
Chapter 2:

IntroductiontoLinearRegression

Overview:

Regression is a set of methods that seek to learn the
specific relationship between one affected (dependent,
response) variable and one or more influencing (inde-
pendent, predictor) variables. There are many existing
regression methods, each focusing on different ways of
determining how best to quantify that relationship.

As is tradition, this chapter starts with our first
definition of “best fit” and derives many results from
that definition. This chapter is entirely mathematical in
that probability distributions are not considered.
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§ § §

Let x and y be numeric variables. The linear relationship between x and y
can be summarized by a line that “best” fits the observed data. That is, we
will summarize the relationship between x and y using a linear equation:

y = β0 + β1x+ ε (2.1)

What we mean by “best” determines where we go from here. In thinking
about “best,” it may help to see some sample data and the ‘line of best fit’ for
it (Figure 2.1). There are at least three definitions of “best” that we can use:

1. Maximize the likelihood that the data were generated

2. Minimize the sum of the absolute value of the residuals

3. Minimize the sum of the square of the residuals

All three definitions are entirely legitimate — as are many other definitions.
However, each leads to different estimation methods — and estimators. In aestimator
well-formed model, the substantive conclusions will rarely differ.

The first definition leads to maximum likelihood estimation, whichMLE
will be covered in Chapter 9. It is an excellent technique that can be gen-
eralized to many more settings than can ordinary least squares. Its greatest
strength, however, is that it makes use of the researcher’s greater understand-
ing of the data-generating process (Chapters 9 to 14).
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Figure 2.1: Sample data and a line of best fit for that data. Also marked are the residuals,
the difference between what was observed (dots) and what is predicted by the model (line).
This particular line of best fit minimizes the sum of squared residuals.

The second definition leads to a type of robust regression frequently robust
termed median regression. This method is very helpful for times when there
are outliers in the data that you cannot (should not) remove. The drawback
to this method is that estimating the two parameters (β0 and β1) does not pro-
vide a closed-form solution. In other words, it requires a repetitive sequence
of steps and can only approximate those estimates. It requires an approx-
imation process that is computationally intensive. Because of this, median
regression was little used until recently. The statistical theory behind it is
not as well explored as other types. We will explore this in Chapter 8.

The most popular definition of “best,” and the one that starts our jour-
ney, is the final definition. It leads to an estimation method called ordi-
nary least squares (OLS). It is rather straight-forward to minimize a sum of OLS
squared values using differential calculus. One strength is that an equation
results from this process — a closed-form solution with no need for itera-
tion. This means that the process returns mathematically exact values. The
drawback is that it is limited in the types of processes that can be modeled.

We start exploring ordinary least squares immediately.
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2.1: Scalar Representation

This section and the next show how our definition of “best” mathematically
leads to specific results. That leading can be done by representing the regres-
sion problem in scalar or in matrix terms. At one level, there is no difference
in the two representations. At another level, one representation may make
proofs — and understandings — easier and more manifest.

And so, let us begin with the scalar representation of the regression
problem. From experience, it seems to make more sense than starting with
the matrix representation (Section 2.2).

Ordinary least squares estimation defines “best” as “having the lowest
sum of squared errors.” So, let us use this definition to obtain the OLS esti-
mators of β0 and β1. In calculus, to optimize (maximize or minimize) a func-
tion, one takes its derivative(s) with respect to the parameter(s) of interest,
set the resulting equations equal to 0, then solve the system of equations.1

The first step, as expected, is to form the objective function that we
want to minimize. Since we seek to minimize the sum of squared errors, that
Q is the sum of squared errors:

Q =
n∑
i=1

ε2
i (2.2)

=
n∑
i=1

(yi − ŷi)2 (2.3)

=
n∑
i=1

(
yi − (β0 + β1xi)

)2
(2.4)

=
n∑
i=1

(
yi − β0 − β1xi

)2
(2.5)

Now that we have the objective function, we take its derivative with respect
to each parameter, set it equal to 0, and solve for that parameter.

1Also, one should perform the second derivative test to determine the type of optimization
point found: minimum, maximum, and saddle point (neither).
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Let us start with β0:

∂
∂β0

Q =
n∑
i=1

−2(yi − β0 − β1xi) (2.6)

0 set=
n∑
i=1

−2(yi − b0 − b1xi) (2.7)

=
n∑
i=1

yi −
n∑
i=1

b0 − b1

n∑
i=1

xi (2.8)

= ny −nb0 −nb1 x (2.9)

This immediately leads to

b0 = y − b1 x (2.10)

This is the OLS estimator of β0 in terms of b1. Next, we take the derivative of
Q with respect to the second parameter β1:

∂
∂β1

Q =
n∑
i=1

−2xi (yi − β0 − β1xi) (2.11)

0 set=
n∑
i=1

−2xi (yi − b0 − b1xi) (2.12)

=
n∑
i=1

xiyi − b0

n∑
i=1

xi − b1

n∑
i=1

x2
i (2.13)

=
n∑
i=1

xiyi −nb0 x − b1

n∑
i=1

x2
i (2.14)

Substituting our estimator b0, we have

0 =
n∑
i=1

xiyi − (y − b1 x )nx − b1

n∑
i=1

x2
i (2.15)

=
n∑
i=1

xiyi −nx y + b1nx
2 − b1

n∑
i=1

x2
i (2.16)

b1

 n∑
i=1

x2
i −nx

2

 =
n∑
i=1

xiyi −nx y (2.17)
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Finally, we have

b1 =
∑n
i=1 xiyi −nx y∑n
i=1 x

2
i −nx

2 (2.18)

Thus, the two OLS estimators of β0 and β1 are

b0 = y − b1 x

b1 =
∑n
i=1 xiyi −nx y∑n
i=1 x

2
i −nx

2

(2.19)

Note that this mathematical process had but one requirement:requirement

n∑
i=1

x2
i −nx

2 , 0 (2.20)

If that requirement is not met by the data, then the divisor of b1 is zero, which
leads to dividing by zero, armageddon, and a really bad hair day. However,
note that

∑n
i=1 x

2
i −nx

2 is just (n−1)s2x . As such, the requirement is met whenexercise
the variance of x is non-zero. In other words, we require that the independent
variable varies.

