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Preface

I sat there, as I was wont to do, in the Spillane Reading Room, drinking cof-
fee in the early morning hour, trying to find my wakefulness. The air was
peaceful, with two first-years discussing and sharing insights about interna-
tional politics and world events with each other and with me. It was life as I
expected it to be in academia.

Frequently, more so as the term wore on, “Simon” would rush into
the room and explode, “I don’t know what this thing is telling me!” Then,
he would throw down five pages of printout from a well-known statistical
package and throw up his hands, as if beseeching the gods of statistics to
send down an answer to him.

After allowing the situation to calm, and the first-years to start breath-
ing again, I would ask the question “What did you do to get the printout?”
(Show your work.) For some reason, I always expected the answer to differ
from all the times previous; I expected him to tell me what he intended to
do, what specific actions he performed, what information those commands
were supposed to give him, and why he needed that information.

“I clicked on some menu things and this came out.” As expected.

He and I would then sit down and go over the fifteen pages of printout, ex-
amining what each of the tables and numbers meant in relation to his re-
search. Eventually, after dealing with several “Why is it giving me that in-
formation?!” questions, Simon would be vaguely satisfied with the printout
and could select several statistics from the printout that would provide the
information he sought.

However, there were many more questions I wanted to ask him. Most
centered on questions about the validity of the tests performed. I knew, how-
ever, that such a line of questioning would be moot with the statistical pack-
age he (and his class) used. Either the company that owned the package had
the test available, or it did not. There was no (easy) way to add tests and
procedures. Thus, Bartlett’s test of equal variances was not an option, even
when the data was such that it should be analyzed using it. Furthermore, the
number of available tests was quite limited.

In addition to the extensibility issue, there was the issue of clicking
your way to an analysis. If Simon needed to repeat the exact analysis, except
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for a tweak or two, he would have to start from scratch and repeat it all,
clicking all the same menu items, hoping that he did not make a mistake
along the way. This repeat analysis happens quite frequently in life.

❧ ❧ ❧

One of the many pleasures I have as a statistician is my exposure to many
different disciplines. I consulted for a woman doing research in science edu-
cation. Her specific problem was to determine if a specific Science Teaching
Unit (STU) had the students like science more. She performed her exper-
iment on a class of fifth- and sixth-graders in rural North Dakota (hardly
representative). She gave them a 50-question pre-test, taught the Unit, then
gave the same students a 50-question post-test (what about reliability?!?!).

She then contacted me and sent the data.

On the data she sent to me, I spent about three hours analyzing the data,
coming to some interesting (and counter-intuitive) conclusions. In my expe-
rience, researchers have a sufficient feel for their discipline that surprising
results are frequently a result of analysis error. Thus, I checked my analysis
for errors.

I was actually able to check the analysis because I wrote a script — a
series of commands — detailing every bit of the analysis I performed. Mouse-
clicking my way through the analysis would make it all but impossible to
check my work (something my math teachers in grade school always empha-
sized). Thus, I was confident that the analysis I returned to her were correct
. . .

. . . conditional on the data being correct.

The next day, she emailed me and let me know that she found several serious
errors in her data. Relying on mouse-clicks would have made those original
three hours a waste of time. However, once she sent the corrected version of
the data, the analysis took 90 seconds. Clicking my way to re-analysis would
have taken the same amount of time as the first analysis — time we did not
have (we were facing a deadline). Re-running the script only took processing
time.

While I am a fan of mouse-clicks under many circumstances, I am not
a fan when it comes to serious statistical analysis. Scripting provides at least
three definite advantages over mouse clicks: You get what you request, you
can check your work easily, and you can re-run the analysis with little effort.
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❧ ❧ ❧

One thing I love about being an academic is that I get to travel the world
sharing my research and its results. One June found me standing in front of
a formidable group in Odense, Denmark, giving such a presentation. After I
had discussed the current literature on the causes of terrorism, my statistical
model, the results, and my conclusions, I opened it up for questions. After
about five minutes of questions on the validity of my statistical model, one
professor asked how my analysis would change were I to add an offset to the
model.

After a brief panic, I decided to actually run the regression with the
offset in front of the audience. I apologized for not knowing the answer to
his question, but I would be happy to hypothesize the effect of the variable
offset while running the analysis. The professor smiled as I tried to open my
analysis script to modify and run it. It turned out that R was not installed
on the presentation computer. No worries. I opened the R folder on my
USB drive, double-clicked on the R program, and proceeded with the altered
analysis — all the while discussing the theoretical effects of using such an
offset under these circumstances. Before I could finish hypothesizing, R gave
me the answer (which, thankfully, agreed with my hypotheses).

Now that I had my model laid bare before all, many more questions
arose about different alterations I could (or should) make to the model. All
of which I was able to perform in front of the now hyper-interested crowd.

❧ ❧ ❧

These three vignettes illustrate many strengths of a statistical environment
like R. First, it encourages one to write out the analysis and “show the work.”
This makes it easier to see the entire scope and sequence of the analysis. It
also makes it easier to check for errors. Second, it is extensible. If there is a
cutting-edge test or procedure you wish to run, there is probably a package
that contains it. If not, you are quite free to write it yourself. Finally, one
can carry R around on a USB drive, allowing anyone to perform analyses
whenever there is a computer, like in Denmark.

Oh yeah, that R is free is also a nice feature, especially as statistical
packages can run from $600 to $6000 and up, and can have licenses requiring
annual payments. As budgets get tighter, an ability to work successfully with
a free (and powerful) statistical environment is invaluable.
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Prerequisites
For any book (or course), there is a necessary assumption made about the
background of the reader (or student). For the material in this book, I as-
sume that you have had experiences with elementary statistics, matrices, and
calculus.

In differential calculus, you will need to understand how to optimize
(minimize or maximize) functions. In integral calculus, you should under-
stand how to calculate areas under a curve (probabilities related to density
functions). Beyond that, there is little calculus needed.

The matrix topics you need consist of being able to perform algebra
on matrices. Beyond that, anything you remember from a typical linear alge-
bra course will help things make a bit more sense. Matrix rank, invertibility,
idempotency, projection matrices, orthogonality, etc., are all important in or-
dinary least squares. So, if you remember those topics, you will be ahead of
the curve. If you do not remember them, then you will need to (re-)learn
them in this course. Appendix M will help with remembering and learning
the important matrix topics.

Finally, I wrote this book to be a second course in statistics, one that
started where a typical introductory course ended. Because of this, I also as-
sume you remember many topics from such a course. These topics definitely
include the meanings of confidence intervals and p-values. They also in-
clude probability distributions, t-tests, issues with multiple testing, and the
Central Limit Theorem (CLT). To help refresh your memory, work through
Appendix S. Note that Appendix S also introduces you to some (optional) ad-
vanced items. These topics were included at the request of past students who
wanted to actually see a proof of the Central Limit Theorem. Rest assured
that understanding the CLT is more important than being able to prove it.
Furthermore, the proof offers little in the way of a deeper understanding.
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A Note on Notation
Sadly, notation varies across the discipline. This is a result of the history of
statistics: Many of the methods came from disciplines that used statistics,
rather than from statistics itself. Different disciplines use different notation
for the same idea. Thus, any discussion of Survival Analysis needs to include
Event History Analysis and Reliability Analysis, as they all study the same
phenomena but from different disciplines (medicine, social sciences, and en-
gineering, respectively).1

Even within a discipline, there is often a variety of notation used
to indicate the same ideas. For instance, probability functions are often
parametrized in different ways. The parameter of the Exponential distri-
bution can be the rate λ or the expected value θ; the second parameter of
the Normal distribution (Gaussian distribution, Gauss-Laplace distribution)
may be the variance σ2, the standard deviation σ , or the precision as τ = 1/σ
or as τ = 1/σ2. The symbol for the average rate in the Poisson distribution
can be µ or λ. In this volume, I will (try to) keep consistent with notation,
and I will explain the notation before I use it.

To that end, population parameters will be signified using Greek mi-
nuscules. Sets from which the population parameters can belong (parameter
spaces) will be Greek majuscules. Both are included in Table 1. All random
variables are Roman majuscules. All realized random variables (data) are
Roman minuscules. Violations of these rules will exist, but should be kept to
a minimum.

Thus, if we theorize that our measurements come from a population
that is Normally distributed, with mean µ and standard deviation σ , we
would specify that µ ∈M and that σ ∈ Σ, where M = R and Σ = (0,∞).2

Now, if we know that the mean is 15 and the standard deviation is 10,
I would write this as

X ∼ N (µ = 15; σ = 10), (0.1)

where the mean of the population is denoted by µ, the standard deviation by
σ , and the Normal distribution byN .

1Furthermore, the term “reliability analysis” means different things in different areas. It could
mean studies of how long until a part or a machine breaks. It could also mean how robust
conclusions are to changes in model assumptions.

2Be aware of the difference between Σ,
∑

, andΣ/Σ/Σ/ . The first is the set of possible values of σ . The
second is the symbol indicating the sum of what follows. The third is a generic covariance
matrix. Frequently, the difference will be obvious from context. If it is not, ask me.
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Minuscule Letter Majuscule Letter Name

α A alpha
β B beta
γ Γ gamma
δ ∆ delta
ϵ, ε E epsilon
ζ Z zeta
η H eta
θ Θ theta
ι I iota
κ K kappa
λ L lambda
µ M mu
ν N nu
ξ Ξ xi
o O omicron
π Π pi
ρ R rho
σ Σ sigma
τ T tau
υ Y upsilon
φ Φ phi
χ X chi
ψ Ψ psi
ω Ω omega

Table 1: The usual Greek alphabet in the canonical order. Being familiar with the letters
will make it easier to recognize the implied meaning behind the letter.

Once we take those measurements, we would call the variable x. The
difference between random variables and realizations of those random vari-
ables is that the random variable has a probability distribution associated
with it; the realized data are just numbers.

By the way, if we wish to specify “parameter” in general, we use θ. As
a result, the symbol for the generic parameter space is Θ.
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Matrices (and vectors) will be indicated with bold-faced letters. Thus,
x is the data matrix (observed values) and X is the data matrix (theoretical
values).

Between these two, it does make sense to say something like

X ∼ N (µ = 15; σ = 10)

It does NOT make sense to say something similar about x. The observed data
do not have a theoretical distribution.

Conclusion
And so, with all of this said, turn the page and begin your trek through linear
models. The first chapter introduces you to the topics of both linear models
and the Kingdom of Ruritania. The former is the purpose of the book. The
latter is a common theme and source of examples. Since the Kingdom of Ru-
ritania does not exist, think of it as a generic country with no real information
about it beyond what is given.

Had I used a real country, it would be perfectly defensible for the stu-
dent to bring in real information about that country. This may cloud the
intended statistical lesson.

Also, using Ruritania allows me the ability to be creative in my story-
telling.

I hope you enjoy the journey.

∼ Ole J. Forsberg
December 2024
Knox College of Illinois
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Vyčkej Času
Adolph Heyduk

Nespěchej k štětı́, tiše jen,
vše nemůž’ najednou býti;
nejprv se travou zjevı́ len,
pozděj jak modravé kvı́tı́.

Poupě, jež toužı́ růžı́ být,
obalu hledı́ se zbavit;
dřı́ve než můžeš v nebi žı́t,
musı́š se v očistci stavit.

Translation:
Bide Your Time
Adolph Heyduk

Don’t rush to fortune, ease your tracks,
all can’t at once be present;
You would for grass mistake the flax
ere blue-flower’d iridescent.

A bud, so keen to be a rose,
is for its calyx sorry;
But ere in heaven you’ll repose,
you’ll bide in purgatory.

Source: http://www.vzjp.cz/basne.htm#Heyduk





Chapter 1:

AnIntroductiontoRuruitania

Overview:

Behind any good textbook is a good writer. Unfortu-
nately, behind this textbook is me.

Clearly, the mathematics, probability, and statis-
tics are correct. However, a good book creates a good
story about the material. I sought to do this in every
page by making the Kingdom of Ruritania the setting for
the “story of the book.”

This first chapter provides background informa-
tion about Ruritania and gives you some foreshadowing
about what we will be doing in this book. I hope you en-
joy it.

Forsberg, Ole J. (10 DEC 2024). “An Introduction to Ru-
ruitania.” In Linear Models and Řurità Kràlovstvı̀. Version
0.704442η(α).



Chapter Contents

1 An Introduction to Ruruitania 1

1.1 Background of Ruritania . . . . . . . . . . . . . . . . . 3

1.2 Economics . . . . . . . . . . . . . . . . . . . . . . 5

1.3 US–Ruritanian Relations . . . . . . . . . . . . . . . . . 6

1.4 Illustrations of Analyses . . . . . . . . . . . . . . . . . 7

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 12

❧ ❧ ❧

Figure 1.1: His Majesty
Rudolph II, King of Ruritania.

You are about to undertake an educational jour-
ney. This journey will take you to new and excit-
ing places. Here, you will turn your mathemati-
cal knowledge into statistical knowledge, giving you
skills in detecting relationships between variables in
life.

This introduction has two primary purposes.
The first is to introduce you to the Kingdom of Ru-
ritania (Řurità Kràlovstvı̀). This fictional country is
used as the backdrop for many of the examples. Why
use Ruritania? It offers no conflicting information,
thus allowing us to focus on the research questions
at hand.

Second, this chapter provides many in-
stances of analyses discussed in this text. Think of
this chapter as a peek into the future, as a foreshad-
owing of the great things to come!
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1.1: Background of Ruritania

The Kingdom of Ruritania (officially: Řurità Kràlovstvı̀) is a small kingdom (62
mi2; 161 km2) surrounded by Germany and the Czech Republic. Its inhabitants are
Slavic-speaking Roman Catholics currently under the absolute monarchy of Rudolph
II (Figure 1.1).

Under Rudolph II, ascension talks between Ruritania and the European Union
have stalled. The two issues are the deficiency of democratic structures and an ex-
cess of controls on the press. Regardless of not being a member of the European
Union, or of its monetary union (euro area), Rudolf pegged the Ruritanian Crown
(Koruna Řurità) to the Euro at 2.00Kř to =C1.00. This offers greater stability for the
koruna in the world currency market. Three decades ago, economic reform allowed
the koruna to be entirely convertible on the world market. It also completely elimi-
nated the black market in Ruritania.

1.1.1 The Geography Ruritania is land-locked. It is located between southern
Germany (Saxony) and western Czech Republic (Bohemia). The land is a beautiful
combination of high mountains in the west (the Ruritanian Alps) and rolling farm-
land in the east (the Ruritanian Veldt).

Figure 1.2: The Vlajka, the current flag of
the Kingdom of Ruritania adopted in 1954.
Blue represents the sky; white, the snow-
capped peaks; green, the lush farmland; and
red, the passion of the people.

1.1.2 The Government Note that
Ruritania is an autocratic kingdom, not
a constitutional monarchy; the king
rules by fiat. While the king is advised
by a council of ministers, they are peo-
ple that he selects. Furthermore, these
ministers need not be citizens of Ruri-
tania. The current council is composed
of five Ruritanians and one Oregonian:
the current Minister of Economics, who
is Knox-educated and from Portland,
Oregon. These councilors also perform
the tasks of a ‘Committee King’ when the king is unable to perform his duties as
Chief of State and Head of Government.

Strešlau, which serves as the official capital city, lies on the rail line between
Dresden and Prague and has a population of 24,312. The royal capital, Sčwånstein,
has a population of 7478 and lies on a spur (branch) line. According to the 2020
census, the total population of Ruritania is 43,670, with about 90% of the population
living in its three main cities: Strešlau, Sčwånstein, and Děčı́n.

Ruritania is divided into seven states (státy). Each stát is named after its
largest city. Thus, the seven státy are Děčı́n, Hora, Reka, Sčwånstein, Strešlau,
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Venkovský, and Zámek. Each státy is further divided into five counties (kraj). Of-
ficially, the name of each kraj is the stát name followed by a letter between A and
E.

In addition to the Council of Ministers, there is a parliament (Národnı́ Shromážděnı́;
National Assembly) that can also advise the King — when he wishes. Members of
parliament are elected by all adults when the King calls for elections. Since World
War II, elections have happened every four years or so. The 2024 election saw two
parties field candidates in every kraj. In that election, the Král a Země (King and
Country) party, led by Vasilij Vasiljevič Kuzněcov, won 26 of the 35 seats in the par-
liament. The Republikánská Strana (Republican Party), led by Saša Ondřej Ivanović,
won the second-most number of seats, four.

The following illustrates the current structure of the parliament.

The green dots represent seats won by a Král a Země candidate; grey, independent;
red, Republikánská Strana; blue, Liberálně-Demokratická Strana (Liberal-Democratic
Party); and pink, Komunistický (Communist).

