarame
without having to prefix each with dataframe$.

library(package) This loads an external package that you have already in-
stalled on your computer. It allows access to all functions and data sets
in the package package.

as.character(x) This changes the values in variable x to be characters.

as.numeric(x) This changes the values in variable x to be numbers.
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4.6.2 Exercises

1. Show that if the expected value of the residuals is constant, but non-
zero, then the OLS estimator of β1 remains unbiased.

2. Show that E [b0] = β0+E [ε] if x = 0, regardless of whether the residuals
are correlated with the independent variable.
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