Note: Technically, we also need to perform the second derivative test
to show that these critical values constitute minimums instead of maxi-
mums or saddle points. I leave that as an exercise for you.exercise

Also note that some sources will give the b1 a different, yet equivalent, for-
mula:

b1 =
∑n
i=1(xi − x )(yi − y )∑n

i=1(xi − x )2 (2.21)

I leave it as an exercise to show that
∑n
i=1(xi − x )(yi − y ) is equivalent toexercise ∑n

i=1 xiyi −nx y and that
∑n
i=1(xi − x )2 is equivalent to

∑n
i=1 x

2
i −nx

2.

Finally, let me remind you that we will come across the denominator
in many settings. Thus, we will symbolize it as Sxx:

Sxx =
n∑
i=1

(xi − x )2 (2.22)
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Thus, our OLS line of best fit is the line defined by the set of points (x, ŷ),
where

ŷ = b0 + b1x (2.23)

Note that ŷ is the expected (or predicted) value of Y (dependent variable),
given that value of x (independent variable). In other words,

ŷi = E [Y | xi] (2.24)

It is the conditional mean of Y given xi ; the expected value of Y , given this
value of xi ; the mean of Y when the independent variable has value xi .

§ § §

And this is as far as we can go without making additional assumptions/re-
quirements. As such, it marks a great place for a toy example.

Example 2.1: Let us measure two variables on four subjects. Those two vari-
ables are x and y. For the first subject, the value of x is −2 and the value of
y is 3. For the second subject the x and y values are 0 and 0. For the third
subject, the values are 0 and 2. For the fourth subject, they are 2 and −1. This
data is tabulated in Table 2.1

Given this information, let us calculate the ordinary least squares es-
timators of β0 and β1. •

x y

-2 3
0 0
0 2
2 -1

Table 2.1: Toy data to be used for toy Example 2.1 that could be about toys.
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Solution: First, the formulas for b0 and b1 require we calculate x and y .
They are 0 and 1, respectively. With that, we can use the formula for b1
(Equation 2.19b):

b1 =
∑n
i=1 xiyi −nx y∑n
i=1 x

2
i −nx

2 (2.25)

=

(
− 2(3) + 0(0) + 0(2) + 2(−1)

)
− 4(0)1(

(−2)2 + (0)2 + (0)2 + (2)2
)
− 4(0)2

(2.26)

=
−8− 0

8− 0
(2.27)

= −1 (2.28)

For the OLS estimator of the intercept, β0, we have (Equation 2.19a):

b0 = y − b1 x (2.29)

= 1− (−1)0 (2.30)

= 1 (2.31)

Thus, the OLS line of best fit is the line defined by the set of points (x, ŷ),
where

ŷ = 1− 1x (2.32)

Figure 2.2 shows the points and the OLS line of best fit.

So, what does the equation mean? It means that the expected value of
Y when x = 0 is 1, the y-intercept. It also means that for every one increase in
the value of x, the expected (predicted) value of Y increases by -1, the value
of the slope. �
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Figure 2.2: Graphic of the data and the OLS line of best fit for the toy data of Example 2.1.

Note: From a scientific standpoint, it does not make sense to meaning-
fully interpret the y-intercept when x = 0 is outside the observed range
of the data (x-values). Models are best when you are trying to under-
stand the relationship within the observed ranges of the independent
variable(s). This is interpolation — “inter” from “within.” interpolation

Trying to use the model to understand relationships outside the
observed values of the independent variables is called “extrapolation,”
where ‘extra’ means ‘outside.’ Extrapolation is dangerous: all curves look
linear at a small enough scale (remember Taylor’s Theorem from Calcu-
lus). Thus, fitting the data with a line may be a good approximation in
one scale, it may not make sense at a wider range, where the non-linearity
of the relationship may become more pronounced.
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Example 2.2: Let us measure two variables on four subjects. Those two vari-
ables are x and y. Sounds familiar? The difference here is that the indepen-
dent variable is dichotomous.

Given the information in Table 2.2, let us calculate — and interpret —
the ordinary least squares estimators of β0 and β1. •

Solution: The first thing to do is change our x-variable into a numeric vari-
able. When the variable is dichotomous (has only two possible values), thisdichotomous
is easy. Set one value to 0 and the other to 1. So, without loss of generality,
let us follow the alphabet and replace Female with 0 and Male with 1. With
this transformation, the x-values are now

{
1,0,0,1

}
and we can use the same

procedure as we used in Example 2.1.

First, the formulas for b0 and b1 require we calculate x and y . They
are 0.5 and 2, respectively. With that, we can use the formula for b1 (Equation
2.19b):

b1 =
∑n
i=1 xiyi −nx y∑n
i=1 x

2
i −nx

2 (2.33)

=

(
1(3) + 0(1) + 0(2) + 1(2)

)
− 4(0.5)2(

(1)2 + (0)2 + (0)2 + (1)2
)
− 4(0.5)2

(2.34)

=
5− 4
2− 1

(2.35)

= 1 (2.36)

x y

Male 3
Female 1
Female 2
Male 2

Table 2.2: Data to be used for Example 2.2.
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For the OLS estimator of the intercept, β0, we have (Equation 2.19a):

b0 = y − b1 x (2.37)

= 2− (1)0.5 (2.38)

= 1.5 (2.39)

Thus, the OLS line of best fit is the line defined by the set of points (x, ŷ),
where

ŷ = 1.5 + 1 x (2.40)

Now, what does this equation mean? Remember that an x-value of 0 indicates
we are discussing females. Thus, the expected value of Y for the females is
1.5 + (1)0 = 1.5. The expected value of Y for the males is 1.5 + (1)1 = 2.5.

Thus, the y-intercept is the predicted value for base level (females).
The “slope” is the effect of gender (moving from female to male) on that y- base level
intercept.

�

Note: You have seen an analysis of this type in your past introductory
statistics course. This is just the two-sample t-procedure under the guise
of linear models.

