
Chapter 3:

Improved! NowwithProbabilities

Overview:

This chapter extends the mathematics from last chap-
ter by adding a probability distribution to the residuals.
This results in the independent variable having a proba-
bility distribution.

Please keep in mind that the independent vari-
ables are not random variables. The researcher specifi-
cally selects their values. Adhering to this paradigm al-
lows us to more easily determine the resulting distribu-
tions. As such, this chapter continues this requirement.

Should we not adhere to this requirement, the re-
sults of this chapter will technically be wrong, but will
be close if the independent variable is statistically inde-
pendent of the dependent variable.
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In the previous chapter, we explored the mathematical consequences of our
choice of definition of “best.” In this chapter, we will acknowledge that the
residuals are observations from a random variable, specify its distribution,
and see where that takes us.

And so, let us return to our scalar model

yi = β0 + β1xi + εi (3.1)

and see what we can learn if the εi are generated from a Normal distribution.
Specifically, let us assume/require

εi
iid∼ N

(
0; σ2

)
(3.2)

The expected value of εi is a constant 0. No matter the values of the other
variables, the expected value of the residual is 0 at that point.

The variance of the εi is a constant σ2. No matter the values of the
other variables, the variance of the residual is σ2 at that point.

The abbreviation “iid” on top of the distribution sign means “inde-
pendent and identically distributed.” It indicates that the εi are independentiid
of each other, and that the distribution of each εi is the same,N

(
0; σ2

)
.

On the right side of equation (3.1), the εi is the only random variable.
The β0 and β1 are population parameters we are trying to estimate. The xi are
values selected by the experimenter, so they are also not random variables.
This last sentence is rather important for a lot of the calculations we make.
The values of the independent variable are selected by the researcher, they
are not realizations of a random variable.non-stochastic
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Figure 3.1: The basic scatter plot. This provides the observed values of the data as well as
the line of best fit according to the Ordinary Least Squares method. The residuals are also
indicated, with the values represented by dotted segments.

Since the only thing on the right hand side that is a random variable
is the εi , then it is rather easy to determine the distribution of Y . And, with
that, we are able to determine the distribution of almost all parameters we
find important.

3.1: Probability Distributions

From this one assumption/requirement, and the math from the previous
chapter, we have many consequences. This section provides the results re-
garding the distribution of our estimators. The next sections build on this.

Theorem 3.1. The distribution of Y , conditional on the value of x, is

Y | x ind∼ N
(
β0 + β1x; σ2

)
(3.3)

Proof. We are given Y = β0 + β1x + ε, with the only random variable on the
right being ε. Since ε follows a Normal distribution, so too does Y (see Corol-
lary S.39).
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The expected value of Y | x is

E [Y | x] = E [β0 + β1x+ ε] (3.4)

= E [β0] +E [β1x] +E [ε] (3.5)

= β0 + β1x+ 0 (3.6)

= β0 + β1x (3.7)

The variance of Y , conditional on x, is

V [Y | x] = V [β0 + β1x+ ε] (3.8)

= V [β0] +V [β1x] +V [ε] (3.9)

= 0 + 0 +V [ε] (3.10)

= σ2 (3.11)

Thus, putting this together, we have

Y | x ind∼ N
(
β0 + β1x; σ2

)
(3.12)

Note that the Y are only ‘independently distributed’ and not ‘independent
and identically distributed.’ This is because the expected value of Y depends
on the value of x. Since the Y do not all have the same (identical) distribution,
they are only ‘independently distributed.’

As for the results of the theorem above, they may not be too interest-
ing. However, as our estimators depend on the Yi , so too do their distribu-
tions. And that is where the interest arises.

We see this in the next theorem.

Theorem 3.2. The distribution of b1 isN
(
β1; σ2 1

Sxx

)
.

Proof. Before we start, we need to note that b1 can be written as a linear
combination of the Yi :

b1 =
∑n
i=1(xi − x ) Yi∑n
i=1(xi − x )2 (3.13)

I leave the proof of this as an exercise.exercise
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Since our b1 is a linear combination of Yi , and since the Yi come from
independent Normal distributions, we have that b1 also follows a Normal
distribution (see Corollary S.39).