Note that the Republikánská Strana, Liberálně-Demokratická Strana, and pink,
Komunistický parties for the Republikán Bloc — the parties that seek to eliminate the
monarchy. The Král a Země and independents support the monarchy, as such, they
are the Monarčista Bloc.
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1.2: Economics

While Ruritania’s size limits its ability to diversify its economy, Rudolf has been an
able administrator and businessman. As such, he was able to lift many Ruritanians
out of poverty. When he took power in 1940, the GDP per capita (PPP) was approx-
imately USD50, with a poverty rate of 99%. Today, it is approximately USD55,000
(the eighth highest in the world), with a poverty rate of just 50%.

Figure 1.3: A tree diagram of the economic
output of Ruritania.

The primary source of revenue
for Ruritania is its banking industry —
the source of 75% of its GDP (see Fig-
ure 1.3). The remainder comes from
tourism (15%) and agriculture (10%).
Ruritania’s tourism industry primarily
bases itself on winter recreation in the
west. Because of favorable visa require-
ments, low costs for hotels, and fan-
tastic skiing in its alps, Ruritania is
the destination of choice for vacation-
ers from (in descending order of visi-
tors) Czechia, Germany, Turkey, Oman,
Morocco, United States, and Palau.

The primary crops are corn
(55%), summer wheat (25%), and fil-
bert nuts (15%), with soybeans and
hops being secondary. What corn is
not eaten is exported to Germany (75%)
and Czechia (25%). Similar export patterns hold for the excess wheat. Filbert ex-
ports go to Czechia (40%), Germany (35%), and Switzerland (25%), where they are
turned into delicious confections. Imports to Ruritania come from Russia, Turkey,
and Oman (petroleum), and Czechia and Germany (manufactured goods and food-
stuffs).

Because of the strength of the monarchy, Ruritania is neither a production
point nor a transshipping point for drugs. Illicit drug use is the lowest in Europe,
with approximately 2% of the population using marijuana, and none using harder
drugs.

5



1.3: US–Ruritanian Relations

The United States and Ruritania share full diplomatic recognition. However, the
United States does not have an ambassador to Ruritania. US interests in Ruritania
are handled by the US Ambassador to Poland, Mark Brzezinski (since February 22,
2022). This is not an unusual circumstance, as embassies are quite expensive to
build and operate. Unfortunately, this reduces the amount of reliable information
coming out of Ruritania.

Figure 1.4: US Ambassador
to Poland, Mark Brzezinski.

Rudolf was a staunch ally of the United States
during the Cold War. However, with the geographic
position of his country in the world (entirely sur-
rounded by Soviet satellite states East Germany and
Czechoslovakia), he was able to offer the United States
little more than intermittent vocal and moral support
in the United Nations. For fear of losing sovereignty,
Rudolf often kept quiet and followed the lead of the
Soviet Union in all but domestic economic matters.

When the Soviet Union fell, Rudolf increased
his support of the United States and its efforts to bring
peace and prosperity to the world. As Rudolf often
pointed out to various US presidents, Ruritania has
never seen one of its sons die in battle. With his
declining health and advancing age, Rudolf became
much more vehement in his support of the United
States, especially with respect to the Global War on
Terror.
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1.4: Illustrations of Analyses

That concludes the background to Ruritania. The following examples show you
what you will be able to do by the time you finish this book. The illustrations provide
neither the data nor the code. All they provide are examples of how linear models
are helpful to Ruritania. . . and to the rest of the world. Read through them and
become excited about what this term will bring to you!

1.4.1 Illustration: The Missing Kraj Every 10 years of a king’s reign, Rurita-
nia holds a census. Their last was in 2020, marking King Rudolph’s 80th year as
monarch. After compiling all information, they discovered that information was
missing for one kraj (state). This is unfortunate, because King Rudolph needs the
information to evaluate his latest five-year plan and determine what he should do to
make it better.

To fill in the missing information, we can regress all other variables on the
GKP per capita, then predict the GKP per capita based on the known values for the
missing kraj.

With this data and model, we just predict the GKP per capita in the kraj. The
most-likely value is $2400, with a 95% prediction interval from $2100 to $2650.

From this information, His Majesty concludes that the plan helped the entire
country, but did a better job with the rural areas than the urban. As a result of this
analysis, he asks his ministers to generate a plan that does a better job of spreading
the prosperity to more of the Kingdom.

❧ ❧ ❧

This use of regression has a very important use: estimating values for missing data
in a data set (imputation). Frequently, the amount of missing data will be significant impute
with respect to the amount of complete data. In such a case, the researcher may use
multiple imputation to create multiple data sets, estimate the parameters of interest
on each, and report them and their standard errors.
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1.4.2 Illustration: Ruritanian Crops As usual, His Majesty Rudolph II would
like some input from his Council of Ministers on his next five-year plan. Currently,
the primary crop in Ruritania is corn. To help optimize the profits made by farm-
ers, Rudolph wants to know if that crop should be changed to summer wheat or to
soybeans.

To help him, let us model the relationship between farmer profit and crop
in Ruritania. The dependent variable is the profit per acre, and the independent
variable is the crop. Using linear models, we see that it is more profitable at this
point to grow wheat. The average profit per acre is $845.75. This is about $150
greater than that of corn and about $300 greater than soybeans.

❧ ❧ ❧

Linear models can also be applied to cases where the independent variable is cat-
egorical, as here. This method is actually termed “analysis of variance” (ANOVA).
The difference between ANOVA and regression is only conceptual, in that each level
of the categorical variable is treated as a separate variable.

Using statistics to inform policy decisions is an important use. However, we
professionals need to be aware of the limitations of our research — and let our clients
know them as well. Here, we only looked at the current average profit per acre for
each crop. Future prices may fluctuate enough to make soybeans more valuable.
Furthermore, shifting all Ruritanian crops to wheat puts the entire economy at risk
of a drop in wheat prices. Diversification may be the better strategy, with some of
the profit shared among all farmers.

1.4.3 Illustration: Cows in Děčı́n The voters of Děčı́n are being sent to the
polls to vote on a city referendum that proposes to limit the number of cows that
can be kept inside the city limits. The wording on this referendum is quite similar
to ones proposed over the past several years.

Given the information from previous votes, the Director of the Independent
Electoral Commission (NVK) estimates that the probability the referendum has of
passing is 40%, with an estimated 48% of the voters supporting it.

❧ ❧ ❧

Note that this research question deals with the probability of winning, not just the
best estimate of the vote in favor. This requires estimating the entire probability
distribution of the dependent variable.

While there are some rather sophisticated methods, we will be able to answer
a similar question using Monte Carlo simulation. Such simulation consists of draw-
ing large samples from each of the parameter-estimate distributions, calculating a
predicted outcome for each of those sets of estimates, and examining the distribu-
tion of these predictions.
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Monte Carlo estimation is a powerful technique that allows you to estimate
results when the assumptions of the mathematical model are not fully met by the
data.

1.4.4 Illustration: Wealth in Ruritania The gross domestic product (GDP)
per capita is one of many measures of average wealth in countries. If extant theory is
correct, then the wealth in the country is directly affected by the level of corruption
in the government — countries with higher levels of corruption should be poorer
(on average) than those with low levels of corruption. Furthermore, if theory is
correct, the level of democracy in a country should also influence the country’s level
of wealth — countries with higher levels of democracy should be wealthier than
countries with lower levels of democracy.

His Majesty is curious to see how Ruritania fits in this model. If the actual
GDP per capita is greater than what is expected from modeling the rest of the world,
then Rudolph is doing a great job as king. Otherwise, he needs to improve the lot of
his people.

And so, to help Rudolph, we predict that the GDP per capita for Ruritania,
according to the model, is $26,795.64, with a 95% prediction interval from $5232 to
$48,360. Since the actual GDP per capita is $55,000, King Rudolph is happy that he
is better than average at guiding Ruritania forward towards prosperity.

❧ ❧ ❧

Frequently, we can use our models in novel ways. Usually, we would model the data
and calculate predictions and confidence intervals.

However, if we have confidence in our model, we can use it to determine
which units are under- or over-performing expectations (the line of best fit). In this
case, Ruritania’s GDP per capita is significantly higher than what the model predicts.

This means either the model needs to take more covariates into consideration
or that Ruritania is much more prosperous than one would expect. . . or both.

1.4.5 Illustration: Elections in Ruritania Even though it is an absolute monar-
chy, national elections are held in Ruritania to elect members of the Ruritanian par-
liament, the Národnı́ Shromážděnı́ (National Assembly).

After the most recent election, Ruritanian exiles in Denmark claimed that
the ballot boxes were stuffed. That is, the ballot boxes had votes for the government
party in them even before voting began. Because guarantees of the “secret ballot”
are built into the Ruritanian Constitution, the ballot boxes are opaque. As such,
there is no direct evidence of stuffing.

Ordinary least squares regression is not well-suited for this type of data.
There is inherent heteroskedasticity in the proposed model. However, we can use
Binomial regression to test the election for evidence of ballot box stuffing.
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As a result of our analysis, we were able to detect some evidence for stuffing
(p-value = 0.0441). However, because the p-value is so high with respect to the usual
α = 0.05 value, do we really have the necessary support in the data to claim there
was unfairness in the election?

To claim something so heinous, we should really contemplate the real mean-
ing of the p-value and selecting an appropriate value for α.

❧ ❧ ❧

Here, we had a good understanding of the data-generating process. This allowed
us to use that understanding to create a stronger model. Heteroskedasticity can
be “adjusted for” in ordinary least squares. It should be a full part of the model,
however.

1.4.6 Illustration: Insurance in Ruritania The decision to buy life insurance
is related to several variables, including age and income. We would like to explore
this relationship in Ruritania.

Since the dependent variable is dichotomous (life insurance purchased or
life insurance not purchased), we need a new type of regression to ensure that our
predictions make sense. One option is called logistic regression.

Using this regression, we find significant positive relationships between the
person’s age and the likelihood to buy life insurance, as well as between the person’s
income and the likelihood to buy life insurance.

Additionally, we predict that the Knox graduate on the Council of Ministers,
a 65-year-old making $125,000 annually, has a 74% chance of having life insurance.

❧ ❧ ❧

In this example, we had to use a different type of regression because the dependent
variable was dichotomous, could only take on two values. This type of regression
is known collectively as logistic regression, even though the link function can be
almost any that map the real line to the interval (0,1). Such functions include the
venerable logit function (inverse of the logistic function). It also includes the probit
(used in a lot of medical studies) and the cauchit (used in some financial studies to
allow for highly variable events).

It was this class of problems that forced Nelder and associates to formu-
late an over-arching framework for regression. He called it the “generalized linear
model” (GLM). While he rues the name to this day, he created it to signify that this
class of regression problems is actually just a generalization of the class that can be
solved using ordinary least squares regression. In other words, OLS regression is a
special case of GLM regression.
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1.4.7 Illustration: Warmth for the King Finally, let us help the King be more
beloved of his people — if that is possible. We took a poll and asked Ruritanians
their ‘warmth of feeling’ for Rudolph and his political agenda. In addition to this
one variable, we also asked several demographic questions, allowing us to provide
suggestions to the King. The demographic information includes gender, race, age,
and number of years of education. The response variable has four ordered levels:
Strongly Disagree, Disagree, Agree, and Strongly Agree.

With this information, we are able to let the King know that he is widely
loved, but that women tend to agree with his policies more than do men. Further-
more, the better-educated also tend to support him more. The younger members
of Ruritania also feel warmer towards him and his agenda. Finally, there was no
relationship between race and support; all races seem to support him equally.

With this information from the poll, what can Rudolph do to help his people?
Such is the question royals have asked for generations.

❧ ❧ ❧

Noting that the dependent variable is an ordinal variable, we could not use ordinary
least squares regression. We had to use something called “ordinal regression.” The
concepts behind ordinal regression are quite similar to those behind other types of
regression covered in this book. The mathematics are a bit more difficult, however.

Thankfully, statistical programs make using ordinal regression almost as
easy as using other types. We just have to know how to get the data in the right
form for the program and how to test the assumptions made by the technique.

In fact, this seems to be the lesson we need to learn throughout this course.
The concepts are quite similar. The mathematics are different. And, to make usage
easier, those who write statistical environments try to make the functions as similar
as they can.
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1.5: Conclusion

And that brings us to the end of this introductory chapter. In this chapter, you were
introduced to the incredible Kingdom of Ruritania. Ruritania offers us a rich source
of examples, which will be exploited throughout the text.

Figure 1.5: Rudolph II, King
of Ruritania, in 1952.

This chapter also offered several examples
that foreshadow what you will learn in this course.
While you may not be able to do — or understand
the underlying theory for — any of them at this
point, you will by the end of the course.

So, take a deep breath and turn the page to
the book’s first part: Ordinary Least Squares (OLS).
In this part of the book, we start by asking what we
mean by “summarizing the relationship with a line
of best fit.” From that point, we leverage that defi-
nition to inform our mathematics, thus allowing us
to create formulas for estimating the population pa-
rameters.

After that chapter, we use the mathemat-
ics and elementary probability theory to create test
statistics and confidence intervals for testing hy-
potheses of interest.

And after that. . . the sky is the limit! It is a great journey, and King Rudolph
II thanks you for starting it.
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Chapter 2:

IntroductiontoLinearRegression

Overview:

Regression is a set of methods that seek to learn the
specific relationship between one or more influenced
(dependent, response) variables and one or more in-
fluencing (independent, predictor) variables. There are
many existing regression methods, each focusing on dif-
ferent ways of determining how best to quantify that re-
lationship.

As is tradition, this chapter starts with our first def-
inition of “best fit” and derives many results from that
definition. This chapter is entirely mathematical in that
probability distributions are not considered (until Chap-
ter 4).
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Figure 2.1: Sample data and a line of best fit for that data. Note that the slope of the line
is negative. This indicates that increasing values of x tend to correspond to lower values
of y. Regression detects for such trends.

Let x and y be numeric variables. The linear relationship between x and y can be
summarized by a line that “best” fits the observed data. That is, we can summarize
the relationship between x and y using a linear equation:

y = β0 + β1x+ ε (2.1)

Here, parameter β1 represents the slope and parameter β0 represents the y-intercept
(the value of y on the line when x = 0). The slope is usually the only thing in the
equation that is interesting; it is the effect of x on y. The ε represents the vertical
distance between the observation and the population line of best fit. It contains all
of the things that affect y that are not included in x.

We said that the line given in equation 2.1 “best” fits the observed data. What
we mean by “best” determines where we go from here. In thinking about “best,” it
may help to see some sample data and the “line of best fit” for it (Figure 2.1).

A good statistician will ask:

What makes this line the “best”?
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Here is the answer:

It depends.

Note that there are at least three definitions of “best” that we can use:best

1. Maximize the likelihood that the data were generated

2. Minimize the sum of the absolute value of the residuals

3. Minimize the sum of the square of the residuals

All three definitions are entirely legitimate — as are many other definitions. How-
ever, each leads to different estimation methods and estimators.estimator

Note: While different models will usually give different estimates, the sub-
stantive conclusions will rarely differ significantly in a well-formed model.

Note that the result will be a line represented bymodel

ŷ = b0 + b1x (2.2)

Using Latin characters indicates that these are based on your particular sample; they
are sample estimates. Contrast this with using Greek characters to indicate popula-
tion parameters. The “hat” on the y indicates that this is an estimate. All together,
this is our model equation. It is the equation of the line of best fit based on the data
you collected.

The first definition leads to “maximum likelihood estimation,” which willMLE
be covered in Chapter 10. It is an excellent technique that can be generalized to
many more settings than can ordinary least squares. Its greatest strength is that it
makes use of the researcher’s greater understanding of the data-generating process
(Chapters 10 to 15). Its greatest weakness is the mathematics involved.

The second definition leads to a type of robust regression frequently termedrobust
“median regression.” This method is helpful for times when there are outliers in
the data that you cannot (or should not) remove. The drawback to this method is that
estimating the two parameters (β0 and β1) does not provide a closed-form solution.
In other words, it requires a repetitive sequence of steps and can only approximate
those estimates. Furthermore, the approximation process is computationally inten-
sive. Because of this, median regression was little used until recently. Because of
this, the statistical theory behind it is not as well explored as other types. We will
see this in Chapter 9.

The most popular definition of “best,” and the one that starts our journey, is
the final definition. It leads to an estimation method called ordinary least squares

18



(OLS). It is rather straight-forward to minimize a sum of squared values using dif-OLS
ferential calculus. One strength is that an equation results from this process — a
closed-form solution with no need for iteration. This means that the process re-
turns mathematically exact values. The drawback is that it is limited in the types of
processes that can be modeled.

We start exploring ordinary least squares immediately.
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2.1: Scalar Representation

This section and the next show how our definition of “best” mathematically leads to
specific results. That leading can be done by representing the regression problem in
scalar or in matrix form. At one level, there is no difference in the two representa-
tions. At another level, one representation may make proofs — and understandings
— easier and much more manifest. And so, let us begin with the scalar representa-
tion of the regression problem. From experience, it seems to make more sense than
starting with the matrix representation (Chapter 3).