Note: Since we can compare the means of two group in the regression
realm (Example 2.2), can we compare the means of more than two groups?
In other words, can we extend linear models to ANOVA? The answer is
Yes! In fact, ANOVA is built on a base of linear models, as we will see in
the future (Example 2.5).
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2.1.1 Results Now that we have formulas for our estimators, we have
several important mathematical results. The first result is that the line of
best fit passes through the center of gravity.

Theorem 2.1. The point (x , y ), the center of gravity, is on the OLS line of best
fit.

Proof. To see this just substitute x for x in the prediction equation and show
that ŷ = y .

From equation (2.23),

ŷ = b0 + b1x (2.41)

Substituting x for x gives

= b0 + b1 x (2.42)

Substituting the value of b0 gives

= (y − b1 x ) + b1 x (2.43)

Finally, simplification gives our result:

= y (2.44)

Example 2.3: From the previous example, we just need to show that the point
(x , y ) = (0.5, 2) is on the line. •

Solution: We have already shown that the line of best fit is ŷ = 1.5 + x. Sub-
stituting x = 0.5 gives ŷ = 1.5 + 0.5 = 2. Note that 2 is also the value of y .
�
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A second result is that the slope estimator b1 is the ratio of the covariance second
between x and y to the variance of x.

Theorem 2.2. b1 = Cov[x,y]
V [X] =

sxy
s2
x

Proof. To see this we substitute the formulas for the covariance and variance
into this equation and quickly simplify:

b1 =
sxy

s2x
(2.45)

=
1
n−1

∑n
i=1(xi − x )(yi − y )

1
n−1

∑n
i=1(xi − x )2

(2.46)

=
∑n
i=1(xi − x )(yi − y )∑n

i=1(xi − x )2 (2.47)

A third result is that the slope estimator can also be represented as third

b1 = rxy
sy
sx

(2.48)

That is, the slope estimator is the correlation between the two variables times
the ratio of their standard deviations. I leave this as an exercise for you to
prove. exercise

A fourth result is that the slope estimator is zero if the y-values do not
vary. I leave this as an exercise, as well. exercise
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2.1.2 First Assumptions This was fun. We were able to determine the
correct formula for the line of best fit — given our particular definition of
“best.” Those equations lead to other equations. These are the mathematical
results for our given sample.

Cool mule.

Until this point, we have only required variation in the independent
variable. If we make three additional assumptions, we have additional re-
sults.

The first assumption is that they are realizations of a random variable
(ε has a distribution). The second is that the expected value of the residuals
is zero, E [ε] = 0 (the measurements are not systematically biased). The third
is that the residuals are independent and have a finite and constant variance,
V [ε] = σ2 <∞.

The above simple assumptions lead to several additional interesting
results. Some are proven here, some are left as exercises.

Theorem 2.3. E [b1] = β1

Proof. To prove this, we will start with the formula for b1 and simplify until
we obtain the results.

E [b1] = E

[∑n
i=1(xi − x )(yi − y )∑n

i=1(xi − x )2

]
(2.49)

= E

[∑n
i=1(xi − x )yi∑n
i=1(xi − x )2

]
(2.50)

=
∑n
i=1(xi − x )E [yi]∑n
i=1(xi − x )2 (2.51)

=
∑n
i=1(xi − x ) (β0 + xiβ1 + ε)∑n

i=1(xi − x )2 (2.52)

=
∑n
i=1(xi − x )β0∑n
i=1(xi − x )2 +

∑n
i=1(xi − x )xiβ1∑n
i=1(xi − x )2 +

∑n
i=1(xi − x )ε∑n
i=1(xi − x )2 (2.53)

=
β0

∑n
i=1(xi − x )∑n

i=1(xi − x )2 +
β1

∑n
i=1(xi − x )xi∑n
i=1(xi − x )2 +

ε
∑n
i=1(xi − x )∑n

i=1(xi − x )2 (2.54)
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= β0
0∑n

i=1(xi − x )2 + β1

∑n
i=1(xi − x )(xi − x )∑n

i=1(xi − x )2 + ε
0∑n

i=1(xi − x )2 (2.55)

= β1 (2.56)

Thus, the OLS estimator of β1 is unbiased. This is a nice property. It means
E [b1] = β1.

Note: Did you notice where we used
∑n
i=1(xi − x )(yi − y ) =

∑n
i=1(xi − x )yi ,∑n

i=1(xi − x )(xi − x ) =
∑n
i=1(xi − x )xi , and

∑n
i=1(xi − x ) = 0? All three are

just simple algebra.

Theorem 2.4. E [b0] = β0

Theorem 2.5. V [b1] = σ2/Sxx

Theorem 2.6. V [b0] = σ2
(

1
n + x

Sxx

)
Theorem 2.7. Cov [b0,b1] = −σ2 x

Sxx

Finally, if we define the mean square error as MSE

MSE =
1

n− 2

n∑
i=1

e2
i (2.57)

then we also know

Theorem 2.8. E [MSE] = σ2

Note: In other words, this definition for MSE provides an unbiased es- unbiased
timator of the variance of the residuals. This is why we define it in this
manner.
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2.2: Matrix Representation

We learned a lot about our solution by exploring the scalar representation of
the system of equations. We may be able to gain some additional insights by
exploring its matrix representation. It may be helpful to revisit Appendix M
at this point.

And so, let us begin with our matrix model.

Y = XB + E (2.58)

In this model, Y represents the response variable; X, the predictor variable(s)
prepended with a column of 1s; B, the coefficient vector; and E, the residuals.
The dimensions are n× 1 for Y, n× p for X, p × 1 for B, and n× 1 for E.

In this formulation, n is the sample size and p is the number of param-
eters that need to be estimated. Usually, this is one more than the number of
independent variables.

Note that X is “the predictor variable(s) prepended with a column of
1s.” What does this mean? Let our independent variable be the same as in
Example 2.1,

{
− 2,0,0,2

}
. The X matrix is

X =


1 −2
1 0
1 0
1 2

 (2.59)

Note that it is the values of the x-variable prepended by a column of 1s.