The expected value of b1 is

E [b1] = E

[∑n
i=1(xi − x ) Yi∑n
i=1(xi − x )2

]
(3.14)

=
∑n
i=1(xi − x ) E [Yi]∑n

i=1(xi − x )2 (3.15)

=
∑n
i=1(xi − x ) (β0 + β1xi)∑n

i=1(xi − x )2 (3.16)

=
∑n
i=1(xi − x ) β0∑n
i=1(xi − x )2 +

∑n
i=1(xi − x ) β1xi∑n
i=1(xi − x )2 (3.17)

= β0

∑n
i=1(xi − x )∑n
i=1(xi − x )2 + β1

∑n
i=1(xi − x ) xi∑n
i=1(xi − x )2 (3.18)

= β0
0∑n

i=1(xi − x )2 + β1

∑n
i=1(xi − x )(xi − x )∑n

i=1(xi − x )2 (3.19)

= 0 + β1

∑n
i=1(xi − x )2∑n
i=1(xi − x )2 (3.20)

= β1 (3.21)

In this sequence, note that
n∑
i=1

(xi − x ) = 0 (3.22)

and that
n∑
i=1

(xi − x )2 =
n∑
i=1

(xi − x ) xi (3.23)

Thus, at this point, we know E [b1] = β1; our estimator is unbiased.
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The final step is to determine the variance of b1:

V [b1] = V

[∑n
i=1(xi − x ) Yi∑n
i=1(xi − x )2

]
(3.24)

=
∑n
i=1(xi − x )2

V [Yi](∑n
i=1(xi − x )2

)2 (3.25)

=
∑n
i=1(xi − x )2(∑n
i=1(xi − x )2

)2 σ
2 (3.26)

=
1∑n

i=1(xi − x )2 σ
2 (3.27)

= σ2 1
Sxx

(3.28)

Recall that since we will be coming across
∑n
i=1(xi − x )2 many, many, many

times in the future, we denote it by Sxx. So, putting all of these parts together
gives us

b1 ∼ N
(
β1; σ2 1

Sxx

)
(3.29)

Theorem 3.3. The covariance between our b1 estimator and Y is 0.

Proof. I leave this as an exercise.

Theorem 3.4. The distribution of b0 isN
(
β0; σ2

(
1
n + x 2

Sxx

))
.

Proof. Our estimator is
b0 = Y − b1 x (3.30)

Since we have previously shown Cov
[
Y ,b1

]
= 0 (Theorem 3.3), the proof is

straight forward. First, we note that b0 is a linear combination of the Yi .
Thus, it follows a Normal distribution. (Again, see Corollary S.39 for a proof
of this.)
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Second, E [b0] = β0:

E [b0] = E

[
Y − b1 x

]
(3.31)

= E

[
Y

]
−E [b1 x ] (3.32)

= (β0 + β1 x )− β1 x (3.33)

= β0 (3.34)

Next, V [b0] = σ2
(

1
n + x 2

Sxx

)
:

V [b0] = V

[
Y + b1 x

]
(3.35)

= V

[
Y

]
+V [b1 x ] + 2Cov

[
Y ,b1 x

]
(3.36)

=
σ2

n
+
σ2

Sxx
x 2 + 0 (3.37)

= σ2
(

1
n

+
x 2

Sxx

)
(3.38)

Thus, putting these three parts together gives us what we want:

b0 ∼ N
β0; σ2

(
1
n

+
x 2

Sxx

) (3.39)

There is another parameter in our model that we may like to estimate. That
is the variance of ε. The ordinary least squares estimator of σ2 is called the
mean square error. It is defined as MSE

MSE =
1

n− p

n∑
i=1

εi (3.40)

Here, p is the number of parameters in the regression. So far, we have dealt
with estimating β0 and β1. Thus, p = 2 in simple linear regression.

Theorem 3.5. The distribution of the mean square error, MSE, is
(
σ2

n−p

)
χ2
n−p.

Proof. The first thing to do is remind ourselves of the definition of a χ2

random variable. From Definition S.20, we have that if Zi ∼ N (0; 1), then
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∑
Z2
i ∼ χ

2
ν , where ν is the number of those Zi that are independent (the de-

grees of freedom).