Ordinary least squares estimation defines “best” as “having the lowest sum
of squared errors.” These errors (or residuals) are the vertical distance between the
observed point and the corresponding point on the line (see Figure 2.2). With this
explanation of what we mean by “error” in this context, we can use our third defini-
tion of “best” to obtain the OLS estimators for β0 and β1.

Remember that to optimize (maximize or minimize) a function using calcu-
lus, one takes its derivative(s) with respect to the parameter(s) of interest, sets the
resulting equations equal to 0, then solves the system of equations.1

And so, the first step is to form the objective function that we want to mini-
mize. Since we seek to minimize the sum of squared errors, that Q function is is the
sum of squared errors:

Q =
n∑
i=1

ε2
i (2.3)

=
n∑
i=1

(yi − ŷi)2 (2.4)

=
n∑
i=1

(
yi − (β0 + β1xi)

)2
(2.5)

=
n∑
i=1

(
yi − β0 − β1xi

)2
(2.6)

Now that we have the objective function, we take its derivative with respect to each
parameter, set it equal to 0, and solve for that parameter.

1Also, one should perform the second derivative test to determine the type of optimization
point found: minimum, maximum, and saddle point (neither).
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Figure 2.2: Sample data and a line of best fit for that data. Also marked are the residuals,
the difference between what was observed (dots) and what is predicted by the model (line).
This particular line of best fit minimizes the sum of squared residuals.

Let us start with β0:

∂
∂β0

Q =
n∑
i=1

−2(yi − β0 − β1xi) (2.7)

0 set=
n∑
i=1

−2(yi − b0 − b1xi) (2.8)

=
n∑
i=1

yi −
n∑
i=1

b0 − b1

n∑
i=1

xi (2.9)

= ny −nb0 −nb1 x (2.10)

This immediately leads to

b0 = y − b1 x (2.11)

This is called the OLS estimator of β0. Note that this formula needs x and y . These
are both easily calculated from the data. This formula also need b1, which is the OLS
estimate of β1. Thus, we will need to determine the value of b1 to use this formula.
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And so, to obtain a formula for b1, we take the derivative of Q with respect
to the second parameter, β1:

∂
∂β1

Q =
n∑
i=1

−2xi (yi − β0 − β1xi) (2.12)

0 set=
n∑
i=1

−2xi (yi − b0 − b1xi) (2.13)

=
n∑
i=1

xiyi − b0

n∑
i=1

xi − b1

n∑
i=1

x2
i (2.14)

=
n∑
i=1

xiyi −nb0 x − b1

n∑
i=1

x2
i (2.15)

Substituting our estimator b0, we have

0 =
n∑
i=1

xiyi − (y − b1 x )nx − b1

n∑
i=1

x2
i (2.16)

=
n∑
i=1

xiyi −nx y + b1nx
2 − b1

n∑
i=1

x2
i (2.17)

b1

 n∑
i=1

x2
i −nx

2

 =
n∑
i=1

xiyi −nx y (2.18)

Finally, we have

b1 =

n∑
i=1

xiyi −nx y

n∑
i=1

x2
i −nx

2

(2.19)

Thus, the two OLS estimators of β0 and β1 are
b0 = y − b1 x

b1 =
∑n
i=1 xiyi −nx y∑n
i=1 x

2
i −nx

2

(2.20)
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Note that this mathematical process had but one requirement:requirement

n∑
i=1

x2
i −nx

2 , 0 (2.21)

If that requirement is not met by the data, then the divisor of b1 is zero in equa-
tion 2.19, which leads to dividing by zero, armageddon, and a really bad hair day.
However, note that

n∑
i=1

x2
i −nx

2 = (n− 1) s2x (2.22)

As such, this requirement is met when the variance of x is non-zero. In other words, exercise
we require that the independent variable varies.

Note: For a mathematician, this is an important observation. For a statisti-
cian, it gives insight into how to “break” OLS: Measure all of the observations
using the same value of the independent variable. In other words, to a statis-
tician, the steps have meaning beyond the mathematics.
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Also note that some sources will give the formula for b1 as:

b1 =

n∑
i=1

(xi − x )(yi − y )

n∑
i=1

(xi − x )2

(2.23)

I leave it as an exercise to show that
∑n
i=1(xi − x )(yi − y ) is equivalent to

∑n
i=1 xiyi −exercise

nx y and that
∑n
i=1(xi − x )2 is equivalent to

∑n
i=1 x

2
i −nx

2.

Definition 2.1. Sxx

We will come across the denominator of equation 2.23 in many settings. Thus, to
save ink, we will symbolize it as Sxx and define it as:

Sxx =
n∑
i=1

(xi − x )2 (2.24)

Thus, our OLS line of best fit is the line defined by the set of points (x, ŷ), where

ŷ = b0 + b1x (2.25)

Note that ŷ is the expected value of Y (dependent variable), given that value of x
(independent variable). In other words,

ŷi = E [Y | xi] (2.26)

It is the conditional mean of Y given xi ; the expected value of Y , given this value of
xi ; the mean of Y when the independent variable has value xi .

Note: There is a difference between an “expected” and a “predicted” value.
The expected value is the mean: If you were to rerun the universe a gazillion
times, collected the same amount of data, and estimated ŷ each time, the
expected value is the average of all of those ŷs. The predicted value is the
value of an additional observation measured at the same value of x.

That the two are both on the line is happy happenstance — but hap-
penstance nonetheless. The main difference, as you will discover, is in the
intervals that surround that value. Intervals on predictions (prediction in-
tervals) are wider than intervals on the mean/expected value (confidence
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intervals). This is because we are more uncertain about a future value than
we are about an average.

And this is as far as we can go without making additional assumptions. As such, it
marks a great place for a toy example.2

Example 1

Let us measure two variables on four subjects. Those two variables are x and
y. For the first subject, the value of x is −2 and the value of y is 3. For the
second subject the x and y values are 0 and 0. For the third subject, the values
are 0 and 2. For the fourth subject, they are 2 and −1.

Given this information, let us calculate the ordinary least squares es-
timators of β0 and β1.

2Such examples are called “toy” examples because they are simple to work through, not be-
cause they deal with toys.
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Solution: First, the formulas for b0 and b1 require we calculate x and y . To do this,
we need the data. Here they are

x y

-2 3
0 0
0 2
2 -1

The means are 0 and 1, respectively. And, with that, we can use the formula for b1
(Equation 2.20b):

b1 =

n∑
i=1

xiyi −nx y

n∑
i=1

x2
i −nx

2

(2.27)

=

(
− 2(3) + 0(0) + 0(2) + 2(−1)

)
− 4(0)1(

(−2)2 + (0)2 + (0)2 + (2)2
)
− 4(0)2

(2.28)

= −1 (2.29)

For the OLS estimator of the intercept, β0, we have (Equation 2.20a):

b0 = y − b1 x (2.30)

= 1− (−1)0 (2.31)

= 1 (2.32)

Thus, the OLS line of best fit is the line defined by the set of points (x, ŷ), where

ŷ = 1− 1x (2.33)

Figure 2.3 shows the points and the OLS line of best fit.

So, what does the equation mean? It means that the expected value of Y when
x = 0 is 1, the y-intercept. It also means that for every one increase in the value of
x, the expected value of Y increases by -1 (decreases by 1), which is the value of the
slope.

To go beyond this rote interpretation, we need to know what the numbers
represent. That information was lacking in this toy example. ♦
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Figure 2.3: Graphic of the data and the OLS line of best fit for the toy data of Example 2.1.

Note: From a scientific standpoint, it is dangerous to interpret the y-intercept
when x = 0 is outside the observed range of the data (x-values). Models are
best when you are trying to understand the relationship within the observed
ranges of the independent variable(s). This is interpolation — “inter” from interpolation
“within.”

Trying to use the model to understand relationships outside the ob-
served values of the independent variables is called “extrapolation,” where
‘extra’ means ‘outside.’ Extrapolation is dangerous: all curves look linear at
a small enough scale (remember Newton’s Method from Calculus). Thus, fit-
ting the data with a line may be a good approximation in one scale, it may
not make sense at a wider range, where the non-linearity of the relationship
may become more pronounced.
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Example 2

Let us measure two variables on four Ruritanian subjects. Those two vari-
ables are handedness and time to cut a sheet of paper. Sounds familiar? The
difference here is that the independent variable is dichotomous.

Given the information in the table, let us calculate — and interpret
— the ordinary least squares estimators of β0 and β1.

Solution: Here are the data:

Handedness (x) Time (y)

Left 3
Right 1
Right 2
Left 2

The first thing to do is change our independent variable into a numeric variable.
When the variable is dichotomous (has only two possible values), this is easy. Setdichotomous
one value to 0 and the other to 1. So, without loss of generality, let us follow the
alphabet and replace Left with 0 and Right with 1. With this transformation, the
values for handedness are now {0,1,1,0} and we can use the same procedure as we
used in Example 2.1.
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First, the formulas for b0 and b1 require we calculate x and y . They are 0.5
and 2, respectively. With that, we can use the formula for b1 (Equation 2.20b):

b1 =

n∑
i=1

xiyi −nx y

n∑
i=1

x2
i −nx

2

(2.34)

=

(
0(3) + 1(1) + 1(2) + 0(2)

)
− 4(0.5)2(

(0)2 + (1)2 + (1)2 + (0)2
)
− 4(0.5)2

(2.35)

=
3− 4
2− 1

(2.36)

= −1 (2.37)

For the OLS estimator of the intercept, β0, we have (Equation 2.20a):

b0 = y − b1 x (2.38)

= 2− (−1)0.5 (2.39)

= 2.5 (2.40)

Thus, the OLS line of best fit is the line defined by the set of points (x, ŷ), where

ŷ = 2.5− 1 x (2.41)

Now that we have some context, what does this equation mean?

Remember that an x-value of 0 indicates we are discussing left-handed peo-
ple. Thus, the expected value of Y for the lefties is 1.5 + (1)0 = 1.5. The expected
value of Y for right-handed people is 1.5 + (1)1 = 2.5.

Thus, the y-intercept is the predicted value for base level (lefties). The base level
“slope” is the “effect of handedness” (moving from left- to right-handed) on that
y-intercept. ♦

You have seen an analysis of this type in your past introductory statistics course.
This is just the two-sample t-procedure under the guise of linear models.

Note: Since we can compare the means of two group in the regression realm
(Example 2.1), can we compare the means of more than two groups? In other
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words, can we extend linear models to ANOVA? The answer is Yes! In fact,
ANOVA is built on a base of linear models, as we will see in the future (Ex-
ample 3.4).

Please do not forget that all statistical procedures have requirements that have to
be met. So far, the only requirement is that there is variation in the independent
variable.

To draw stronger conclusions, perhaps calculate confidence intervals and test
hypotheses, we will need to make stronger requirements. We will do this in the
future. For now, let’s just require that there is variation in the independent variable.
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2.2: Results

Now that we have formulas for our estimators, we have several important mathe-
matical results. The first result is that the OLS line of best fit passes through the
center of gravity.

Theorem 2.2.1

The point (x , y ), the center of gravity, is on the OLS line of best fit.

Proof. To see this just substitute x for x in the prediction equation and show that
ŷ = y .

From equation 2.2,

ŷ = b0 + b1x (2.42)

Substituting x for x gives

= b0 + b1 x (2.43)

Substituting the value of b0 gives

= (y − b1 x ) + b1 x (2.44)

Finally, simplification gives our result:

= y (2.45)

Thus, we have shown that ŷ = y when x = x . In other words, we showed that the
OLS line of best fit passes through the center of gravity.

Note: You should also be able to prove that any line passing through the
center of gravity has the sum of the residuals being zero. exercise
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Example 3

Illustrate this result using the previous example. In other words, show that
the point (x , y ) = (0.5, 2) is on the line.

Solution: We have already shown that the line of best fit is ŷ = 1.5 + x. Substituting
x = 0.5 gives ŷ = 1.5 + 0.5 = 2. Note that 2 is also the value of y .

Thus, we have illustrated the result of Theorem 2.2. ♦

A second result is that the slope estimator b1 is the ratio of the covariance betweensecond
x and y to the variance of x.

Theorem 2.2.2

An equivalent formula is

b1 =
Cov [x,y]
V [X]

=
sxy

s2x
(2.46)

Proof. To see this we substitute the formulas for the covariance and variance into
this equation and quickly simplify:

b1 =
sxy

s2x
(2.47)

=

1
n− 1

n∑
i=1

(xi − x )(yi − y )

1
n− 1

n∑
i=1

(xi − x )2

(2.48)
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=

n∑
i=1

(xi − x )(yi − y )

n∑
i=1

(xi − x )2

(2.49)

A third result is that the slope estimator can also be represented as third

b1 = rxy
sy
sx

(2.50)

That is, the slope estimator is the correlation between the two variables times the
ratio of their standard deviations. I leave this as an exercise for you to prove. exercise

A fourth result is that the slope estimator is zero if the y-values do not vary.
I leave this as an exercise, as well. By the way, this is a “three-line proof.” exercise

33



2.3: First Assumptions

This was fun. We were able to determine the correct formula for the line of best fit
— given our particular definition of “best.” Those equations lead to other equations.
These are the mathematical results for our given sample.

Cool mule.

Until this point, we have only required variation in the independent variable. If we
make three additional assumptions, we have additional results.3

Recall that the data model is

y = β0 + β1x+ ε (2.51)

With this, here are the three assumptions we will make, all about the residuals:

• The first assumption is that the residuals are realizations of a random variable
(ε has a distribution).

• The second is that the expected value of the residuals is zero, E [ε] = 0 (the
measurements are not systematically biased).

• The third is that the residuals are independent and have a finite and constant
variance, V [ε] = σ2 <∞ (the residuals are homoskedastic).

The above simple assumptions lead to several additional interesting results. Some
are proven here, some are left as exercises.

3This is how mathematical statistics progresses. Assumptions are made, then we play with
the equations to learn about the consequences of those assumptions. Then, when we have
exhausted our efforts, we make additional assumptions. . . ad infinitum.
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Theorem 2.3.1

The OLS estimator for β1 is unbiased. That is,

E [b1] = β1 (2.52)

Proof. To prove this, we will start with the formula for b1 and simplify until we
obtain the results.

E [b1] = E

[∑n
i=1(xi − x )(yi − y )∑n

i=1(xi − x )2

]
(2.53)

= E

[∑n
i=1(xi − x )yi∑n
i=1(xi − x )2

]
(2.54)

=
∑n
i=1(xi − x )E [yi]∑n
i=1(xi − x )2 (2.55)

=
∑n
i=1(xi − x ) (β0 + xiβ1 + ε)∑n

i=1(xi − x )2 (2.56)

=
∑n
i=1(xi − x )β0∑n
i=1(xi − x )2 +

∑n
i=1(xi − x )xiβ1∑n
i=1(xi − x )2 +

∑n
i=1(xi − x )ε∑n
i=1(xi − x )2 (2.57)

=
β0

∑n
i=1(xi − x )∑n

i=1(xi − x )2 +
β1

∑n
i=1(xi − x )xi∑n
i=1(xi − x )2 +

ε
∑n
i=1(xi − x )∑n

i=1(xi − x )2 (2.58)

= β0
0∑n

i=1(xi − x )2 + β1

∑n
i=1(xi − x )(xi − x )∑n

i=1(xi − x )2 + ε
0∑n

i=1(xi − x )2 (2.59)

= β1 (2.60)

Thus, the OLS estimator of β1 is unbiased. This is a nice property. It means E [b1] =
β1.

35



Note: Did you notice where we used these three results?

n∑
i=1

(xi − x )(yi − y ) =
n∑
i=1

(xi − x )yi , (2.61)

n∑
i=1

(xi − x )(xi − x ) =
n∑
i=1

(xi − x )xi , and (2.62)

n∑
i=1

(xi − x ) = 0 (2.63)

All three are just simple algebra.

Here are a few other results for you to prove:

Theorem 2.2. E [b0] = β0

Theorem 2.3. V [b1] = σ2/Sxx

Theorem 2.4. V [b0] = σ2
(

1
n + x

Sxx

)
Theorem 2.5. Cov [b0,b1] = −σ2 x

Sxx

Finally, let us define the mean square error (MSE) in the case of simple linear regres-
sion, SLR (one dependent and one independent variable).MSE

Definition 2.6. Mean Squared Error

MSE =
1

n− 2

n∑
i=1

e2
i (2.64)

This definition leads to the following theorem.

Theorem 2.3.2

E [MSE] = σ2

In other words, definition 2.6 provides an unbiased estimator of the variance of theunbiased
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residuals. This is why we define it in this manner.