Again, we want to minimize the sum of squared errors. Again, we
will create the objective function Q, take its derivative with respect to the
parameter vector, B, and solve:

Q = E′E (2.60)

= (Y−XB)′ (Y−XB) (2.61)

= Y′Y−B′X′Y−Y′XB + B′X′XB (2.62)

Note that each of these terms is a 1×1 matrix, thus each is equal to its trans-
pose. Using that on the third term and gathering the two like terms together
gives our objective function.

Q = Y′Y− 2B′X′Y + B′X′XB (2.63)
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Now, taking the derivative with respect to B gives

d
dB
Q = −2X′Y + 2X′XB (2.64)

0 set= −X′Y + X′Xb (2.65)

X′Y = X′Xb (2.66)

(X′X)−1 X′Y = b (2.67)

This formula is so important that I will repeat it here:

b = (X′X)−1 X′Y (2.68)

Note the switch between B and b. The former concerns the population. It is
a population parameter that we are trying to estimate.

B :=



β0
β1
β2
...
βp−1


(2.69)

The latter concerns the sample. It is the estimator we are using to estimate estimator
the population parameter.

b :=



b0
b1
b2
...
bp−1


(2.70)

Thus, the equation for our OLS regression line (plane, hyper-plane) is Ŷ = Xb.
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2.2.1 Requirement In performing these calculations, we made one as-
sumption: (X′X)−1 exists. If it does not exist, then the last step in the process
cannot be done. So, the first question to ask is: When does (X′X)−1 not exist?

It does not exist when detX′X = 0.

So, when does detX′X = 0? From linear algebra (and Appendix M) we
know that this determinant is zero when the X matrix is not of full (column)
rank , when rank X , p. Equivalently, this happens when one column of thefull rank
X matrix is a linear combination of the other columns.

When in the realm of multiple regression (more than one independent
variable), this happens when one variable is a linear combination of the oth-
ers. This condition is called “multicollinearity.” When in the realm of simplemulticollinearity
linear regression (one independent variable), this happens when there is no
variation in the x variable (it is a constant multiple of the columns of 1s).

2.2.2 Assumptions Before we continue, as before, let us make the three
assumptions about our residuals. These are just the same non-parametric
assumptions we made back in Section 2.1.2, but in matrix form. The first is
that they are realizations of a random variable (E has a distribution). The
second is that the expected value of the residuals is zero, E [E] = 0 (the mea-
surements are not systematically biased). The third is that the residuals are
independent and have a finite constant variance, V [E] = σ2I, with σ2 <∞.

2.2.3 Results Again, we have several results from this.

Theorem 2.9. E [Y] = XB

Proof. The proof of this proceeds from algebra.

E [Y] = E [XB + E] (2.71)

= E [XB] +E [E] (2.72)

One pervasive requirement is that the values of X are not random variables.
That is, the researcher selected those particular x values. Since this is true,

E [Y] = XE [B] +E [E] (2.73)
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Also, the values in the B matrix are population parameters. They, too, are not
random variables. In fact, the only random variable on the right-hand side
of that matrix equation is the zero-mean E matrix. Thus, we have

E [Y] = XB +E [E] (2.74)

= XB (2.75)

Note: The requirement that the independent variables are are not ran-
dom allows us to easily calculate expected values, variances, and covari-
ances. When designing experiments, this assumption is not problem-
atic. When working with observational data, this becomes troublesome
in terms of the mathematics.

Similarly, it is quite easy to prove V [Y | XB] = σ2I. I leave that to you as an exercise
exercise.

§ § §

Another result is that the two estimators are unbiased (their expected values
equal the population parameter):

Theorem 2.10. The OLS estimator b is unbiased for B.

Proof. An estimator is unbiased for the parameter if its expected value equals
the parameter. Thus, we need only show E [b] = B.

E [b] = E

[
(X′X)−1 X′Y

]
(2.76)

= (X′X)−1 X′E [Y] (2.77)

= (X′X)−1 X′XB (2.78)

= B (2.79)

A third result is that the two estimators are not necessarily independent.
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Theorem 2.11. The OLS estimators b0 and b1 are not necessarily independent.

Proof. To see this, we calculate the covariance matrix of b:

V [b] = V

[
(X′X)−1 X′Y

]
(2.80)

=
(
(X′X)−1 X′

)
V [Y]

(
(X′X)−1 X′

)′
(2.81)

=
(
(X′X)−1 X′

)
σ2

(
(X′X)−1 X′

)′
(2.82)

= σ2
(
(X′X)−1 X′

)(
(X′X)−1 X′

)′
(2.83)

= σ2 (X′X)−1 X′ X (X′X)−1 (2.84)

= σ2 (X′X)−1 (2.85)

Now, if this matrix is diagonal, then the estimators are independent.

To see that the two estimators are correlated, we just need to calculate
the matrix (X′X)−1. In general, this is rather difficult to do by hand. How-
ever, if we restrict ourselves to simple linear regression, that inverse is rather
straight-forward because X is

X =



1 x1
1 x2
1 x3
...

...
1 xn


(2.86)

With that, we have

X′X =

 n nx

nx
∑n
i=1 x

2
i

 (2.87)

The determinant of X′X is

detX′X = n
n∑
i=1

x2
i −n

2 x 2 = nSxx (2.88)

(2.89)

Thus, the inverse is

(X′X)−1 =
1

nSxx

 ∑n
i=1 x

2
i −nx

−nx n

 (2.90)
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Finally, the covariance matrix is

V [b] =
σ2

nSxx

 ∑n
i=1 x

2
i −nx

−nx n

 (2.91)

From this matrix, we see that the covariance between b0 and b1 is

Cov [b0,b1] = −nx σ2

nSxx
= −σ2 x

Sxx
(2.92)

Thus, the OLS estimators are independent if and only if x = 0.

As an extension, note that the sign of the covariance is the opposite that of
x .

Finally, while this last results may seem just slightly interesting, it is
the basis of the Working-Hotelling (1929) procedure, which we will see later
in Section 3.4.