With this definition, we just need to find a random variable with a
Normal distribution and transform it into the proper form. To that end:

εi ∼ N
(
0; σ2

)
(3.41)

εi
σ
∼ N (0; 1) (3.42)

ε2
i

σ2 ∼ χ
2
ν=1 (3.43)∑

ε2
i

σ2 ∼ χ
2
ν=n−p (3.44)

(n− p) 1
n−p

∑
ε2
i

σ2 ∼ χ2
n−p (3.45)

(n− p)MSE
σ2 ∼ χ2

n−p (3.46)

and finally,

MSE ∼ σ2

n− p
χ2
n−p (3.47)

As usual, knowing the distribution of a sample statistic like the MSE allows
us to create confidence intervals and perform hypothesis testing.

With that said, however, the importance of the previous theorem lies more
in how we can use it to obtain confidence intervals and test hypotheses about
the OLS estimators of the intercept and slope parameters.

Theorem 3.6. The distribution of Y for an observed value of xi , which we will
term Ŷi , is

Ŷi ∼ N
β0 + β1xi ; σ

2
(

1
n

+
(xi − x )2

Sxx

)

Note: What this means is that if we were to collect an infinite number
of dependent variable values (Yi) for the specified independent variable
values (all given xi), and calculate Ŷi for each of those experiments using
our formulas, then those many Ŷi would follow the given distribution.
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Proof. Remember that Ŷi = b0 + b1xi and that x is non-stochastic (it is not
a random variable). With this, we have that Ŷi is a linear combination of stochastic
Normally distributed random variables (b0 and b1). As such, the name of
the distribution of Ŷi is “Normal.” What remains is to calculate the expected
value and variance.

E

[
Ŷi

]
= E [b0 + b1xi] (3.48)

= E [b0] +E [b1xi] (3.49)

= β0 + β1xi (3.50)

As expected, the estimator is unbiased.

What about the variance? That is a bit more difficult, because we must
deal with the covariance between b0 and b1.

V

[
Ŷi

]
= V [b0 + b1xi] (3.51)

= V [b0] +V [b1xi] + 2 Cov [b0,b1xi] (3.52)

= V [b0] +V [b1]x2
i + 2 Cov [b0,b1]xi (3.53)

= σ2
(

1
n

+
x 2

Sxx

)
+ σ2

(
1
Sxx

)
x2
i + 2

−xσ2

Sxx
xi (3.54)

Factoring things out to make it look more simple gives

V

[
Ŷi

]
=
σ2

n
+
σ2

Sxx

(
x 2 + x2

i − 2xxi
)

(3.55)

=
σ2

n
+
σ2

Sxx
(x − xi)2 (3.56)

= σ2
(

1
n

+
(x − xi)2

Sxx

)
(3.57)

And so, putting these three things together gives us our hoped-for result. . .
as we expected.

Note: There are a couple of things interesting about this result. First, the
uncertainty in Ŷi is a function of n, Sxx, and x − xi . Larger sample sizes
(larger n) produce a better (more precise) estimate.
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Figure 3.2: The basic scatter plot with the confidence and prediction intervals for x = 4.5
provided. Note that the prediction interval (thin line) is much wider than the confidence
interval (thick line). This is because the prediction interval uncertainty includes both
the uncertainty in the mean value (confidence interval) and the inherent variation in the
residuals (σ2).

Samples with larger values of Sxx also produce better estimates.
To maximize Sxx, the researcher must have half of the xi values at the
minimum and half at the maximum.1

Finally, the precision of the estimate also depends on how far that
x value is from the center of gravity, (x , y ). Note that the uncertainty
in Ŷi when x = x only comes from the uncertainty in the value of Y .
Convince yourself that this makes sense (non-mathematically).

1Unfortunately, the drawback to doing this is that one is not able to detect a curvature in the
expected values of Y . Thus, we again see that there is a trade off in statistics. The important
part is to understand what you are trying to understand. . . and use your statistical under-
standing to understand it.
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Theorem 3.7. The distribution of Ynew, a new observation, for a new value of x,
is

Ynew ∼ N
β0 + β1xnew; σ2

(
1 +

1
n

+
(xnew − x )2

Sxx

)
Note: Before we begin this proof, be aware that

Ynew = b0 + b1xnew + ε = Ŷnew + ε (3.58)

Since we are estimating a new observation (as opposed to just an expected
value), we need to include ε in our calculations. This is subtle and very subtle
important. It emphasizes the importance of ε.