Note: Be aware that definition 2.6 only holds in the case of simple linear
regression (SLR); that is, it holds when there is just one dependent and one
independent variable.

I leave this space to give you the opportunity to prove this theorem.
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2.4: The PRE Measures

Now that we have reality (yi) and our errors (ei), we can create a measure of how
well the model summarizes (fits) the data. In fact, we will create two of them! Both
are “proportional reduction in error” measures; that is, they both are measures ofPRE
how well the model reduces the unexplained variation in the dependent variable.

The first is the venerable R2 (“R-squared”) measure. The second is the R
2

(“adjusted
R-squared”) measure.

Both measure how much the model reduces the variation in the dependent
variable. They differ in how that variation is measured. The R2 measure uses the

sum-of-squares; the R
2
, the variance.

2.4.1 R2
Measure The formula for the R2 measure is

R2 = 1− SSE
T SS

(2.65)

Here, SSE is the sum of the squared errors using the model, and T SS is the sum of
squares without using the model (or with using the null model).null model

SSE =
∑

(yi − ŷ)2 (2.66)

T SS =
∑

(yi − y )2 (2.67)

In this formula, ŷ is the predicted value of y for each value of xi in the data according
to the model; y is the predicted value of y for each value of xi in the data in the
absence of the model (the mean of the dependent variable).

Thus, the SSE is a measure of how much variation remains in the model —
the residual (unexplained) variation after applying the model. The T SS is a measure
of the variation in the original data. It is called the residual variation after applying
the “null model.”4

4The “null model” always refers to the model with no independent variable. Thus, it is the
model with only the y-intercept (here). The concept of the “null model” is extremely impor-
tant in statistics, because it allows us to determine how much the model is a improvement
over the “lack of” model.
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Note: The R2 measure only tells us how much of the variation in the depen-
dent variable is described by the model (as compared to how much was there
originally). It tells us nothing beyond that.

For instance, an R2 value of 0.04 tells us that the model explains only
4% of the variation in the dependent variable. There is a lot of variation left
unexplained by the model. It does not mean that the model is “poor.” An
R2 value of 0.98 tells us that the model explains 98% of the variation in the
dependent variable. It does not tell us that the model is “good.”

Note that the formula for R2 (2.65) is equivalent to

R2 = 1−
1
n−1SSE

1
n−1T SS

(2.68)

Note that the numerator of the fraction is an estimator for the unexplained variance
— but using the wrong number of degrees of freedom (n− 1 instead of n− p). Thus,
the R2 measure is how much the model reduces the unexplained variance, when the
variance is estimated using a biased estimator. biased

2.4.2 R
2

Measure Where R2 measures how much the model reduces the unex-
plained variance, when that variance is estimated using a biased estimate of the total

variance, R
2

measures how much the model reduces the unexplained variance, when
that variance is estimated using an unbiased estimate of the total variance. In other
words, the adjusted R2 measure uses the correct degrees of freedom to describe the
proportional reduction in error.

R
2

= 1−
1
n−pSSE

1
n−1T SS

= 1− (n− 1)SSE
(n− p)T SS

(2.69)

Here, p is the number of parameters estimated in the model. For simple linear re-
gression (one independent variable), p = 2, because we are calculating b0 and b1
from the data (to estimate β0 and β1). For the null model, p = 1, because we are only
calculating y from the data (to estimate β0).
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Usually, one reports the R2 value and uses the R
2

to help with model selec-

tion (select the model with the larger R
2
). This, I believe, needs to change. It isfight the power!!!

the adjusted R-squared value that better estimates the proportion reduction in er-
ror. This is because the adjusted R-squared measure uses unbiased estimators of the
variances.

One strength of the R2 measure is that it ranges from 0 to 1. The R
2

measure
can be less than 0. However, it is only less than 0 when the model describes very
little of the variance.

2.4.3 Other PREs These are the two most frequently used PRE measures in
linear regression. They are not the only ones, however. There is an entire class of
PRE measures called “pseudo-R2” measures. These are all genuine measures of how
well the model helps reduce unexplained variation in the dependent variable. Their
formulas tend to follow the structure of

PRE = 1− variation in the dependent variable with the model
variation in the dependent variable without the model

In the future, you will be introduced to “pseudo-R2 measures” for several differ-
ent modeling schemes. Because these follow the same scheme as above, they have
the same interpretation. They are measures of how well the model reduces the un-
certainty in the dependent variable. The differences are in how that uncertainty is
measured.
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2.5: Conclusion

This chapter started with defining what we can mean by “best.” Because we decided
to define “best” as “minimizing the sum of squared residuals,” we were able to ob-
tain closed-form solutions for the estimates. From those equations, we were able to
learn even more about our estimators — things not obvious from the definition.

That was the entire purpose of this chapter: to see that our results arise from
applying mathematics to our selected definition of “best.” Had we chosen a different
meaning, we may have arrived at different results.

In the next chapter, we will change how we represent the data. Using matri-
ces allows us to generalize what we did in this chapter to more than one independent
variable. It also allows us to draw some interesting results. For instance, the estima-
tors are only independent in simple linear regression if x = 0. Showing this requires
us to find the covariance between b0 and b1. This is much easier when working with
matrices.
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2.6: End-of-Chapter Materials

Here are the expected materials to supplement the chapter.

2.6.1 Exercises I left many things as exercises for you. Here they are. You
should be able to prove any and all of them using your prior knowledge of mathe-
matics (matrices and calculus).

1. Perform the second derivative test on b0 and b1 to show that these estimators
are really minima.

2. Show that
∑n
i=1(xi−x )(yi−y ) is equivalent to

∑n
i=1 xiyi−nx y and that

∑n
i=1(xi−

x )2 is equivalent to
∑n
i=1 x

2
i −nx

2.

3. Prove b1 = rxy
sy
sx

.

4. Prove that the slope estimator b1 is zero if the y-values do not vary.

5. Using the scalar form, show that Cov [b0,b1] = −σ2 x
Sxx

.
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Chapter 3:

MatricesandLinearRegression

Overview:

In the previous chapter, we were introduced to the clas-
sical linear model and estimating the parameters us-
ing ordinary linear regression. All of the work was done
using a scalar representation of the data. When mov-
ing beyond simple linear regression, the estimators are
more difficult to determine. The calculus remains almost
as simple, but solving the system of equations becomes
prohibitive.

The usual solution to solving complicated system
of equations is to use a matrix representation of the
problem. That is what this chapter does. Along the way,
we discover more about linear models than we expected.

Forsberg, Ole J. (10 DEC 2024). “Matrices and Linear Re-
gression.” In Linear Models and Řurità Kràlovstvı̀. Version
0.704442η(α).
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Figure 3.1: Sample data and a line of best fit for that data. Note that the slope of the line
is negative. This indicates that increasing values of x tend to correspond to lower values
of y. Regression searches for such trends.

As in the previous chapter, let x and y be numeric variables. The linear relationship
between x and y can be summarized by a line that “best” fits the observed data.
That is, we can (and will) summarize the relationship between x and y using a linear
equation:

y = β0 + β1x (3.1)

The above holds in the case of simple linear regression (SLR). So, what do we do
when there are more independent variables? Here is that representation:

y = β0 + β1x1 + β2x2 + β3x3 + · · ·+ βkxk (3.2)

Here, β0 is the y-intercept (still). And, βi is the effect of variable xi on the
dependent variable, assuming all the other variables remain constant.1

1This is called the ceteris paribus assumption. If the independent variables are independent
of each other, then this requirement it met. However, there is frequently some correlation
among the independent variables. Read on to see what to do about this.
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Note: We say that the “line” given by equation 3.2 best fits the observed data.
However, when dealing with two independent variables, it is not a line but a
plane; with three, a space; with four, a hyperplane; etc. Clearly, meaningfully
representing an entire four-variable model is quite difficult.

3.1: Matrix Representation

We learned a lot about our solution by exploring the scalar representation of the
system of equations in the previous chapter. We may be able to gain some additional
insights by exploring its matrix representation.

� Warning: It may be helpful to re-familiarize yourself with Appendix M at this point.

And so, let us begin with our matrix model.

Y = XB + E (3.3)

In this model, Y represents the response variable; X, the predictor variable(s) prepended
with a column of 1s; B, the coefficient vector; and E, the residuals. The dimensions
are n × 1 for Y, n × p for X, p × 1 for B, and n × 1 for E. Thus, in the case of simple
linear regression, the matrices are

Y =



y1
y2
y3
...
yn


X =



1 x1
1 x2
1 x3
...
1 xn


B =

[
β0
β1

]
E =



ε1
ε2
ε3
...
εn


In this formulation, n is the sample size and p = 2 is the number of parameters that
need to be estimated. Usually, this is one more than the number of independent
variables, k = 1.

Note that X is “the predictor variable(s) prepended with a column of 1s.”
What does this mean? Also: Why are those 1s needed?

Let our independent variable be the same as in Example 2.1, {−2,0,0,2}. The
corresponding X matrix is

X =


1 −2
1 0
1 0
1 2

 (3.4)
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Again, we want to minimize the sum of squared errors. Again, we will create the
objective function Q, take its derivative with respect to the parameter vector, B, and
solve:

Q = E′E (3.5)

= (Y−XB)′ (Y−XB) (3.6)

= Y′Y−B′X′Y−Y′XB + B′X′XB (3.7)

Note that each of these terms is a 1 × 1 matrix, thus each is equal to its transpose.
Using that on the third term and gathering the two like terms together gives our
objective function.

Q = Y′Y− 2B′X′Y + B′X′XB (3.8)

Now, taking the derivative with respect to B gives

d
dB

Q = −2X′Y + 2X′XB (3.9)

0 set= −X′Y + X′Xb (3.10)

X′Y = X′Xb (3.11)

(X′X)−1 X′Y = b (3.12)
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This formula is so important that I will repeat it here:

b = (X′X)−1 X′Y (3.13)

Note the switch between B and b. The former concerns the population. It is a
population parameter that we are trying to estimate.

B =


β0
β1
...
βp−1

 (3.14)

The latter concerns the sample. It is the estimator we are using to estimate theestimator
population parameter.

b =


b0
b1
...
bp−1

 (3.15)

With this, the equation for our OLS regression line (plane, space, hyperplane, etc.)
is

Ŷ = Xb (3.16)
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3.1.1 Requirement In performing these calculations, we made one assumption:
(X′X)−1 exists. If it does not exist, then the last step in the process cannot be done.
So, the first question to ask is:

Question

When does (X′X)−1 not exist?

Ans. It does not exist when detX′X = 0.

Question

So, when does detX′X = 0?

From linear algebra (and Appendix M) we know that this determinant is zero when
the X matrix is not of full (column) rank; that is, when rankX , p. This happens full rank
when one column of the X matrix is a linear combination of the other columns. A
statistician would say that there is redundant information in X; one variable can be
determined by the others.

When in the realm of multiple regression (more than one independent vari-
able), this happens when one variable is a linear combination of the others. This multicollinearity
condition is called “multicollinearity” or “super multicollinearity.”

When in the realm of simple linear regression (SLR), this happens when
there is no variation in the x variable (it is a constant multiple of the columns of
1s).
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3.1.2 Assumption/s Before we continue, as before, let us make the three as-
sumptions about our residuals. These are just the same non-parametric assumptions
we made back in Section 2.3, but in matrix form. The first is that they are realiza-
tions of a random variable (E has a distribution). The second is that the expected
value of the residuals is zero, E [E] = 0 (the measurements are not systematically
biased). The third is that the residuals are independent and have a finite constant
variance, V [E] = σ2I, with σ2 <∞.

In other words, let us make this assumption:

E ∼ N
(
0, σ2I

)
(3.17)

Here, the variance is finite.

3.1.3 Results Again, we have several results from this simple assumption.

Theorem 3.1.1

E [Y] = XB

Proof. The proof of this proceeds from algebra.

E [Y] = E [XB + E] (3.18)

= E [XB] +E [E] (3.19)

One pervasive requirement is that the values of X are not random variables. That is,
the researcher selected those particular x values. Since this is true,

E [Y] = X E [B] +E [E] (3.20)

Also, the values in the B matrix are population parameters. They, too, are not ran-
dom variables. In fact, the only random variable on the right-hand side of that ma-
trix equation is the zero-mean E matrix. Thus, we have

E [Y] = XB +E [E] (3.21)

= XB (3.22)
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Note: The requirement that the independent variables are are not random al-
lows us to easily calculate expected values, variances, and covariances. When
designing experiments, this assumption is not problematic.

When working with observational data, this becomes troublesome in
terms of the mathematics. It also becomes troublesome in terms of the vari-
ances of Y. . . and the b. The confidence intervals for the estimates are wider
than estimated here. Also, if the variability in the X are not independent,
even more difficulies arise.

If any of this interests you, please look into errors-in-variables models
(among other topics).

Similarly, it is quite easy to prove V [Y | XB] = σ2I. I leave that to you as an exercise. exercise

❧ ❧ ❧

Another result is that the two estimators are unbiased (i.e., their expected values
equal the population parameter):

Theorem 3.1.2

The OLS estimator b is unbiased for B.

Proof. An estimator is unbiased for the parameter if its expected value equals the
parameter. Thus, we need only show E [b] = B.

E [b] = E

[
(X′X)−1 X′Y

]
(3.23)

= (X′X)−1 X′E [Y] (3.24)

= (X′X)−1 X′XB (3.25)

= B (3.26)
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A third result is that the two estimators are not necessarily independent.

Theorem 3.1.3

The OLS estimators b0 and b1 are not necessarily independent.

Proof. To see this, we calculate the covariance matrix of b:

V [b] = V

[
(X′X)−1 X′Y

]
(3.27)

=
(
(X′X)−1 X′

)
V [Y]

(
(X′X)−1 X′

)′
(3.28)

=
(
(X′X)−1 X′

)
σ2

(
(X′X)−1 X′

)′
(3.29)

= σ2
(
(X′X)−1 X′

)(
(X′X)−1 X′

)′
(3.30)

= σ2 (X′X)−1 X′ X (X′X)−1 (3.31)

= σ2 (X′X)−1 (3.32)

If this matrix is diagonal, then the estimators are independent.

To see that the two estimators are linearly correlated (not independent), we
just need to calculate the matrix (X′X)−1. In general, this is rather difficult to do by
hand. However, if we restrict ourselves to simple linear regression, that inverse is
rather straight-forward because X is

X =



1 x1
1 x2
1 x3
...

...
1 xn


(3.33)

With that, we have

X′X =

 n nx

nx
∑n
i=1 x

2
i

 (3.34)
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The determinant of X′X is

detX′X = n
n∑
i=1

x2
i −n

2 x 2 = nSxx (3.35)

(3.36)

Thus, the inverse is

(X′X)−1 =
1

nSxx

 ∑n
i=1 x

2
i −nx

−nx n

 (3.37)

Finally, the covariance matrix is

V [b] =
σ2

nSxx

 ∑n
i=1 x

2
i −nx

−nx n

 (3.38)

From this matrix, we see that the covariance between b0 and b1 is

Cov [b0,b1] = −nx σ2

nSxx
= −σ2 x

Sxx
(3.39)

Thus, the OLS estimators are independent if and only if x = 0.

Note: As an extension, note that the sign of the covariance is the opposite that
of x .

Finally, while this last results may seem just slightly interesting, it is the basis of the
Working-Hotelling (1929) procedure, which we will see later in Section 4.4.

This last result also suggests why many disciplines tend to center their x-
values (subtract off x ) before doing regression. It ensures that the two estimators
are independent. centering

Example 1

Let us revisit Example 2.1 and show how to use the matrix representation to
answer the same problem.
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Solution: The first step is to create the two matrices. The dependent variable matrix
is

Y =


3
0
2
−1

 (3.40)

The independent variable matrix, also called the “data matrix” and the “design ma-
trix,” is

X =


1 −2
1 0
1 0
1 2

 (3.41)

Where did the column of 1s come from in X? Remember that the matrix equation is

Y = XB + E (3.42)

and that this is equivalent (in simple linear regression) to

yi = β0 1 + β1 xi + εi (3.43)

The 1s column in X is the multiplier of the β0 in the B matrix. As long as you have a
β0 in your model, you need that column of 1s.