This last result also suggests why many disciplines tend to center their
x-values (subtract off x ) before doing regression. It ensures that the two
estimators are independent. centering

Example 2.4: Let us revisit Example 2.1 and show how to use the matrix
representation to answer the same problem. •

Solution: The first step is to create the two matrices. The dependent variable
matrix is

Y =


3
0
2
−1

 (2.93)

The independent variable matrix, also called the “data matrix” and the “de-
sign matrix,” is

X =


1 −2
1 0
1 0
1 2

 (2.94)
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Where did the column of 1s come from in X? Remember that the matrix
equation is

Y = XB + E (2.95)

and that this is equivalent (in simple linear regression) to

yi = β0 1 + β1 xi + εi (2.96)

The 1s column in X is the multiplier of the β0 in the B matrix. As long as you
have a β0 in your model, you need that column of 1s.

Now that we have the two matrices, we can calculate b.

b = (X′X)−1 X′Y (2.97)

=



1 −2
1 0
1 0
1 2


′ 

1 −2
1 0
1 0
1 2



−1 

1 −2
1 0
1 0
1 2


′ 

3
0
2
−1

 (2.98)

[
1 1 1 1
−2 0 0 2

]
1 −2
1 0
1 0
1 2

 =
[
4 0
0 8

]
(2.99)

⇒ (X′X)−1 =
1

32

[
8 0
0 4

]
(2.100)

X′Y =
[

1 1 1 1
−2 0 0 2

]
3
0
2
−1

 (2.101)

=
[

4
−8

]
(2.102)

Thus, we have

b = (X′X)−1 X′Y (2.103)

=
1

32

[
8 0
0 4

][
4
−8

]
(2.104)

b =
1

32

[
32
−32

]
(2.105)
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And finally,

b :=
[
b0
b1

]
=

[
1
−1

]
(2.106)

Thus, we have b0 = 1 and b1 = −1. �

The conclusion is exactly the same, ŷ = 1− x. The process is different. Here,
this process is much easier for computers to perform, as they can do matrix
multiplication (and inverting) with little problem. We have to spend a lot of
extra effort to perform those operations.

Also, if we have more than one independent variable, we need to cal-
culate the OLS estimator equations again; the ones in Equation (2.19) only
hold for one independent variable. Using matrices, however, formula (2.68)
holds for any number of independent variables.

2.3: Predictions and the Hat Matrix

Beyond modeling the relationship, one may also want to predict values of Y
for a given value of X. In matrix terms, this requires solving the equation
Ŷ = Xb. But note the following:

Ŷ = Xb (2.107)

= X (X′X)−1 X′Y (2.108)

Thus:

Ŷ =
(
X (X′X)−1 X′

)
Y (2.109)

Note that the matrix X (X′X)−1 X′ “puts a hat” on the Y matrix. As such, it
is called the “hat matrix,” H. Thus, we have simple matrix equations for the hat matrix
predictors and the residuals:

Ŷ = HY (2.110)

E = Y− Ŷ = (I−H)Y (2.111)

Why is this important? It shows that the predictions and the residuals are
orthogonal (see definition on page 435).
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Theorem 2.12. The matrices H and I−H are orthogonal.

Proof. To show orthogonality, we need to show that the inner product is zero:

H′ (I−H) = H (I−H) = H−HH (2.112)

= H−H (2.113)

= 0 (2.114)

In the proof, we used the fact that the hat matrix is symmetric idempotent.
The next theorem shows this to be the case.idempotent

Theorem 2.13. The matrix H is symmetric idempotent.

Proof. Let us start with showing H is symmetric.

H′ =
(
X(X′X)−1X′

)′
(2.115)

Recall from page 436 in Appendix M that (AB)′ = B′A′. Thus(
X (X′X)−1 X′

)′
= X′′

(
(X′X)−1

)′
X′ (2.116)

= X
(
(X′X)−1

)′
X′ (2.117)

I leave it as an exercise to show that X′X is symmetric, and so is its inverse.

= X(X′X)−1X′ (2.118)

= H (2.119)

Now, let us show that H is idempotent.

HH = X (X′X)−1 X′ X (X′X)−1 X′ (2.120)

= X (X′X)−1 X′ (2.121)

= H (2.122)

Since H is symmetric and idempotent, it is an orthogonal projection matrix
that projects Y-space onto the smaller Ŷ-space (Appendix M.4). Because it is
an orthogonal projection, Ŷ is as close to Y as possible in its subspace. That
is, the errors are minimized. Figure 2.3 illustrates this.
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Figure 2.3: A schematic illustrating that Ŷ is as close to Y as possible, while remaining
in its subspace (represented by the plane). In other words, the Y matrix exists in an n-
dimensional space. The solution, Ŷ, is in a p-dimensional space, with n > p. Under the
assumptions of ordinary least squares, the distance between Y and Ŷ (represented as the
residuals, E) is as small as possible if you define “distance” in terms of the Euclidean
distance, L2.

Theorem 2.14. The vectors Ŷ and E are orthogonal.

Proof. I leave this as an exercise.exercise

Since the predictions and residuals are orthogonal, we know the following is
true by the Pythagorean Theorem:

Y′Y = Ŷ′Ŷ + E′E (2.123)

Let us also prove this using matrices.
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Theorem 2.15. Y′Y = Ŷ′Ŷ + E′E

Proof. Let us prove this without resorting to the Pythagorean Theorem. We
know Y = Ŷ + E. Thus,

Y′Y =
(
Ŷ + E

)′ (
Ŷ + E

)
(2.124)

= Ŷ′Ŷ + E′E + Ŷ′E + E′Ŷ (2.125)

= Ŷ′Ŷ + E′E + (HY)′ (I−H)Y + ((I−H)Y)′HY (2.126)

= Ŷ′Ŷ + E′E + Y′H′(I−H)Y + Y′(I−H)′HY (2.127)

Remember that H and I−H are symmetric. That gives us

= Ŷ′Ŷ + E′E + Y′H(I−H)Y + Y′(I−H)HY (2.128)

Finally, since H(I−H) = (I−H)H = 0, we have

Y′Y = Ŷ′Ŷ + E′E + Y′0Y + Y′0Y (2.129)

and

Y′Y = Ŷ′Ŷ + E′E (2.130)

This will come in handy when we add probability distributions to our math-
ematics, thus creating statistics.