Proof. And now for the expected proof. See that Ynew is a linear combination
of Normally distributed random variables (b0, b1, and ε). Thus, Ynew follows
a Normal distribution. All that remains is to calculate its expected value and
its variance. To do so, we rely on the previous theorem.

E [Ynew] = E [b0 + b1xnew + ε] (3.59)

= E [b0 + b1xnew] +E [ε] (3.60)

= β0 + β1xnew (3.61)

Next, for the variance:

V [Ynew] = V [b0 + b1xnew + ε] (3.62)

= V

[
Ŷ + ε

]
(3.63)

= V

[
Ŷ
]
+V [ε] + 2 Cov

[
Ŷ ,ε

]
(3.64)

= σ2
(

1
n

+
(x − xnew)2

Sxx

)
+ σ2 + 0 (3.65)

= σ2
(
1 +

1
n

+
(x − xnew)2

Sxx

)
(3.66)
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Note that the only difference in the uncertainties between Ynew and Ŷ is an
additional term of σ2 due to the inclusion of the residual term. Thus, all of
the things that affect the variance of Ŷ also affect the variance of Ynew, and in
the same way.

Also note that the uncertainty in an observation is higher than the
uncertainty in the expected value (see Figure 3.2).

The important difference between this theorem and the previous is
that this theorem models a new observation, while the previous models theobservation
expected value of an observation. The difference is important.

3.2: Test Statistics and Hypothesis Testing

The previous section provided the distribution of several important estima-
tors. With those distributions, and our knowledge of probability distribu-
tions, we can test individual hypotheses. For this section, we rely heavily on
the definition of Student’s t distribution given as Definition S.21. If we let
Z ∼ N (0; 1) and V ∼ χ2

ν , with Z and V independent, then

T =
Z
√
V /ν

(3.67)

follows a Student’s t distribution with ν degrees of freedom.

You have, most likely, come across this ratio in your elementary statistics
course when you were investigating hypotheses about a single population
mean, given that the data came from a Normal distribution.

Theorem 3.8. The ratio T = b1−β1√
MSE/Sxx

follows a Student’s t distribution with n−p
degrees of freedom.

Proof. To prove this statement, one must show that it can be written in the
form of Equation 3.67. First, let us look at the numerator.

b1 ∼ N
(
β1; σ2/Sxx

)
(3.68)

=⇒
b1 − β1√
σ2/Sxx

∼ N (0; 1) (3.69)
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H0 : β1 = β10 HA : β1 , β10 p-value = P [t ≤ −| T | ]× 2
H0 : β1 ≤ β10 HA : β1 > β10 p-value = P [t ≥ T ]
H0 : β1 ≥ β10 HA : β1 < β10 p-value = P [t ≤ T ]

Table 3.1: Table of how to calculate p-values given the null and alternative hypotheses.

Now for the denominator we use a previous theorem (Theorem 3.5):

(n− p)MSE
σ2 ∼ χ2

n−p (3.70)

Next, we put these together

T =
b1 − β1√
MSE/Sxx

(3.71)

=

b1−β1√
σ2/Sxx√
MSE
σ2

(3.72)

=

b1−β1√
σ2/Sxx√

(n−p)MSE
σ2 /(n− p)

(3.73)

Note that the numerator of this follows a standard Normal distribution. The
denominator is the square-root of a chi-square distribution divided by its
degrees of freedom. Thus, by Definition S.21, T follows a Student’s t distri-
bution with n− p degrees of freedom.

This result is important for two reasons. First, it allows us to test hypotheses
regarding the β1 parameter. Second, this result allows us to calculate con-
fidence intervals for β1 (see Section 3.3). This parameter is usually of most
interest to researchers as it provides “the effect of the independent variable
on the dependent variable.”

Since we know the distribution of this ratio, we can calculate p-values
for any hypothesis about β1 using the same rules as from your elementary
statistics course (see Table 3.1).

Technically, we do need to show that b1 and MSE are independent. If
they are not, then Theorem 3.8 is not valid. For the proof, you will want to
investigate Cochrane’s Theorem and its uses (Bapat 2000, Cochrane 1934).
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Theorem 3.9. The ratio T = b0−β0√
MSE

(
1
n+ x2

Sxx

) follows a Student’s t distribution with

n− p degrees of freedom.

Proof. I leave this as an exercise.

This theorem allows us to easily prove the next.