Now that we have the two matrices, we can calculate b.

b = (X′X)−1 X′Y (3.44)

=



1 −2
1 0
1 0
1 2


′ 

1 −2
1 0
1 0
1 2



−1 

1 −2
1 0
1 0
1 2


′ 

3
0
2
−1

 (3.45)

[
1 1 1 1
−2 0 0 2

]
1 −2
1 0
1 0
1 2

 =
[
4 0
0 8

]
(3.46)

⇒ (X′X)−1 =
1

32

[
8 0
0 4

]
(3.47)

X′Y =
[

1 1 1 1
−2 0 0 2

]
3
0
2
−1

 (3.48)

=
[

4
−8

]
(3.49)
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Thus, we have

b = (X′X)−1 X′Y (3.50)

=
1

32

[
8 0
0 4

][
4
−8

]
(3.51)

b =
1

32

[
32
−32

]
(3.52)

And finally,

b :=
[
b0
b1

]
=

[
1
−1

]
(3.53)
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From all of this, we have b0 = 1 and b1 = −1. ♦

The conclusion is exactly the same, ŷ = 1−x. The process is different. Here, this pro-
cess is much easier for computers to perform, as they can do matrix multiplication
(and inverting) with little problem. We have to spend a lot of extra effort to perform
those operations. Here it is in R:

y = matrix( c(3,0,2,-1), ncol=1 )
x = matrix( c(1,1,1,1,-2,0,0,2), ncol=2 )

solve( t(x)%*%x ) %*% t(x) %*% y

Also, if we have more than one independent variable, we need to calculate the OLS
estimator equations again; the ones in equation 2.20 only hold for one independent
variable. Using matrices, however, formula 3.13 holds for any number of indepen-
dent variables.
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3.2: Predictions and the Hat Matrix

Beyond modeling the relationship, one may also want to estimate or predict values
of Y for a given value of X. In matrix terms, this requires solving the equation
Ŷ = Xb. But note the following:

Ŷ = Xb (3.54)

= X (X′X)−1 X′Y (3.55)

Thus:

Ŷ =
(
X (X′X)−1 X′

)
Y (3.56)

Note that the matrix X (X′X)−1 X′ “puts a hat” on the Y matrix. As such, it is called
the “hat matrix,” H. Thus, we have simple matrix equations for the estimators and hat matrix
the residuals:

Ŷ = HY (3.57)

E = Y− Ŷ = (I−H)Y (3.58)

Why is this important? It shows that the predictions and the residuals are orthogonal
(see definition on page 497). perpendicular

Theorem 3.2.1

The matrices H and I−H are orthogonal.

Proof. To show orthogonality, we need to show that the inner product is zero:

H′ (I−H) = H (I−H) = H−HH (3.59)

= H−H (3.60)

= 0 (3.61)

In the proof, we used the fact that the hat matrix is symmetric idempotent. The next idempotent
theorem proves this to be the case.

Theorem 3.2.2

The matrix H is symmetric idempotent.
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Proof. Let us start with showing H is symmetric.

H′ =
(
X(X′X)−1X′

)′
(3.62)

Recall from page 499 in Appendix M that (AB)′ = B′A′ . Thus(
X (X′X)−1 X′

)′
= X′′

(
(X′X)−1

)′
X′ (3.63)

= X
(
(X′X)−1

)′
X′ (3.64)

I leave it as an exercise to show that X′X is symmetric, and so is its inverse.

= X(X′X)−1X′ (3.65)

= H (3.66)

Now, let us show that H is idempotent.

HH = X (X′X)−1 X′ X (X′X)−1 X′ (3.67)

= X
[
(X′X)−1 X′ X

]
(X′X)−1 X′ (3.68)

= X I (X′X)−1 X′ (3.69)

= X (X′X)−1 X′ (3.70)

= H (3.71)

Since H is symmetric and idempotent, it is an orthogonal projection matrix that
projects Y-space onto the smaller Ŷ-space (Appendix M.4). Because it is an orthog-
onal projection, Ŷ is as close to Y as possible in its subspace. That is, the errors are
minimized. Figure 3.2 illustrates this.
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Figure 3.2: A schematic illustrating that Ŷ is as close to Y as possible, while remaining
in its subspace (represented by the plane). In other words, the Y matrix exists in an n-
dimensional space. The solution, Ŷ, is in a p-dimensional space, with n > p. Under the
assumptions of ordinary least squares, the distance between Y and Ŷ (represented as the
residuals, E) is as small as possible if you define “distance” in terms of the Euclidean
distance, L2.

Theorem 3.2.3

The vectors Ŷ and E are orthogonal.

Proof. I leave this as an exercise. exercise

Since the predictions and residuals are orthogonal, we know the following is true by
the Pythagorean Theorem:

Y′Y = Ŷ′Ŷ + E′E (3.72)
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Let us also prove this using matrices.

Theorem 3.2.4

Y′Y = Ŷ′Ŷ + E′E

Proof. Let us prove this without resorting to the Pythagorean Theorem. We know
Y = Ŷ + E. Thus,

Y′Y =
(
Ŷ + E

)′ (
Ŷ + E

)
(3.73)

= Ŷ′Ŷ + E′E + Ŷ′E + E′Ŷ (3.74)

= Ŷ′Ŷ + E′E + (HY)′ (I−H)Y + ((I−H)Y)′HY (3.75)

= Ŷ′Ŷ + E′E + Y′H′(I−H)Y + Y′(I−H)′HY (3.76)

Remember that H and I−H are symmetric. That gives us

= Ŷ′Ŷ + E′E + Y′H(I−H)Y + Y′(I−H)HY (3.77)

Finally, since H(I−H) = (I−H)H = 0, we have

Y′Y = Ŷ′Ŷ + E′E + Y′0Y + Y′0Y (3.78)

and

Y′Y = Ŷ′Ŷ + E′E (3.79)

This will come in handy when we add probability distributions to our mathematics,
thus creating statistics.
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By the way, we also can show that the residuals and predicted values are uncorre-
lated by showing their covariance is zero.

Theorem 3.2.5

Cov
[
Ŷ,E

]
= 0.

Proof. I will only give the first step to this proof. The rest will be up to you to figure
out.

Cov
[
Ŷ,E

]
= Cov [HY, (I−H)Y]

So, where to go from this?

By the way, this result should not be surprising given that the prediction and resid-
ual vectors are orthogonal.

3.2.1 Consequences In this section, we started with the matrix equation Y =
XB+E and obtained the OLS estimator of B. With that solution (and the requirement
that X be full column rank), we have another result.

Theorem 3.2.6

X′E = 0

Proof. Again, I will just start you off with this proof. Completing it is up to you.

Y = XB + E
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What does this result mean? Recall that X′E is a p × 1 matrix. The first column of
X is a column of 1s. Thus, the first element of X′E is just the sum of the residuals.
That means the residuals must sum to 0 when we use the OLS estimator.

The other elements in the X′E matrix consist of the sum of the residuals times
the values of each independent variable. This means that, under OLS, the residuals
are necessarily linearly independent of each of the independent variables. It is a
result of the mathematics used.mathematics

To see this in simple linear regression:

X′E =
[

1 1 1 · · · 1
x1 x2 x3 · · · xn

]

e1
e2
e3
...
en


(3.80)

=

 ∑
ei∑
xiei

 (3.81)

This matrix is 0 only when all of its elements are also 0. Thus, we have
∑
ei = 0; the

sum of the residuals in OLS is mathematically guaranteed to be zero.

We also have
∑
xiei = 0, which is equivalent to

∑
xiei −nxe because e = 0 and

thus to (n − 1)Cov [x,e]. This covariance is zero if x and e are linearly independent.
This means that the residuals arising from OLS estimation are linearly uncorrelated
with the predictor variables.

Note: Again, these are mathematical results from applying ordinary least
squares. They are guaranteed simply because of the estimation method we
selected. Had we chosen a different definition of “best fit,” then this section
may not hold.

Everything follows from our chosen definition of “best fit.”
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3.3: The PRE Measures

Now that we have reality (Y) and our errors (E), as pictured in Figure 3.2, we can
create a measure of how well the model summarizes (fits) the data. In fact, we will
create two of them! Both are “proportional reduction in error” measures; that is, PRE
they both are measures of how well the model reduces the unexplained variation in
the dependent variable. The first is the venerable R2 (“R-squared”) measure. The

second is the R
2

(“adjusted R-squared”) measure.

3.3.1 Other PREs Section 2.4 covered the two most frequently used PRE mea-
sures. They are not the only ones, however. In fact, we could use Figure 3.2 to create
yet another PRE, this one based on the right triangle. Note that Y is the target we
are trying to describe and Ŷ is where we landed. Thus, a PRE measure could be the PRE
angle θ = ∠YOŶ. This θ ranges between 0 and 90◦, with 0 being an optimal fit and
90◦ being the worst fit.

As this measure is not intuitive as a measure of fit by itself (larger is not
better), we can simply take its cosine and use cosθ as our PRE. This value ranges
between 0 and 1, with a 1 being the best fit (cos0) and a 0 being the worst (cosπ/2).

Question

So, how would you measure θ?
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3.4: Multicollinearity and Categorical Independent Variables

So far, our independent variable was either numeric (Example 2.1) or dichotomous
(Example 2.1). Let us now look at the interesting case of a discrete independent
variable with three levels.

Example 2

His Majesty Rudolph II would like some input on his next five-year plan.
The primary crop in Ruritania is corn. To help optimize the profits made by
farmers, Rudolph wants to know if that crop should be changed to summer
wheat or to soybeans.

To help him, let us model the relationship between farmer profit and
crop in Ruritania.

Solution: Collecting the data is not as difficult as it may seem at first. All three crops
are currently grown in Ruritania. All we had to do was obtain a list of all farms and
their primary crop and randomly select records from that. Table 3.1 provides our
data.

Crop Profit per Acre

Wheat 722
Wheat 965
Wheat 940
Wheat 756

Corn 763
Corn 765
Corn 565
Corn 621

Soybean 566
Soybean 658
Soybean 540
Soybean 485

Table 3.1: The data collected from Ruritania for Example 3.4. Note that this is the raw
data with a categorical independent variable.
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Wheat Corn Soybeans Profit per Acre

1 0 0 722
1 0 0 965
1 0 0 940
1 0 0 756
0 1 0 763
0 1 0 765
0 1 0 565
0 1 0 621
0 0 1 566
0 0 1 658
0 0 1 540
0 0 1 485

Table 3.2: Data to be used for Example 3.4. This table differs from Table 3.1 by taking the
original Crop variable and replacing it with three indicator variables. This form allows
us to more easily calculate the ordinary least squares estimators by hand.

Note that the response variable is numeric, and the predictor variable is cate-
gorical. How do we code that variable so that we can use the methods of this chapter
(and this class)???

In Example 2.1, it was easy to change our dichotomous variable into a nu-
meric variable by selecting one level as the base level and measuring the other level base level
from there. In other words, one level was given the value 0 (absence) and the other
was given the value 1 (presence).

In this case, we have three levels in our independent variable. It does not
seem to make sense to select one level to represent with 0 (absence), one to represent
with 1 (presence), and one to represent with 2 (huh????).

One method that always works is to create a series of dichotomous indicator
variables from the one nominal variable. Thus, since there are three levels here, we
would create three new dichotomous variables: corn, soybeans, and wheat.

This change is presented in Table 3.2. Note that each of the three dichoto-
mous variables is now numeric. Each value indicates absence (0) or presence (1)
of that trait (crop). With this change, we can use the methods of this chapter to
calculate the values of the OLS estimators β0, β1, β2, and β3. . . or can we?

To see why I ended that paragraph in an evil and foreboding voice, let us
work through this using matrices.
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Remember the formula to calculate the OLS estimators: b = (X′X)−1 X′Y.
Here, Y is

Y =



722
965
940
756
763
765
565
621
566
658
540
485



(3.82)

The design matrix, X is

X =



1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1



(3.83)

So far, so good!

Note: At this point, can you see why this matrix is termed the “design” ma-
trix? From it, one can deduce the experimental design that gave rise to thedesign matrix
data.
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Next, let us calculate X′X:

X′X =



1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1



′ 

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1



(3.84)

=


12 4 4 4
4 4 0 0
4 0 4 0
4 0 0 4

 (3.85)

Nice! That is a rather interesting matrix. From it, you can pick out the sample size Fantastický!
(n = 12) and the sample sizes in each of the three levels (ni = 4 in the diagonals). The
next step is to calculate the inverse of this matrix.

At this point, it is soooooooooo much easier to use technology to perform this
calculation. However, when you do, you will get a notification that the matrix is
singular. This means two things. singular

1. Its inverse does not exist.

2. One column is a linear combination of the others.

Notice that the first column is the sum of the other three columns. Thus, there is re-
dundant information. Thus, the columns are not linearly independent. To prove this
last point, use the coefficient vector a = {1,−1,−1,−1} in the definition on page 487.

Note: From an information standpoint, if one column is a linear combination information
of the others, then that column is redundant. The model can be repeated
without that information.

This is one of the very few places in statistics where throwing away
information helps. It is rather ironic that it helps solely in terms of the math-
ematics.

So, what do we do? We drop one of the redundant columns. The one we drop
determines how we interpret the results. interpretation
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❧ ❧ ❧

Dropping the first column is appropriate. It leads to this design matrix:

X =



1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1



(3.86)

This leads to

X′X =

4 0 0
0 4 0
0 0 4

 (3.87)

X′Y =

3383
2714
2249

 (3.88)

Finally, this leads to

b = (X′X)−1 X′Y (3.89)

=

845.75
678.50
562.25

 (3.90)

Thus, from this decision, we have that the average profit for wheat is 845.75; for
corn, 678.50; and for soybeans, 562.25.

This is called the “means model” because the returned values are the meansmeans model
in each group.

❧ ❧ ❧
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Dropping the second column is also appropriate (the second column corresponds
to the wheat design). When doing so, the design matrix is

X =



1 0 0
1 0 0
1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 0 1



(3.91)

Feel free to work through the calculation to obtain these estimates:

b = (X′X)−1 X′Y (3.92)

=

 845.75
−167.25
−283.50

 (3.93)

The interpretation here is that the average profit for wheat (the base category/-
dropped column) is 845.75. The effect of corn over wheat is −167.25, and the ef-
fect of soybeans over wheat is −283.50. In other words, the expected corn profit is
−167.25 over the wheat profit, and the expected soybean profit is −283.50 over the
wheat profit.

Note that we dropped the first data column. Thus, the first result is the
expected value of the first variable and the other results are the effects of those levels
as compared to the base category (wheat).

Because the estimate are the effects of the other levels as compared to the
selected base level, this is called an “effects model.” effects model

❧ ❧ ❧
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Dropping the third column is appropriate, as well. When doing so, the design
matrix is

X =



1 1 0
1 1 0
1 1 0
1 1 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 1
1 0 1
1 0 1
1 0 1



(3.94)

Feel free to work through the calculation to obtain these estimates:

b =

 678.50
167.25
−116.25

 (3.95)

This interpretation is similar to the previous. The mean of the base category (corn) is
678.50 (first number). The effect of wheat over corn is 167.25. The effect of soybean
over corn is -116.25.

Corn is the base category because the third column corresponds to the corn
design. Note that this is also an effects model. The estimates are the effects in
relation to the base category. ♦

If you look at these three sets of results, you will see a lot of commonalities. The one
chosen depends on what you are trying to say about the relationship between the
crop and the profit. Here, is it also very easy to move between the means model and
the effects model.

Note: We are only investigating expected values (averages) in this analysis.
Should we also decide to include the uncertainties in our estimates (as we
should), the two models are complementary. It is very difficult to move be-
tween the standard error in the means model and the standard error in the
effects model. It is so much easier to have the computer perform that compu-
tation for you.

For the record, here is the code I used for fitting the means model:

X = matrix( c(1,0,0, 1,0,0, 1,0,0, 1,0,0,
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0,1,0, 0,1,0, 0,1,0, 0,1,0,
0,0,1, 0,0,1, 0,0,1, 0,0,1 ),
ncol=3, byrow=TRUE)

Y = matrix( c(722, 965, 940, 756, 763, 765,
565, 621, 566, 658, 540, 485) )

solve(t(X)%*%X)
t(X)%*%Y
solve(t(X)%*%X) %*% t(X)%*%Y

Here is the code I used for the first effects model:

X = matrix( c(1,0,0, 1,0,0, 1,0,0, 1,0,0,
1,1,0, 1,1,0, 1,1,0, 1,1,0,
1,0,1, 1,0,1, 1,0,1, 1,0,1),
ncol=3, byrow=TRUE)

Y = matrix( c(722, 965, 940, 756, 763, 765,
565, 621, 566, 658, 540, 485) )

solve(t(X)%*%X)
t(X)%*%Y
solve(t(X)%*%X) %*% t(X)%*%Y

Note that the only change is in the line that defines the data matrix, X.

Finally, here is the code I used when dropping the third column.

X = matrix( c(1,1,0, 1,1,0, 1,1,0, 1,1,0,
1,0,0, 1,0,0, 1,0,0, 1,0,0,
1,0,1, 1,0,1, 1,0,1, 1,0,1),
ncol=3, byrow=TRUE)

Y = matrix( c(722, 965, 940, 756, 763, 765,
565, 621, 566, 658, 540, 485) )

solve(t(X)%*%X)
t(X)%*%Y
solve(t(X)%*%X) %*% t(X)%*%Y

Again, the only change is in the line that defines the data matrix, X.
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3.5: Conclusion

This chapter continued using our definition of “best.” However, we moved beyond
simple linear regression and into multiple regression, where there is more than just
one independent variable and more than just one parameter we need to estimate.