By the way, we also can show that the residuals and predicted values
are uncorrelated by showing their covariance is zero.

Theorem 2.16. Cov
[
Ŷ,E

]
= 0.

Proof.

Cov
[
Ŷ,E

]
= Cov [HY, (I−H)Y] (2.131)

= H Cov [Y,Y] (I−H)′ (2.132)

= Hσ2(I−H) (2.133)

= σ2H(I−H) (2.134)

= 0 (2.135)

This result is not surprising given that the prediction and residual vectors
are orthogonal.
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2.3.1 Consequences In this section, we started with the matrix equation
Y = XB + E and obtained the OLS estimator of B. With that solution (and the
requirement that X be full column rank), we have another result.

Theorem 2.17. X′E = 0

Proof.

Y = XB + E (2.136)

X′Y = X′Xb + X′E (2.137)

X′Y = X′X
(
(X′X)−1 X′Y

)
+ X′E (2.138)

X′Y = X′Y + X′E (2.139)

0 = X′E (2.140)

What does this result mean? Recall that X′E is a p×1 matrix. The first column
of X is a column of 1s. Thus, the first element of X′E is just the sum of the
residuals. That means the residuals must sum to 0 when we use the OLS
estimator.

The other elements in the X′E matrix consist of the sum of the resid-
uals times the values of each independent variable. This means that, under
OLS, the residuals are necessarily linearly independent of each of the inde-
pendent variables. It is a result of the mathematics used. mathematics

To see this in simple linear regression:

X′E =
[

1 1 1 · · · 1
x1 x2 x3 · · · xn

]

e1
e2
e3
...
en


(2.141)

=

 ∑
ei∑
xiei

 (2.142)

This matrix is 0 only when all of its elements are also 0. Thus, we have∑
ei = 0; the sum of the residuals in OLS is mathematically guaranteed to be

zero.

We also have
∑
xiei = 0, which is equivalent to

∑
xiei − nx e because

e = 0 and thus to (n−1)Cov [x,e]. This covariance is zero if x and e are linearly
independent. This means that the residuals arising from OLS estimation are
linearly uncorrelated with the predictor variables.
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Note: Again, these are mathematical results from applying ordinary least
squares. They are guaranteed simply because of the estimation method
we selected. Had we chosen a different definition of “best fit,” then this
section may not hold.

Everything follows from our chosen definition of “best fit.”

2.4: The PRE Measures

Now that we have reality (Y) and our errors (E), as pictured in Figure 2.3, we
can create a measure of how well the model summarizes (fits) the data. In
fact, we will create two of them! Both are “proportional reduction in error”
measures; that is, they both are measures of how well the model reduces thePRE
unexplained variation in the dependent variable. The first is the venerable
R2 (“R-squared”) measure. The second is the R

2
(“adjusted R-squared”) mea-

sure.

Both measure how much the model reduces the variation in the de-
pendent variable. They differ in how that variation is measured. The R2

measure uses the sum-of-squares; the R
2
, the variance.

2.4.1 R2
Measure The formula for the R2 measure is

R2 = 1− SSE
T SS

(2.143)

Here, SSE is the sum of the squared errors using the model, and T SS is the
sum of squares without using the model.

SSE :=
∑

(yi − ŷ)2 (2.144)

T SS :=
∑

(yi − y )2 (2.145)

In this formula, ŷ is the predicted value of Y for each value of xi in the data
according to the model; y is the predicted value of Y for each value of xi in
the data in the absence of the model.

Thus, the SSE is a measure of how much variation remains in the
model — the residual (unexplained) variation after applying the model. The
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T SS is a measure of the variation in the original data. It is called the residual
variation after applying the “null model.”2

Note: The R2 measure only tells us how much of the variation in the
dependent variable is described by the model (as compared to how much
was there originally). It tells us nothing beyond that.

For instance, an R2 value of 0.04 tells us that the model explains
only 4% of the variation in the dependent variable. There is a lot of vari-
ation left unexplained by the model. It does not mean that the model is
“poor.” An R2 value of 0.98 tells us that the model explains 98% of the
variation in the dependent variable, not that the model is “good.”

Note that the formula for R2 (2.143) is equivalent to

R2 = 1−
1
n−1SSE

1
n−1T SS

(2.146)

Thus, the R2 measure is how much the model reduces the unexplained vari-
ance, when variance is estimated using n in the denominator (n − 1 degrees
of freedom). This, we know, is a biased estimator of the population variance
(the number of degrees of freedom is fewer than n− 1).

2.4.2 R
2

Measure Where R2 measures how much the model reduces the
unexplained variance, when that variation is estimated using n in the denom-

inator, R
2

measures how much the model reduces the unexplained variance,
when that variance is estimated using the appropriate degrees of freedom. In
other words, the adjusted R2 measure uses unbiased estimators of the vari-
ance to describe the proportional reduction in error.

R
2

= 1−
1
νe
SSE

1
νt
T SS

= 1−
1
n−pSSE

1
n−1T SS

= 1− (n− 1)SSE
(n− p)T SS

(2.147)

2The “null model” always refers to the model with no independent variable. Thus, it is the
model with only the y-intercept (here). The concept of the “null model” is extremely impor-
tant in statistics, because it allows us to determine how much the model is a improvement
over the “lack of” model.
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Here, p is the number of parameters estimated in the model. For simple
regression (one independent variable), p = 2, because we are calculating b0
and b1 from the data (to estimate β0 and β1). For the null model, p = 1,
because we are only calculating y from the data (to estimate β0).

Usually, one reports the R2 value and uses the R
2

to help with model
selection (select the model with the larger R

2
). This, I believe, needs to

change. It is the adjusted R-squared value that better estimates the propor-fight the power!!!
tion reduction in error. This is because the adjusted R-squared measure uses
unbiased estimators of the variances.