Theorem 3.10. The ratio T = ŷ−ŷ0√
MSE

(
1
n+ (x−x )2

Sxx

) follows a Student’s t distribution

with n− p degrees of freedom.

Proof. I leave this as an exercise.

That sure is a lot of exercise. How are those abs doing?

3.3: Confidence Intervals

In the previous section, we examined hypothesis testing. This required that
we created a test statistic and determined its distribution. One can think of
confidence intervals as the dual of test statistics. Test statistics are functionsdual
of an unknown population parameter and have a distribution. Confidence
intervals are for that unknown population parameter, where a probability is
known (assumed). Once a person has the test statistic and its definition, the
confidence interval can be determined by inverting the test statistic function
(solve for the parameter).

From your elementary statistic course, you knew that the distribution
of T = x−µ

s/
√
n

followed a Student’s t distribution with n− 1 degrees of freedom.
Solving the formula for the parameter of interest, µ, gives

µ = x − T s
√
n

(3.74)

The interpretation of T here is that it contains the values (quantiles) that
correspond to the confidence level claimed (Figure 3.3). For instance, if you
desire a 95% confidence interval for a sample of size 10, the central T values
are ±2.262 because the probability P [−2.262 < t < 2.262] = 0.95.
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Figure 3.3: An illustration of a confidence interval seen from the standpoint of T or from
X . The unshaded area constitutes 95% of the area under the curve. Thus, the vertical
segments delimit the endpoints of a central 95% confidence interval.

Thus, the interpretation of µ in Equation 3.74 is that it contains the
values that correspond to the endpoints of the confidence level claimed for
the distribution of the right-hand side of the formula.

This interpretation holds for all confidence intervals.

With this discussion, it is rather straight-forward to calculate the end-
points of confidence intervals for all of the population parameters we have
explored thus far. When the distribution of the test statistic is unimodal and
symmetric, the central confidence interval is also the narrowest. This may be
important if the researcher desires the most precise estimate of the popula-
tion parameter.

Theorem 3.11. The endpoints of a central (1 − α)100% confidence for β1 are
defined by b1 ± tα/2,n−p

√
MSE/Sxx.

Proof. From a previous theorem, we know T = b1−β1√
MSE/Sxx

. Solving this for β1

gives
β1 = b1 − T

√
MSE/Sxx (3.75)

Because the distribution of T is symmetric unimodal, the endpoints of the
minimum-width interval for T correspond to the quantiles tα/2,n−p and t1−α/2,n−p.
These two endpoints are equivalent to ±tα/2,n−p.
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Figure 3.4: A plot of the chi-square distribution with 4 degrees of freedom. The unshaded
area constitutes 90% of the area under the curve. Thus, the vertical segments delimit the
endpoints of a central 90% confidence interval.

As such, the endpoints of a minimum-length (1−α)100% confidence
for β1 are defined by b1 ± tα/2,n−p

√
MSE/Sxx.

This is a typical result when dealing with the Student’s t distribution.

There is absolutely no reason we need a minimum-width confidence
interval. It is, however, useful in maximizing the precision of the estimate.efficiency

When the distribution of the test statistic is unimodal symmetric, the
central interval and the minimum-width interval are identical. When the
distribution is not symmetric, they are not. The following illustrates this.

Theorem 3.12. The endpoints of a central (1 − α)100% confidence for σ2 are
defined by (n−p)MSE

χ2
1−α/2,n−p

and (n−p)MSE
χ2
α/2,n−p

.

Proof. From Theorem 3.5, we know (n−p)MSE
σ2 ∼ χ2

n−p. Solving this for σ2 gives

σ2 = (n−p)MSE
χ2
n−p

.

Thus, a central (1−α)100% confidence interval (see Figure 3.4) is de-
fined by the endpoints

(n− p)MSE

χ2
n−p,1−α/2

and
(n− p)MSE

χ2
n−p,α/2

(3.76)
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Figure 3.5: A plot of the chi-square distribution with 4 degrees of freedom. The shaded
area constitutes 10% of the area under the curve. Thus, the vertical segments delimits
the endpoints of a 90% confidence interval. This confidence interval, however, is the
minimum-width interval.

Note: This is not the minimum-width interval. It is, however, the usual
confidence interval provided. Calculating the minimum-width interval
takes a little calculus that is beyond the scope of this section. . . and the
typical coverage of this topic.