From those equations, we were able to learn even more about our estima-
tors — things not obvious from the definition. For instance, we saw that the SLR
estimators are only independent if x = 0. But, then, that was the entire purpose of
this chapter: to see that our results arise from applying mathematics to our selected
definition of “best.” Had we chosen a different meaning, we may have arrived at
different results.

In the next chapter, we will see what we can learn by taking the next step
and applying statistics to the models. While the mathematics tells us the expected
value. . . it is statistics that gives us an insight into the population based on our little
sample.
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3.6: End-of-Chapter Materials

Here are the expected materials to supplement the chapter. Since there is R code in
this chapter, I am including an explanation of several helpful R functions.

3.6.1 R Functions In this chapter, we were introduced to a couple R functions
that will be useful in the future. These are listed here.

Mathematics:

%*% This multiplies two matrices in R. Thus, running the command A%*%B will
return the matrix product AB (Section M.3.2). Be careful: A*B returns the
Hadamard product (Section M.3), which is rarely what is needed.

c() This combines the several scalar values into a single vector of values.

matrix() This function creates a matrix from the given vector. The first slot belongs
to the values in the matrix. After that is the number of rows (or columns) and
whether you are entering the number by rows or by columns.

solve(m) This calculates the usual inverse of the provided matrix m (page 484).

t(m) This calculates the transpose of the provided matrix m (Section M.4).
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3.6.2 Exercises I left many things as exercises for you. Here they are. You
should be able to prove any and all of them using your prior knowledge of mathe-
matics (matrices and calculus).

1. Prove that V [Y | XB] = σ2I.

2. Let A be any full column rank matrix. Prove that A′A is symmetric. Prove
that its inverse is symmetric.

3. Prove that the vectors Ŷ and E are orthogonal.
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Chapter 4:

Improved! NowwithProbabilities

Overview:

This chapter extends the mathematics from last chapter
by adding a probability distribution to the residuals. This
results in the independent variable having a probability
distribution.

Please keep in mind that the independent variables
are not random variables. The researcher specifically
selects their values. Adhering to this paradigm allows us
to more easily determine the resulting distributions. As
such, this chapter continues this requirement.

Should we not adhere to this requirement, the re-
sults of this chapter will technically be wrong, but will be
close if the independent variable is statistically indepen-
dent of the dependent variable.

Forsberg, Ole J. (10 DEC 2024). “Improved! Now with Prob-
abilities.” In Linear Models and Řurità Kràlovstvı̀. Version
0.704442η(α).
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Figure 4.1: The basic scatter plot. This provides the observed values of the data as well as
the line of best fit according to the Ordinary Least Squares method. The residuals are also
indicated, with the values represented by dotted segments.

❧ ❧ ❧

In the previous chapter, we explored the mathematical consequences of our choice
of definition of “best.” In this chapter, we will acknowledge that the residuals are
observations from a random variable, specify its distribution, and see where that
takes us.

And so, let us return to our scalar model for our data (Figure 4.1):

yi = β0 + β1xi + εi (4.1)

and see what we can learn if we make the assumption that the εi are generated from
a Normal distribution.

Specifically, in conjunction with our previous assumptions, let us assume:

εi
iid∼ N

(
0, σ2

)
(4.2)
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That single probability statement actually contains four parts:

• The residuals follow a Normal distribution. No matter the values of the otherNormality
variables, the residuals follow a Normal distribution.

• The expected value of εi is a constant 0. No matter the values of the otherfunctional form
variables, the expected value of the residual is 0 at that point.

• The variance of the εi is a constant σ2. No matter the values of the otherhomoskedasticity
variables, the variance of the residual is σ2 at that point.

• The abbreviation “iid” on top of the distribution sign means “independent
and identically distributed.” It indicates that the εi are independent of eachiid
other, and that the distribution of each is the same,N

(
0, σ2

)
.

On the right-hand side (RHS) of Equation 4.1, the εi is the only random variable.
The β0 and β1 are population parameters we are trying to estimate. The xi are val-
ues selected by the experimenter, so they are also not random variables. This last
sentence is rather important for a lot of the calculations we make. The values of the
independent variable are selected by the researcher, they are not realizations of a
random variable.non-stochastic

Since the only thing on the right hand side that is a random variable is the
εi , then it is rather easy to determine the distribution of Y . And, with that, we are
able to determine the distribution of almost all parameters we find important.

Note: The RHS of Equation 4.1 is actually in two parts. The εi part is the
source of the randomness, it is the “stochastic” part. The rest has no ran-
domness associated with it. It is called the “systematic” part:

yi = β0 + β1xi︸    ︷︷    ︸
systematic

+ εi︸︷︷︸
stochastic

(4.3)
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4.1: Probability Distributions

From this one assumption/requirement, and the math from the previous chapter,
we have many consequences. This section provides the results regarding the distri-
bution of our estimators. The next sections build on this.

Theorem 4.1.1

The distribution of Y , conditional on the value of x, is

Y | x ind∼ N
(
β0 + β1x, σ

2
)

(4.4)

Proof. We are given Y = β0 +β1x+ε, with the only random variable on the RHS being
ε. Since ε follows a Normal distribution, so too does Y (see Corollary S.37). Since
the Normal distribution has two parameters, the mean and the variance, we need to
find those two values:

The expected value of Y | x is

E [Y | x] = E [β0 + β1x+ ε] (4.5)

= E [β0] +E [β1x] +E [ε] (4.6)

= β0 + β1x+ 0 (4.7)

= β0 + β1x (4.8)

The variance of Y , conditional on x, is

V [Y | x] = V [β0 + β1x+ ε] (4.9)

= V [β0] +V [β1x] +V [ε] (4.10)

= 0 + 0 +V [ε] (4.11)

= σ2 (4.12)

Thus, putting this together, we have

Y | x ind∼ N
(
β0 + β1x, σ

2
)

(4.13)

79



Note that the Y are only ‘independently distributed’ and not ‘independent and iden-
tically distributed.’ This is because the expected value of Y depends on the value of
x. Since the Y do not all have the same (identical) distribution, they are only ‘inde-
pendently distributed.’

As for the results of the theorem above, they may not be too interesting.
However, as our estimators depend on the Yi , so too do their distributions. And that
is where the interest arises.

We see this in the next theorem.

Theorem 4.1.2

The distribution of b1 isN
(
β1, σ

2 1
Sxx

)
.

Proof. Before we start, we need to note that b1 can be written as a linear combination
of the Yi :

b1 =
∑n
i=1(xi − x ) Yi∑n
i=1(xi − x )2 (4.14)

I leave the proof of this as an exercise.exercise

Now, since our b1 is a linear combination of Yi , and since the Yi come from indepen-
dent Normal distributions, we have that b1 also follows a Normal distribution (see
Corollary S.37).

Again, since the Normal distribution has two parameters, the mean and the
variance, we need to find those two values, as we do next.
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The expected value of b1 is

E [b1] = E

[∑n
i=1(xi − x ) Yi∑n
i=1(xi − x )2

]
(4.15)

=
∑n
i=1(xi − x ) E [Yi]∑n

i=1(xi − x )2 (4.16)

=
∑n
i=1(xi − x ) (β0 + β1xi)∑n

i=1(xi − x )2 (4.17)

=
∑n
i=1(xi − x ) β0∑n
i=1(xi − x )2 +

∑n
i=1(xi − x ) β1xi∑n
i=1(xi − x )2 (4.18)

= β0

∑n
i=1(xi − x )∑n
i=1(xi − x )2 + β1

∑n
i=1(xi − x ) xi∑n
i=1(xi − x )2 (4.19)

= β0
0∑n

i=1(xi − x )2 + β1

∑n
i=1(xi − x )(xi − x )∑n

i=1(xi − x )2 (4.20)

= 0 + β1

∑n
i=1(xi − x )2∑n
i=1(xi − x )2 (4.21)

= β1 (4.22)

In this sequence, note that (be able to prove that):

n∑
i=1

(xi − x ) = 0 (4.23)

and that
n∑
i=1

(xi − x )2 =
n∑
i=1

(xi − x ) xi (4.24)

Thus, we know E [b1] = β1; that is, our estimator is unbiased.
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The final step is to determine the variance of b1:

V [b1] = V

[∑n
i=1(xi − x ) Yi∑n
i=1(xi − x )2

]
(4.25)

=
∑n
i=1(xi − x )2

V [Yi](∑n
i=1(xi − x )2

)2 (4.26)

=
∑n
i=1(xi − x )2(∑n
i=1(xi − x )2

)2 σ
2 (4.27)

=
1∑n

i=1(xi − x )2 σ
2 (4.28)

= σ2 1
Sxx

(4.29)

Recall that since we will be coming across
∑n
i=1(xi − x )2 many, many, many times in

the future, we denote it by Sxx. So, putting all of these parts together gives us

b1 ∼ N
(
β1, σ

2 1
Sxx

)
(4.30)

Theorem 4.1.3

The covariance between our b1 estimator and Y is 0.

Proof. I leave this as an exercise.

Theorem 4.1.4

The distribution of b0 isN
(
β0, σ

2
(

1
n + x 2

Sxx

))
.
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Proof. Remember that our estimator is

b0 = Y − b1 x (4.31)

Since we have previously shown Cov
[
Y , b1

]
= 0 (Theorem 4.1.3), the proof is straight

forward.

First, we note that b0 is a linear combination of the Yi . Thus, it follows a
Normal distribution. (Again, see Corollary S.37 for a proof of this.) Because the
Normal distribution has two parameters, we must find formulas for each:

Expected value:

E [b0] = E

[
Y − b1 x

]
(4.32)

= E

[
Y

]
−E [b1 x ] (4.33)

= (β0 + β1 x )− β1 x (4.34)

= β0 (4.35)

Variance:

V [b0] = V

[
Y + b1 x

]
(4.36)

= V

[
Y

]
+V [b1 x ] + 2 Cov

[
Y , b1 x

]
(4.37)

= V

[
Y

]
+V [b1] x 2 + 2 Cov

[
Y , b1

]
x (4.38)

=
σ2

n
+
σ2

Sxx
x 2 + 0x (4.39)

Factoring out the σ2 gives us

V [b0] = σ2
(

1
n

+
x 2

Sxx

)
(4.40)

Finally, putting these three parts together gives us what we want:

b0 ∼ N
β0, σ

2
(

1
n

+
x 2

Sxx

) (4.41)
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There is another parameter in our model that we may like to estimate. That is the
variance of ε. The ordinary least squares estimator of σ2 is called the mean square
error. It is defined asMSE

MSE =
1

n− p

n∑
i=1

εi (4.42)

Here, p is the number of parameters in the regression. So far, we have dealt with
estimating β0 and β1. Thus, p = 2 in simple linear regression.

Theorem 4.1.5

The distribution of the mean square error, MSE, can be written as

(n− p) MSE
σ2 ∼ χ2

n−p (4.43)

Proof. The first thing to do is remind ourselves of the definition of a χ2 random
variable. From Definition S.23, we have that if Zi ∼ N (0, 1), then

∑
Z2
i ∼ χ

2
ν , where

ν is the number of those Zi that are independent (the degrees of freedom).

With this definition, we just need to find a random variable with a Normal
distribution and transform it into the proper form. To that end:

εi ∼ N
(
0, σ2

)
(4.44)

εi
σ
∼ N (0, 1) (4.45)

ε2
i

σ2 ∼ χ
2
ν=1 (4.46)

∑
ε2
i

σ2 ∼ χ
2
ν=n−p (4.47)

(n− p) 1
n−p

∑
ε2
i

σ2 ∼ χ2
n−p (4.48)

(n− p) MSE
σ2 ∼ χ2

n−p (4.49)

(4.50)
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And this is what we were to prove.

As usual, knowing the distribution of a sample statistic like the MSE allows
us to create confidence intervals and perform hypothesis testing about the variance
of the residuals, σ2.

Note: With that said, the importance of the previous theorem lies more in
how we can use it to obtain confidence intervals and test hypotheses about
the OLS estimators of the intercept and slope parameters.

By the way, the reason that equation 4.47 has n− p degrees of freedom is that there
are only n− p independent terms. The other p terms can be determined (to within a
constant) from the n− p terms.
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Theorem 4.1.6

The distribution of Y for an observed value of xi , which we will term Ŷi , is

Ŷi ∼ N
β0 + β1xi , σ

2
(

1
n

+
(xi − x )2

Sxx

) (4.51)

Note: What does this actually mean?

If we repeat this experiment (of collecting a sample of size n) an infi-
nite number of times and estimate Ŷi for each of those experiments using our
formulas, then those many Ŷi would follow the specified distribution.

Proof. Remember that Ŷi = b0 + b1xi and that x is non-stochastic (it is not a random
variable). With this, we have that Ŷi is a linear combination of Normally distributedstochastic
random variables (b0 and b1). As such, the name of the distribution of Ŷi is “Nor-
mal.” What remains is to calculate the expected value and variance.

E

[
Ŷi

]
= E [b0 + b1xi] (4.52)

= E [b0] +E [b1xi] (4.53)

= β0 + β1xi (4.54)

As expected, the estimator is unbiased.

What about the variance? That is a bit more difficult, because we must deal
with the covariance between b0 and b1.

V

[
Ŷi

]
= V [b0 + b1xi] (4.55)

= V [b0] +V [b1xi] + 2 Cov [b0, b1xi] (4.56)

= V [b0] +V [b1]x2
i + 2 Cov [b0, b1] xi (4.57)
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= σ2
(

1
n

+
x 2

Sxx

)
+ σ2

(
1
Sxx

)
x2
i + 2

−xσ2

Sxx
xi (4.58)

Factoring things out to make it look more simple gives

V

[
Ŷi

]
=
σ2

n
+
σ2

Sxx

(
x 2 + x2

i − 2xxi
)

(4.59)

=
σ2

n
+
σ2

Sxx
(x − xi)2 (4.60)

= σ2
(

1
n

+
(x − xi)2

Sxx

)
(4.61)

And so, putting these three things together gives us our hoped-for result

Ŷi ∼ N
β0 + β1xi , σ

2
(

1
n

+
(xi − x )2

Sxx

) (4.62)

. . . as we expected.

87



Figure 4.2: The basic scatter plot with the confidence and prediction intervals for x = 4.5
provided. Note that the prediction interval (thin line) is much wider than the confidence
interval (thick line). This is because the prediction interval uncertainty includes both
the uncertainty in the mean value (confidence interval) and the inherent variation in the
residuals (σ2).

Note: There are a couple of things interesting about this result. First, the
uncertainty in Ŷi is a function of n, Sxx, and x −xi . Larger sample sizes (larger
n) produce a more precise estimate.

Samples with larger values of Sxx also produce more precise estimates.
To maximize Sxx, the researcher must have half of the xi values at the mini-
mum and half at the maximum.1

Finally, the precision of the estimate also depends on how far that x
value is from the center of gravity, (x , y ). Note that the uncertainty in Ŷi
when x = x only comes from the uncertainty in the value of Y . Convince
yourself that this makes sense (non-mathematically).

1Unfortunately, the drawback to doing this is that one is not able to detect a curvature in the
expected values of Y . Thus, we again see that there is a trade off in statistics. The important
part is to understand what you are trying to understand. . . and use your statistical under-
standing to understand it.
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Theorem 4.1.7

The distribution of Ynew, a new observation, for a new value of x, is

Ynew ∼ N
β0 + β1xnew, σ

2
(
1 +

1
n

+
(xnew − x )2

Sxx

) (4.63)

Note: Before we begin this proof, remember that

Ynew = b0 + b1xnew + ε = Ŷnew + ε (4.64)

Since we are estimating a new observation (as opposed to just an expected
value), we need to include ε in our calculations. This is subtle and very im- subtle
portant. It emphasizes the importance of ε.

Also, before we start the proof on the next page, compare and contrast this distribu-
tion with the distribution of Ŷi . What is the difference? Where does that difference
come from?

Proof. And now for the expected proof. See that Ynew is a linear combination of
Normally distributed random variables (b0, b1, and ε). Thus, Ynew follows a Normal
distribution. All that remains is to calculate its expected value and its variance. To
do so, we rely on the previous theorem.