One strength of the R2 measure is that its range is from 0 to 1. The R
2

measure can be less than 1. However, it is only less than 1 when the model
describes very little of the variance.

2.4.3 Other PREs These are the two most frequently used PRE measures.
They are not the only ones, however. There is an entire class of PRE mea-
sures called “pseudo-R2” measures. These are all genuine measures of how
well the model helps reduce unexplained variation in the dependent vari-
able. Their formulas tend to follow the structure of

PRE = 1− variation in the dependent variable with the model
variation in the dependent variable without the model

In fact, some would use Figure 2.3 to create another PRE, this one based on
the right triangle. Note that Y is the target we are trying to describe and Ŷ is
where we landed. Thus, a PRE measure could be the angle θ = ∠YOŶ. ThisPRE
θ ranges between 0 and 90◦, with 0 being an optimal fit and 90◦ being the
worst fit.

As this measure is not intuitive as a measure of fit (larger is not better),
we simply take its cosine and use cosθ. This value ranges between 0 and 1,
with a 1 being the best fit (cos0) and a 0 being the worst (cosπ/2).

Note: In the future, you will be introduced to “pseudo-R2 measures”
for several different modeling schemes. Because these follow the same
scheme as above, they have the same interpretation. They are measures
of how well the model reduces the uncertainty in the dependent variable.
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2.5: Multicollinearity and Categorical Independent Variables

So far, our independent variable was either numeric (Example 2.1) or di-
chotomous (Example 2.2). Let us now look at the interesting case of a discrete
independent variable with three levels.

Example 2.5: His Majesty Rudolph II would like some input on his next five-
year plan. The primary crop in Ruritania is corn. To help optimize the profits
made by farmers, Rudolph wants to know if that crop should be changed to
summer wheat or to soybeans.

To help him, let us model the relationship between farmer profit and
crop in Ruritania. •

Solution: Collecting the data is not as difficult as it may seem at first. All
three crops are currently grown in Ruritania. All we had to do was obtain

Crop Profit per Acre

Wheat 722
Wheat 965
Wheat 940
Wheat 756

Corn 763
Corn 765
Corn 565
Corn 621

Soybean 566
Soybean 658
Soybean 540
Soybean 485

Table 2.3: The data collected from Ruritania for Example 2.5. Note that this is the raw
data with a categorical independent variable.
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a list of all farms and their primary crop and randomly select records from
that. Table 2.3 provides our data.

Note that the response variable is numeric, and the predictor variable
is categorical. How do we code that variable so that we can use the methods
of this chapter (and this class)???

In Example 2.2, it was easy to change our dichotomous variable into
a numeric variable by selecting one level as the base level and measuringbase level
the other level from there. In other words, one level was given the value 0
(absence) and the other was given the value 1 (presence).

In this case, we have three levels in our independent variable. It does
not seem to make sense to select one level to represent with 0 (absence), one
to represent with 1 (presence), and one to represent with 2 (huh????).

One method that always works is to create a series of dichotomous in-
dicator variables from the one nominal variable. Thus, since there are three
levels here, we would create three new dichotomous variables: corn, soy-
beans, and wheat.

This change is presented in Table 2.4. Note that each of the three
dichotomous variables is now numeric. Each value indicates absence (0) or
presence (1) of that trait (crop). With this change, we can use the methods of
this chapter to calculate the values of the OLS estimators β0, β1, β2, and β3. . .
or can we?

To see why I ended that paragraph in an evil and foreboding voice, let
us work through this using matrices.

Remember that the formula to calculate the OLS estimators is b =
(X′X)−1 X′Y. Here, Y is

Y =



722
965
940
756
763
765
565
621
566
658
540
485



(2.148)
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Wheat Corn Soybeans Profit per Acre

1 0 0 722
1 0 0 965
1 0 0 940
1 0 0 756
0 1 0 763
0 1 0 765
0 1 0 565
0 1 0 621
0 0 1 566
0 0 1 658
0 0 1 540
0 0 1 485

Table 2.4: Data to be used for Example 2.5. This table differs from Table 2.3 by taking the
original Crop variable and replacing it with three indicator variables. This form allows
us to more easily calculate the ordinary least squares estimators by hand.

The design matrix, X is

X =



1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1



(2.149)

So far, so good!

At this point, can you see why this matrix is termed the “design” ma-
trix? From it, one can deduce the experimental design that gave rise to the design matrix
data.
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Next, let us calculate X′X:

X′X =



1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1



′ 

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1



(2.150)

=


12 4 4 4
4 4 0 0
4 0 4 0
4 0 0 4

 (2.151)

Nice! That is a rather interesting matrix. From it, you can pick out the sampleFantastický!
size (n = 12) and the sample sizes in each of the three levels (ni = 4 in the
diagonals). The next step is to calculate the inverse of this matrix.

At this point, it is soooooooooo much easier to use technology to per-
form this calculation. However, when you do, you will get a notification that
the matrix is singular. This means two things. First: It cannot be inverted;singular
its inverse does not exist. Second: One column is a linear combination of the
others.

Note that the first column is the sum of the other three columns. The
columns are not linearly independent.

Note: From an information standpoint, if one column is a linear combi-information
nation of the others, then that column is redundant. The model can be
repeated without that information.

This is one of the very few places in statistics where throwing away
information helps. It is rather ironic that it helps solely in terms of the
mathematics.

48



So, what do we do? We drop one of the redundant columns. The one we drop
determines how we interpret the results. interpretation

§ § §

Dropping the first column is appropriate. It leads to this design matrix:

X =



1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1



(2.152)

This leads to

X′X =


4 0 0
0 4 0
0 0 4

 (2.153)

X′Y =


3383
2714
2249

 (2.154)

Finally, this leads to

b = (X′X)−1 X′Y (2.155)

=


845.75
678.50
562.25

 (2.156)

Thus, from this decision, we have that the average profit for wheat is 845.75;
for corn, 678.50; and for soybeans, 562.25.