The minimum-width interval is illustrated in Figure 3.5. Note that the area
in the shaded area to the right is not the same as that to the left. However,
the two areas still account for 10% of the area, leaving 90% unshaded in the
middle.

The width of the central 90% confidence interval shown in Figure 3.4
is 8.777. This is wider than the width of the minimum-width confidence
interval shown in Figure 3.5, which is 7.714. The minimum-width interval
is 12% narrower than the central interval. That is an increase in estimator
efficiency. It also requires some additional mathematics that we will skip.

However, as a teaser, notice that the value of the density function for
each of the two endpoints is the same in the minimum-width interval. If the
distribution is unimodal, then that observation will be true. That’s enough
of a hint. Feel free to explore this on your own. Calculus will serve you well explore
here.
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Theorem 3.13. The endpoints of a central (and minimum width) confidence in-
terval for β0 are defined by

b0 ± tα/2,n−p

√
MSE

(
1
n

+
x 2

Sxx

)
(3.77)

Proof. I leave this as an exercise.

Theorem 3.14. The endpoints of a confidence interval for ŷ are defined by

b0 + b1x ± tα/2,n−p

√
MSE

(
1
n

+
(x − x )2

Sxx

)
(3.78)

Proof. I leave this as an exercise.

Theorem 3.15. The endpoints of a prediction interval for y are defined by

b0 + b1x ± tα/2,n−p

√
MSE

(
1 +

1
n

+
(x − x )2

Sxx

)
(3.79)

Proof. I leave this as an exercise.

Note: This interval is termed a “prediction interval” because it is used
to predict a new observation of y. It is not used to estimate the expected
value of y — or trends in y. That would be the purpose of a confidence
interval.
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3.4: The Working-Hotelling Bands

One last confidence interval we may be interested in is a confidence interval
for the entire regression line.

Note that all of the confidence intervals in this chapter (except for σ2)
have been of the form

point estimate±K × se (3.80)

That is because they were confidence intervals for a measure of center. The
Working-Hotelling (1929) confidence band for the regression line follows
this format. It is

(b0 + b1x)±F(1−α,2,n− 2)×

√
MSE

(
1
n

+
(x − x )2

Sxx

)
(3.81)

The proof is beyond the scope of this course.

3.5: Conclusion

This chapter started with the mathematics of the previous chapter, the math-
ematics based on our definition of “best.” From that decision, we added a
single assumption: εi

iid∼ N (0; σ2).

That assumption/requirement about the residuals gave us the entire
chapter. Probability distributions for each of the estimators arose from the
mathematics and the assumption. From those probability distributions, we
created test statistics.

Having test statistics allows us to calculate p-values and confidence
intervals for the parameters of interest. That is the flow of statistics. Once
we have a distribution for a test statistic, we know everything we want to
know for inferential statistics.

The difficulty comes in finding a test statistic with a known distribu-
tion. The assumption of Normality (and of iid) were key in allowing us to
find those test statistics.
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3.6: End-of-Chapter Materials

Here are the expected materials to supplement the chapter.

3.6.1 Exercises

1. Prove that
∑n
i=1(xi − x )2 =

∑n
i=1(xi − x ) xi .

2. Prove that b1 =
∑n
i=1(xi−x ) yi∑n
i=1(xi−x )2 .

3. Prove that the covariance between our b1 estimator and y is 0.

4. Prove that the OLS estimators b0 and MSE are independent.

5. Prove that the OLS estimators b1 and MSE are independent.

6. Prove that the ratio T = b0−β0√
MSE

(
1
n+ x2

Sxx

) follows a Student’s t distribution

with n− p degrees of freedom.

7. Prove that the ratio T = ŷ−ŷ0√
MSE

(
1
n+ (x−x )2

Sxx

) follows a Student’s t distribution

with n− p degrees of freedom.

8. Prove that the endpoints of a central confidence interval for β0 are de-

fined by b0 ± tα/2,n−p
√
MSE

(
1
n + x 2

Sxx

)
.

9. Prove that the endpoints of a confidence interval for ŷ are defined by

b0 + b1x ± tα/2,n−p
√
MSE

(
1
n + (x−x )2

Sxx

)
.

10. Prove that the endpoints of a prediction interval for y are defined by

b0 + b1x ± tα/2,n−p
√
MSE

(
1 + 1

n + (x−x )2

Sxx

)
.
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