E [Ynew] = E [b0 + b1xnew + ε] (4.65)

= E [b0 + b1xnew] +E [ε] (4.66)

= E [b0] +E [b1] xnew +E [ε] (4.67)

= β0 + β1xnew + 0 (4.68)

= β0 + β1xnew (4.69)

89



Next, for the variance:

V [Ynew] = V [b0 + b1xnew + ε] (4.70)

= V

[
Ŷ + ε

]
(4.71)

= V

[
Ŷ
]
+V [ε] + 2 Cov

[
Ŷ ,ε

]
(4.72)

= σ2
(

1
n

+
(x − xnew)2

Sxx

)
+ σ2 + 0 (4.73)

= σ2
(
1 +

1
n

+
(x − xnew)2

Sxx

)
(4.74)

Putting these parts together gives us the distribution of a new observation (a predic-
tion):

Ynew ∼ N
β0 + β1xnew, σ

2
(
1 +

1
n

+
(xnew − x )2

Sxx

) (4.75)

Note that the only difference in the uncertainties between Ynew and Ŷ is an additional
term of σ2 due to the inclusion of the residuals. Thus, all of the things that affect the
variance of Ŷ also affect the variance of Ynew, and in the same way.

Note: Also note that the uncertainty in an observation is higher than the
uncertainty in the expected value (see Figure 4.2).

The important difference between this theorem and the previous is that this theo-
rem models a new observation, while the previous models the expected value of anobservation
observation. The difference is important.
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4.2: Test Statistics and Hypothesis Testing

The previous section provided the distribution of several important estimators. With
those distributions, and our knowledge of probability distributions, we can test in-
dividual hypotheses. For this section, we rely heavily on the definition of Student’s
t distribution given as Definition S.24.

If we let Z ∼ N (0, 1) and V ∼ χ2
ν , with Z and V independent, then

T =
Z
√
V /ν

(4.76)

follows a Student’s t distribution with ν degrees of freedom.

You have, most likely, come across this ratio in your elementary statistics course
when you were investigating hypotheses about a single population mean, given that
the data came from a Normal distribution.

Theorem 4.2.1

The quantity

T =
b1 − β1√
MSE/Sxx

(4.77)

follows a Student’s t distribution with n− p degrees of freedom.

Proof. To prove this statement, one must show that it can be written in the form of
Equation 4.76. First, let us look at the numerator.

b1 ∼ N
(
β1, σ

2/Sxx
)

(4.78)

=⇒
b1 − β1√
σ2/Sxx

∼ N (0, 1) (4.79)
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Now for the denominator we use a previous theorem (Theorem 4.1.5):

(n− p) MSE
σ2 ∼ χ2

n−p (4.80)

Next, we put these together

T =
b1 − β1√
MSE/Sxx

(4.81)

=

b1 − β1√
σ2/Sxx√

MSE
σ2

(4.82)

=

b1−β1√
σ2/Sxx√

(n−p) MSE
σ2 /(n− p)

(4.83)

Note that the numerator of Equation 4.83 follows a standard Normal distribution,
while the denominator is the square-root of a chi-square distribution divided by its
degrees of freedom. Thus, by Definition S.24, the quantity T follows a Student’s t
distribution with n− p degrees of freedom.

Note: This result is important for two reasons. First, it allows us to test hy-
potheses regarding the β1 parameter. Second, this result allows us to calculate
confidence intervals for β1 (see Section 4.3). This parameter is usually of most
interest to researchers as it provides “the effect of the independent variable on
the dependent variable.”

Since we know the distribution of this ratio, we can calculate p-values for any hy-
pothesis about β1 using the same rules as from your elementary statistics course (see
Table 4.1).

Technically, we do need to show that b1 and MSE are independent. If they
are not, then Theorem 4.2.1 is not valid. For the proof, you will want to investigate
Cochrane’s Theorem and its uses (Bapat 2000, Cochrane 1934).
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H0 : β1 = β10 HA : β1 , β10 p-value = P [t ≤ −| T | ]× 2
H0 : β1 ≤ β10 HA : β1 > β10 p-value = P [t ≥ T ]
H0 : β1 ≥ β10 HA : β1 < β10 p-value = P [t ≤ T ]

Table 4.1: Table of how to calculate p-values given the null and alternative hypotheses.

Theorem 4.2.2

The ratio

T =
b0 − β0√

MSE
(

1
n + x 2

Sxx

) (4.84)

follows a Student’s t distribution with n− p degrees of freedom.

Proof. I leave this as an exercise.

This theorem allows us to easily prove the next.

Theorem 4.2.3

The ratio

T =
ŷ − ŷ0√

MSE
(

1
n + (x−x )2

Sxx

) (4.85)

follows a Student’s t distribution with n− p degrees of freedom.

Proof. I leave this as an exercise.

That sure is a lot of exercise.

How are those abs doing? Sore yet? abs
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4.3: Confidence Intervals

In the previous section, we examined hypothesis testing. This required that we cre-
ated a test statistic and determined its distribution. One can think of confidence
intervals as the dual of test statistics. Test statistics are functions of an unknowndual
population parameter and have a distribution. Confidence intervals are for that
unknown population parameter, where a probability is known (assumed). Once a
person has the test statistic and its definition, the confidence interval can be deter-
mined by inverting the test statistic function (solve for the parameter).

From your elementary statistic course, you knew that the distribution of T =
x−µ
s/
√
n

followed a Student’s t distribution with n − 1 degrees of freedom. Solving the
formula for the parameter of interest, µ, gives

µ = x − T s
√
n

(4.86)

The interpretation of T here is that it contains the values (quantiles) that correspond
to the confidence level claimed (Figure 4.3). For instance, if you desire a 95% con-
fidence interval for a sample of size 10, the central T values are ±2.262 because the
probability P [−2.262 < t < 2.262] = 0.95.

Thus, the interpretation of µ in Equation 4.86 is that it contains the values
that correspond to the endpoints of the confidence level claimed for the distribution
of the right-hand side of the formula.

Figure 4.3: An illustration of a confidence interval seen from the standpoint of T or from
X . The unshaded area constitutes 95% of the area under the curve. Thus, the vertical
segments delimit the endpoints of a central 95% confidence interval.

94



This interpretation holds for all confidence intervals.

With this discussion, it is rather straight-forward to calculate the endpoints
of confidence intervals for all of the population parameters we have explored thus
far. When the distribution of the test statistic is unimodal and symmetric, the central
confidence interval is also the narrowest. This may be important if the researcher
desires the most precise estimate of the population parameter.

Theorem 4.3.1

The endpoints of a central (1−α)× 100% confidence for β1 are defined by

b1 ± tα/2,n−p
√

MSE/Sxx (4.87)

Proof. From Theorem 4.2.1, we know T = b1−β1√
MSE/Sxx

follows a t distribution with n−p
degrees of freedom. Solving this for β1 gives

β1 = b1 − T
√

MSE/Sxx (4.88)

Because the distribution of T is symmetric unimodal, the endpoints of the minimum- minimum-width
width interval for T correspond to the two quantiles tα/2,n−p and t1−α/2,n−p. These
two endpoints are equivalent to ±tα/2,n−p.

As such, the endpoints of a minimum-length (1 − α) × 100% confidence for
β1 are defined by b1 ± tα/2,n−p

√
MSE/Sxx.

This is a typical result when dealing with the Student’s t distribution.

There is absolutely no reason we need a minimum-width confidence interval.
It is, however, useful in maximizing the precision of the estimate. efficiency

When the distribution of the test statistic is unimodal symmetric, the central
interval and the minimum-width interval are identical. When the distribution is not
symmetric, they are not. The following illustrates this.

Theorem 4.3.2

The endpoints of a central (1−α)100% confidence for σ2 are defined by

(n− p) MSE

χ2
1−α/2,n−p

and
(n− p) MSE

χ2
α/2,n−p

(4.89)
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Figure 4.4: A plot of the chi-square distribution with 4 degrees of freedom. The unshaded
area constitutes 90% of the area under the curve. Thus, the vertical segments delimit the
endpoints of a central 90% confidence interval.

Proof. From Theorem 4.1.5, we know

(n− p) MSE
σ2 ∼ χ2

n−p (4.90)

Solving this for σ2 gives

σ2 =
(n− p) MSE

χ2
n−p

(4.91)

Thus, a central (1 − α)100% confidence interval (see Figure 4.4) is defined by the
endpoints

(n− p) MSE

χ2
n−p,1−α/2

and
(n− p) MSE

χ2
n−p,α/2

(4.92)

Note: This is not the minimum-width interval. It is, however, the usual con-
fidence interval provided. Calculating the minimum-width interval takes a
little calculus that is beyond the scope of this section. . . and the typical cov-
erage of this topic.

The minimum-width interval is illustrated in Figure 4.5. Note that the area in the
shaded area to the right is not the same as that to the left. However, the two areas
still account for 10% of the area, leaving 90% unshaded in the middle.
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Figure 4.5: A plot of the chi-square distribution with 4 degrees of freedom. The shaded
area constitutes 10% of the area under the curve. Thus, the vertical segments delimits
the endpoints of a 90% confidence interval. This confidence interval, however, is the
minimum-width interval.

The width of the central 90% confidence interval shown in Figure 4.4 is
8.777. This is wider than the width of the minimum-width confidence interval
shown in Figure 4.5, which is 7.714. The minimum-width interval is 12% narrower
than the central interval. That is an increase in estimator efficiency. It also requires
some additional mathematics that we will skip.

However, as a teaser, notice that the value of the density function for each of
the two endpoints is the same in the minimum-width interval. If the distribution is
unimodal, then that observation will be true. That’s enough of a hint. Feel free to
explore this on your own. Calculus will serve you well here. explore

Theorem 4.3.3

The endpoints of a central (and minimum width) confidence interval for β0
are defined by

b0 ± tα/2,n−p

√
MSE

(
1
n

+
x 2

Sxx

)
(4.93)

Proof. I leave this as an exercise. In fact, feel free to sketch the proof here.
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Theorem 4.3.4

The endpoints of a confidence interval for ŷ are defined by

b0 + b1x ± tα/2,n−p

√
MSE

(
1
n

+
(x − x )2

Sxx

)
(4.94)

Proof. I leave this as an exercise. In fact, feel free to sketch the proof here (without
being sketchy).
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Theorem 4.3.5

The endpoints of a prediction interval for y are defined by

b0 + b1x ± tα/2,n−p

√
MSE

(
1 +

1
n

+
(x − x )2

Sxx

)
(4.95)

Proof. I leave this as an exercise. In fact, feel free to sketch the proof here.

Note: This interval (Theorem 4.3.5) is termed a “prediction interval” because
it is used to predict a new observation of y. It is not used to estimate the ex-
pected value of y — or trends in y. That would be the purpose of a confidence
interval.

99



4.4: The Working-Hotelling Bands

One last confidence interval we may be interested in is a confidence interval for the
regression line, itself.

Note that all of the confidence intervals in this chapter (except for σ2) have
been of the form

point estimate ± K × se (4.96)

That is because they were confidence intervals for a measure of center. The Working-
Hotelling (1929) confidence band for the regression line follows this format. It is

(b0 + b1x) ± F(1−α,2,n− 2) ×

√
MSE

(
1
n

+
(x − x )2

Sxx

)
(4.97)

The proof is beyond the scope of this course.

With this being said, it is an interesting proof. The key is to focus on the
joint distribution of b0 and b1. This joint distribution is bivariate Normal. Thus,
confidence intervals take the form of confidence ellipses with the same meaning and
interpretation. However, as is common for confidence regions, the distribution of
interest is the Chi-squared, instead of the Normal. Why? Answer: Think about the
formula for an ellipse. Finally, the problem is transformed from the β0-β1 plane to
the x-y plane.

Believe it or not, the hardest part of the proof is the algebra.

So, where does the F distribution come from in the formula? The same place
as the t distribution in the univariate case: the fact that we do not know the popula-
tion variances involved.

Technically, Working and Hotelling only worked in the case of knowing the
variances, which led to a Chi-square distribution in the formula. This is because the
F distribution had not been invented (or discovered) yet. It was not until Snedecor
in the 1940s that we were able to take that final step.
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4.5: Conclusion

This chapter started with the mathematics of the previous chapter, the mathematics
based on our definition of “best.” From that decision, we added a single assumption:

εi
iid∼ N (0, σ2).

That assumption/requirement about the residuals gave us the entire chapter.
Probability distributions for each of the estimators arose from the mathematics and
the assumption. From those probability distributions, we created test statistics.

Having test statistics allows us to calculate p-values and confidence inter-
vals for the parameters of interest. That is the flow of statistics. Once we have a
distribution for a test statistic, we know everything we want to know for inferential
statistics.

The difficulty comes in finding a test statistic with a known distribution.
The assumption of Normality (and of iid) were key in allowing us to find those test
statistics.
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4.6: End-of-Chapter Materials

Here are the expected materials to supplement the chapter.

4.6.1 Exercises

1. Prove that
∑n
i=1(xi − x )2 =

∑n
i=1(xi − x ) xi .

2. Prove that b1 =
∑n
i=1(xi−x ) yi∑n
i=1(xi−x )2 .

3. Prove that the covariance between our b1 estimator and y is 0.

4. Prove that the OLS estimators b0 and MSE are independent.

5. Prove that the OLS estimators b1 and MSE are independent.

6. Prove that the ratio T = b0−β0√
MSE

(
1
n+ x2

Sxx

) follows a Student’s t distribution with

n− p degrees of freedom.

7. Prove that the ratio T = ŷ−ŷ0√
MSE

(
1
n+ (x−x )2

Sxx

) follows a Student’s t distribution with

n− p degrees of freedom.

8. Prove that the endpoints of a central confidence interval for β0 are defined by

b0 ± tα/2,n−p
√
MSE

(
1
n + x 2

Sxx

)
.

9. Prove that the endpoints of a confidence interval for ŷ are defined by b0 +b1x±

tα/2,n−p

√
MSE

(
1
n + (x−x )2

Sxx

)
.

10. Prove that the endpoints of a prediction interval for y are defined by b0 +b1x±

tα/2,n−p

√
MSE

(
1 + 1

n + (x−x )2

Sxx

)
.
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Chapter 5:

Dood! ChecktheRequirements

Overview:

There are several requirements for ordinary least
squares regression to be applicable. In this chapter, we
cover them, their tests, and their relative importance.
Focus on the relationship between the assumption/re-
quirement and the tests used. As these assumptions
(requirements) are used for some other fitting methods,
not just ordinary least squares, the lessons learned here
are helpful in the future.

However, realize that each fitting method has its
own set of assumptions/requirements. For instance, me-
dian regression (Chapter 9) requires only the constant
expected residual value. Maximum likelihood for Poisson
regression (Chapter 14) requires that, plus a specific re-
lationship between the expected value and variance.

Forsberg, Ole J. (10 DEC 2024). “Dood! Check the Require-
ments.” In Linear Models and Řurità Kràlovstvı̀. Version
0.704442η(α).
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In Chapters 2 and 3, we created the ordinary least squares regression technique. The
mathematics of the situation required detX′X , 0. Because this corresponds to the
requirement that the design matrix X be of full column rank, the requirement is met
when the independent variables are not linear combinations of each other.

Chapter 4 included the requirement

εi
iid∼ N

(
0, σ2

)
(5.1)

This allowed us to move beyond the pure mathematics of Chapters 2 and 3 and
begin making inferences about the population based on the sample.

The requirement that εi
iid∼ N

(
0, σ2

)
, equivalently E ∼ N

(
0, σ2I

)
, has sev- equivalently

eral parts to it: Normality, constant expected value (of zero), constant variance,
and independence. This chapter takes these assumptions and explores them. Both
graphical and numeric tests are presented. Throughout it all, we will rely heavily
on R to generate the residuals, create the graphics, and perform the tests.

Note: Some R functions require an additional package to be loaded. When
such is the case, I indicate that in a special font. For example, the runs
test (Bradley 1968) is implemented in the lawstat package as the func-
tion runs.test. The lmtest package has the bptest, which performs the
Breusch-Pagan test.

Some R functions are not included in any package and must be down-
loaded from the Internet each session. Such functions require you to run

source("http://rfs.kvasaheim.com/rfs.R")

at the start of the script. Once that line is run, you can then run several
additional functions, like overlay, hetero.test, shapiroTest, and an
advanced version of runs.test.
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5.1: Normality

Let us tackle the requirement of Normality first. In Chapter 4, this assumption
allowed us to exactly determine the distribution of the test statistics, which allowed
us to exactly calculate p-values and confidence intervals. In this section, let us look
at how to test your model that this assumption/requirement is met.

5.1.1 Graphical Tests From your elementary statistics course, you were most
likely introduced to a pair of graphical tests of Normality: Q-Q plots and his-
tograms. In this section, we examine each when the residuals are generated from
a Normal process and when they are not. To do this, let’s do some experiments
using R.

To begin, let us generate 100 residuals from a Normal process, with mean
µ = 0 and standard deviation σ = 2:

e = rnorm(100, m=0, s=2)

The rnorm function generates n random values from a Normal distribution with
mean m and standard deviation s. Running this line only stores those 100 random
values in the e variable.

� Warning: Be aware that R, like most statistics programs, parameterizes the Normal dis-
tribution using the standard deviation instead of the variance.