This is called the “means model” because the returned values are the means model
means in each group.
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Dropping the second column is also appropriate (the second column corre-
sponds to the wheat design). When doing so, the design matrix is

X =



1 0 0
1 0 0
1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 0 1



(2.157)

Feel free to work through the calculation to obtain these estimates:

b = (X′X)−1 X′Y (2.158)

=


845.75
−167.25
−283.50

 (2.159)

The interpretation here is that the average profit for wheat (the base catego-
ry/dropped column) is 845.75. The effect of corn over wheat is −167.25, and
the effect of soybeans over wheat is −283.50. In other words, the expected
corn profit is −167.25 over the wheat profit, and the expected soybean profit
is −283.50 over the wheat profit.

Note that we dropped the first data column. Thus, the first result is
the expected value of the first variable and the other results are the effects of
those levels as compared to the base category (wheat).

Because the estimate are the effects of the other levels as compared to
the selected base level, this is called the “effects model.”effects model
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Dropping the third column is appropriate, as well. When doing so, the
design matrix is

X =



1 1 0
1 1 0
1 1 0
1 1 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 1
1 0 1
1 0 1
1 0 1



(2.160)

Feel free to work through the calculation to obtain these estimates:

b =


678.50
167.25
−116.25

 (2.161)

This interpretation is similar to the previous. The mean of the base category
(corn) is 678.50 (first number). The effect of wheat over corn is 167.25. The
effect of soybean over corn is -116.25.

Corn is the base category because the third column corresponds to the
corn design. Note that this is also an effects model. The estimates are the
effects in relation t the base category. �

If you look at these three sets of results, you will see a lot of commonalities.
The one chosen depends on what you are trying to say about the relationship
between the crop and the profit. Here, is it also very easy to move between
the means model and the effects model.

Note, however, that we are only investigating expected values (aver-
ages) in this analysis. Should we also decide to include the uncertainties in
our estimates (as we should), the two models are complementary. It is very
difficult to move between the standard error in the means model and the
standard error in the effects model. It is so much easier to have the computer
perform that computation for you.

51



For the record, here is the code I used for fitting the means model:

X = matrix( c(1,0,0, 1,0,0, 1,0,0, 1,0,0,
0,1,0, 0,1,0, 0,1,0, 0,1,0,
0,0,1, 0,0,1, 0,0,1, 0,0,1 ),
ncol=3, byrow=TRUE)

Y = matrix( c(722, 965, 940, 756, 763, 765,
565, 621, 566, 658, 540, 485) )

solve(t(X)%*%X)
t(X)%*%Y
solve(t(X)%*%X) %*% t(X)%*%Y

Here is the code I used for the first effects model:

X = matrix( c(1,0,0, 1,0,0, 1,0,0, 1,0,0,
1,1,0, 1,1,0, 1,1,0, 1,1,0,
1,0,1, 1,0,1, 1,0,1, 1,0,1),
ncol=3, byrow=TRUE)

Y = matrix( c(722, 965, 940, 756, 763, 765,
565, 621, 566, 658, 540, 485) )

solve(t(X)%*%X)
t(X)%*%Y
solve(t(X)%*%X) %*% t(X)%*%Y

Note that the only change is in the line that defines the data matrix, X.

Finally, here is the code I used when dropping the third column.

X = matrix( c(1,1,0, 1,1,0, 1,1,0, 1,1,0,
1,0,0, 1,0,0, 1,0,0, 1,0,0,
1,0,1, 1,0,1, 1,0,1, 1,0,1),
ncol=3, byrow=TRUE)

Y = matrix( c(722, 965, 940, 756, 763, 765,
565, 621, 566, 658, 540, 485) )

solve(t(X)%*%X)
t(X)%*%Y
solve(t(X)%*%X) %*% t(X)%*%Y

Again, the only change is in the line that defines the data matrix, X.
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2.6: Conclusion

This chapter started with defining what we can mean by “best.” Because we
decided to define “best” as “minimizing the sum of squared residuals,” we
were able to obtain closed-form solutions for the estimates.

From those equations, we were able to learn even more about our esti-
mators — things not obvious from the definition. For instance, the estimators
are only independent if x = 0.

That was the entire purpose of this chapter: to see that our results
arise from applying mathematics to our selected definition of “best.” Had we
chosen a different meaning, we may have arrived at different results.

In the next chapter, we will see what we can learn by taking the next
step and applying statistics to the models. While the mathematics tells us the
expected value. . . it is statistics that gives us an insight into the population
based on our little sample.
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2.7: End-of-Chapter Materials

Here are the expected materials to supplement the chapter. Since there is
R code in this chapter, I am including an explanation of several helpful R
functions.

2.7.1 R Functions In this chapter, we were introduced to a couple R func-
tions that will be useful in the future. These are listed here.

Mathematics:

%*% This multiplies two matrices in R. Thus, running the command A%*%B
will return the matrix product AB (Section M.3.2). Be careful: A*B
returns the Hadamard product (Section M.3), which is rarely what is
needed.

c() This combines the several scalar values into a single vector of values.

matrix() This function creates a matrix from the given vector. The first slot
belongs to the values in the matrix. After that is the number of rows
(or columns) and whether you are entering the number by rows or by
columns.

solve(m) This calculates the usual inverse of the provided matrix m (page 428).

t(m) This calculates the transpose of the provided matrix m (Section M.4).
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2.7.2 Exercises I left many things as exercises for you. Here they are.
You should be able to prove any and all of them using your prior knowledge
of mathematics (matrices and calculus).

1. Perform the second derivative test on b0 and b1 to show that these esti-
mators are really minima.

2. Show that
∑n
i=1(xi − x )(yi − y ) is equivalent to

∑n
i=1 xiyi −nx y and that∑n

i=1(xi − x )2 is equivalent to
∑n
i=1 x

2
i −nx

2.

3. Prove b1 = rxy
sy
sx

.

4. Prove that the slope estimator b1 is zero if the y-values do not vary.

5. Using the scalar form, show that Cov [b0,b1] = −σ2 x
Sxx

.

6. Prove that V [Y | XB] = σ2I.

7. Let A be any full column rank matrix. Prove that A′A is symmetric.
Prove that its inverse is symmetric.

8. Prove that the vectors Ŷ and E are orthogonal.
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