With that one line, we have some “residuals” to play with that are generated “under
the null hypothesis” that they are generated from a Normal distribution. This will
allow us to better understand what the Normal distribution looks like.

Q-Q Plot: So, let us look at how to generate a Normal-based quantile-quantile (Q-
Q) plot using R.

qqnorm(e)

That’s it. After running that one line, R creates the usual Q-Q plot for the Normal
quantiles. It is a default graphic, so it does not look awesome, but it does get thequantile-quantile
point across to the statistician.

One shortcoming of the default Q-Q plot in R is that it does not provide the
diagonal line. You can add it by also running the command

qqline(e)
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Figure 5.1: Default Normal quantile-quantile plots The left panel is for the randomly-
generated Normal data. Note that the circles fall close to the diagonal target line. The right
panel is for the randomly-generated Exponential data. Note that the circles do not tend to
fall close to the diagonal target line. There is a distinct bow in them, which signifies the
residuals have a right (positive) skew.

Figure 5.1, left panel, is the graphic produced by running these lines. Note that most
of the circles cluster around the diagonal target line. Let us compare that graphic to
a Q-Q plot from a non-Normal distribution. The non-Normal distribution will be
the Exponential(λ = 0.10) distribution.1

enon = rexp(100, rate=1/10)
qqnorm(enon)
qqline(enon)

Compare the two graphics in Figure 5.1. Note that the shape of the Q-Q plot from
the Normal residuals (left) is very different from the one generated from a skewed
distribution (right). This particular shape indicates that the distribution of the resid-
uals is positively skewed (right skewed).

Histogram: In the previous section, we examined quantile-quantile plots. We saw
that a Q-Q plot with the dots aligning closely to the diagonal target line suggests
Normality. In this section, we will use histograms to obtain a better view of the
distribution of the data.

Again, let us generate Normally-distributed residuals.

e = rnorm(100, m=0, s=2)

1This distribution is highly right-skewed. We will come back to the Exponential distribution
several times to better understand how assumption violations affect our conclusions.
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Figure 5.2: Default histograms for the randomly-generated residuals. In the left panel,
note the basic bell shape to the histogram. Such a shape suggests that the residuals come
from a Normal distribution. In the right panel, note the lack of a bell shape to the his-
togram. Such a shape suggests that the residuals do not come from a Normal distribution.

The function to create a basic histogram is just

hist(e)

or

overlay(e)

This basic histogram produced is provided as in the left panel of Figure 5.2. Note
that it has the stereotypical “bell shape” to it, thus suggesting the data come from a
Normal distribution. This is the shape you are seeking when using a histogram to
explore the distribution of the residuals.

What does the histogram look like when the data come from a highly skewed
distribution like the Exponential(λ = 0.10) distribution above? See Figure 5.2, right
panel.

Note the lack of bell shape in the left histogram of Figure 5.2 (and enhanced
in Figure 5.3. In fact, one can easily see that the residuals are positively skewed.
Recall that the direction of the skew is in the same direction as the long tail.

Note: I find using the histogram much easier than using the Q-Q plot. I can
“see” how the residuals are distributed in the histogram. In the Q-Q plot, I
have to interpret much more, remembering what the different shapes indi-
cate.
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Figure 5.3: Enhanced histograms for the randomly-generated residuals. These are the
same data as in Figure 5.2. The difference is that these graphics also overlay the Normal
density function to aid in comparison.

Note: With that said, however, a Q-Q plot is much more useful than a his-
togram when there are few data points. So, if your sample size is small, you
will want to use a Q-Q plot. Otherwise, a histogram may be best.

5.1.2 Numeric Tests Because of the importance of the Normal distribution in
Statistics, there are several Normality tests available, with more being created yearly.
I mean, we gotta award those Ph.D. degrees for something, right? PhDs? PhDd?

The reality is that it matters little which Normality test you use. As you
will see in Section 5.1.3, the Normality assumption in OLS reflects the Normality
assumption in t-tests and the like. The Central Limit Theorem ensures that a suf- CLT
ficiently large sample size makes the distribution of the data largely irrelevant; the
distribution of sample sums is “close” to Normal.

So, for me, I default to using the Shapiro-Wilk test as my Normality test. In
base R, this test is implemented as the function shapiro.test. In the RFS package
(or rfs file), it is implemented as shapiroTest. I recommend the latter, because
it adds additional functionality.

So, let us generate some Normally-distributed residuals and see how we can
use the Shapiro-Wilk test.

Let us first set the random number seed. Why? Technically, there is no such
thing as a truly random number when they are generated by a computer. This is
because these pseudo-random numbers are just functions of a number called a seed. prng
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Think of a seed as being the name of an entire list of “random-looking” numbers.
Thus, if we use the same seed, then our “random numbers” will be the same.

To see this, run the following three lines:seed

set.seed(370)
e = rnorm(100, m=0, s=2)
head(e, 5)

The numbers you get are

-0.5566842 -1.7264618 1.3320962 -0.5392740 0.3477423

Setting the random number seed ensured that your values are mine. Even more
interesting: if you rerun those three lines, you will get the same “random” numbers.

Question

In research, why would one want to set the random number seed?
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Note: The head function returns the first six values in the variable, by de-
fault. A similar function is the tail function, which returns the last six
values in the variable. I included the number 5 to have R only return five
numbers.

To perform the Shapiro-Wilk test, just run the following line

shapiroTest(e)

The output you get will be

Shapiro-Wilk Normality test

data: e
W = 0.98554, p-value = 0.3472

The p-value is interpreted in the usual way: If the p-value is greater than α, then
you fail to reject the null hypothesis. If the p-value is less than α, then you reject the
null hypothesis. The null hypothesis in this case is that the data are generated from
a Normal process (that the data come from a Normal distribution).2

Since the p-value is greater than α = 0.05, we fail to reject the null hypothe-
sis. We do not have sufficient evidence that the data are non-Normal.

Note: We did not conclude that the data do come from a Normal distribution.
We only concluded that there is no significant evidence to the contrary.

This point is very important. We first assume that the residuals are
from a Normal distribution, then we test to see how reasonable that assump-
tion is, given our data.

2The Normal distribution is identical to the Gaussian distribution. The only difference is the
discipline. In much of statistics, it is known as the Normal distribution. However, when
we get to generalized linear models (Chapter 11), this same distribution will be called the
Gaussian distribution. In the Francophone world, this distribution is routinely called the
Laplace-Gauss distribution.
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To drive home this point, let us generate our data from a non-Normal distributiongolf or car?
and perform the Shapiro-Wilk test:

set.seed(370)
e = rt(100, df=100)
shapiroTest(e)

By the way that we generated the data, we know that the residuals do not come from
a Normal distribution; they come from a Student’s t distribution with 100 degrees
of freedom (ν = 100).

Here is the output:

Shapiro-Wilk Normality test

data: y
W = 0.98979, p-value = 0.6474

Note that the p-value is greater than our α value of 0.05. As such, we again fail to
reject the null hypothesis. There is not sufficient evidence that the residuals do not
come from a Normal distribution.

However, we absolutely know they don’t.

� Warning: The Lesson— Never accept the null hypothesis. The p-value depends on how
reasonable the null hypothesis is, as well as how good the test is and how large the sample
is.

Note: Remember that when making decisions, there are really three usual
decisions: Yes, No, and Maybe. In statistics, since we are just testing how
reasonable the null hypothesis is, we only have two possible decisions: Reject
and Don’t Reject. These correspond to “the null hypothesis is wrong” and
“the null hypothesis is right or we don’t know.”
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Let us now generate severely non-Normal residuals and use the Shapiro-Wilk test to
test if they do come from a Normal distribution:

set.seed(370)
e = rexp(100, rate=1/10)
shapiroTest(e)

Here are the results:

Shapiro-Wilk Normality test

data: y
W = 0.68002, p-value = 1.891e-13

Note that the p-value of 1.891 × 10−13 = 0.000 000 000 000 189 1 is much less than
α = 0.05. That strongly indicates that the residuals were not generated from a Nor-
mal process.

Note: Remember the Central Limit Theorem (Section S.6.4) and the effect of
sample size on the Normality of the sample sums. In the next section, we
will explore the effects of non-Normality on our estimators and their distri-
butions.

Why should I invoke the holy CLT in this context? Recall that the CLT speaks to the the holy
hand grenade

of Antioch
distribution of sums (and means) of independent random variables. As the sample
size increases, the distribution of that sum approaches Normality (Section S.6.4).

Look at the formulas for b0 and b1. They both include the sum of yi . Thus, it
is the distribution of

∑
yi that we really care about. If the yi are from a Normal dis-

tribution, then this requirement is met. However, if the sample size is large enough,
this condition is also met, as long as the data are from a distribution with a finite
variance. In other words, the CLT rules the world. peace and love

Question

How “large” is “large enough”?
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5.1.3 Exploration of the Effects of Non-Normality Mathematically speaking,
if the Normality assumption does not hold, then nothing in Chapter 4 is absolutely
true for the model. However, the Central Limit Theorem tells us that a large sampleCLT
size mitigates the effects of non-Normality in the residuals.

Let us explore that here. . .

An Appropriate Test?: Recall from your previous statistics course two main types
of errors: Type I and Type II. A Type I Error happens when the null hypothesis is
correct, but the test tells you to reject it. For a statistical test to be appropriate, the
first requirement is that the Type I Error rate is equal (or sufficiently close to) the
claimed α level.

Thus, to determine if OLS is an appropriate test, let us examine the Type I
Error rate to check that it is (close enough to) α. This means we generate our data
from the null hypothesis while meeting the requirements.

Here is the script to generate the data once

set.seed(30)
beta0 = 3
beta1 = 0

x = 1:20
e = rnorm(20, m=0, s=1)

y = beta0 + beta1*x + e

This tests the null hypothesis that β1 = 0:

model = lm(y ∼ x)
summary(model)

The p-value corresponding to the test of our hypothesis is 0.3784. We can have R
just give that number to us:

summary(model)[[4]][2,4]

That is one p-value.

If the test is entirely appropriate, we would reject our true null hypothesis
about α of the time. This statement is equivalent to the statement that the p-values
follow a standard Uniform distribution (Section S.6.2).

P ∼ U (0,1) (5.2)

Why?
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If the test is appropriate, and if we reject when the p-value is less than α,appropriate
what is the probability of rejecting? It should be α. Why?

Question

Why should the probability of committing a Type I error be α?

In statistical symbols, this is
P [P ≤ α] = α (5.3)

This is just the cumulative distribution function for the standard Uniform distribu-
tion. Thus, P ∼ U (0,1).

The code above gave us one p-value. To investigate the distribution of p-
values, you need to obtain thousands of p-values. The easiest way to do this is to or millions
loop through the above steps and save the p-value from each test.

That is what the following code does:

set.seed(30)

pval = numeric()

beta0 = 3
beta1 = 0
x = 1:20

for(i in 1:1e4) {
e = rnorm(20, m=0, s=1)
y = beta0 + beta1*x + e
model = lm(y ∼ x)
pval[i] = summary(model)[[4]][2,4]

}

At the end of running this code, the variable pval contains 10,000 (1e4 = 1 × 104)
observed p-values.

To determine if it follows a standard Uniform distribution, we can create a
histogram. When you do so, you note that it appears to closely follow a standard
Uniform distribution, although not exactly. We would not expect it to follow the
distribution exactly; those p-values are based on random samples and are therefore
random values and the results will therefore be random.

Understanding the meaning of the p-value (above), we can check if the test
is appropriate for α = 0.05 by checking that the rejection rate is sufficiently close to
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0.05. In other words, we can test if the proportion of p-values less than α is close
enough to α. The Binomial test can accomplish this:3

binom.test( x=sum(pval<0.05), n=length(pval), p=0.05 )

The null hypothesis is that the proportion of rejections is equal to 0.05. The p-value
of 0.9817 indicates that the claim that the Type I Error rate is 0.05 is reasonable; that
is, the test seems reasonable. In other words, the test appears to be fine for α = 0.05.

To determine if the test is appropriate for all possible α-values, we could
repeat the above for every possible value of α. That would only take ∞ years. On
the other hand, we can test all possible α values at once by recognizing that the
p-values should follow a standard Uniform distribution and testing if they do.

We can perform a statistical test to determine if the distribution of the ob-
served p-values is sufficiently non-Uniform:

ks.test(pval, "punif")

This line performs the Kolmogorov-Smirnov test (Massey 1951). Its null hypothe-
sis is that the observed values follow the distribution stated. Because the p-value
is 0.4361, we fail to reject the null hypothesis that the p-values follow a standard
Uniform distribution.

In other words: the test appears to be universally appropriate. That is, it
seems to be appropriate for any value of α you select.

Thus, we know that the test associated with testing the null hypothesis β1 = 0
is appropriate for our usual value of α as well as for all values of α.

It is good to know that OLS works when the assumptions are met.

3The Binomial test is the exact test for checking that the rejection rate is equal to the claimed
rate, 0.05. In your introductory course, you may have learned either the proportions test
or the Wald test. Both are approximate tests that rely on the Normal approximation to the
Binomial distribution.
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�Warning: When running tests, you will tend to just look for the p-value and draw con-
clusions based on that one number. If you do, be very clear what that p-value measures.
In the previous example, there were 10,002 different p-values. The first 10,000 were p-
values for the test that β1 = 0 for 10,000 different sets of data. The 10,001th p-value
determined if the distribution of those p-value was standard Uniform. The last p-value
determined if the proportion of those p-values less than α = 0.05 was 0.05.

There were 10,002 different tests in this example.

Non-Normal Residuals I: Now, what about if the Normality assumption is not
met? What if the residuals follow an Exponential distribution? The following code
generates 10,000 p-values where the residuals follow an Exponential distribution
with λ = 1. Be able to compare it to the previous code listing and find the one
difference.

set.seed(30)

pval = numeric()

beta0 = 3
beta1 = 0
x = 1:20

for(i in 1:1e4) {
e = rexp(20, rate=1)
y = beta0 + beta1*x + e
model = lm(y ∼ x)
pval[i] = summary(model)[[4]][2,4]

}

binom.test( x=sum(pval<0.05), n=length(pval), p=0.05 )

ks.test(pval, "punif")

The Binomial test returns a p-value of 0.422, which suggests to us that the OLS test
is appropriate for α = 0.05. Furthermore, the Kolmogorov-Smirnov test returns a p-
value of 0.2867. Thus, even if the residuals are skewed this much (γ1 = 2), the tests
arising from the ordinary least squares estimation method (Theorem 4.2.1) appear
universally appropriate.4

4The parameter γ1 is a measure of skew. It is defined as the third standardized central moment.
See Appendix S.6.5.
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Note: The sample size in these test is n = 20. This is much lower than the
usual “rule of thumb” of n = 30.

Also note that what we actually discovered is that OLS is very robust to violations
of some of its requirements.

Not all of them, just some.

Exploration helps us determine which and how violated the requirements must be
before the tests give useless results.

Non-Normal Residuals II: Now, let’s create a different skewed distribution for the
residuals that is even more skewed: a Chi-Square(ν = 1) distribution (γ1 =

√
8 ≈ 2.8).

Again, be able to compare it to the previous code listing and find the one difference.

set.seed(30)

pval = numeric()

beta0 = 3
beta1 = 0
x = 1:20

for(i in 1:1e4) {
e = rchisq(20, df=1)
y = beta0 + beta1*x + e
model = lm(y ∼ x)
pval[i] = summary(model)[[4]][2,4]

}

The Kolmogorov-Smirnov test returns a p-value of 0.2667. Thus, even if the residu-
als are this skewed, the tests arising from OLS appear universally appropriate. The
Binomial test returns a p-value of 0.0939, which tells us that the OLS test appears to
be appropriate for α = 0.05.

Thus, even when the residuals follow this heavily skewed distribution, the
conclusions based on our OLS tests (Theorem 4.2.1) seem to be appropriate for a
sample size of n = 20.

Non-Normal Residuals III: Now, let’s create a symmetric distribution for the resid-
uals. Because its variance is not finite, the Central Limit Theorem does not apply:
It is the Cauchy distribution (Section S.4.7). Again, be able to compare it to the
previous code listing and find the one difference.

set.seed(30)

pval = numeric()
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beta0 = 3
beta1 = 0
x = 1:20

for(i in 1:1e4) {
e = rcauchy(20)
y = beta0 + beta1*x + e
model = lm(y ∼ x)
pval[i] = summary(model)[[4]][2,4]

}

The Kolmogorov-Smirnov test returns a p-value of essentially 0. The Binomial test
also returns a p-value of essentially 0. This tells us that the OLS test is not ap-
propriate everywhere or even at α = 0.05 when the residuals come from a Cauchy
distribution.

Increasing the sample size will not fix this issue, either:

set.seed(30)

pval = numeric()

beta0 = 3
beta1 = 0
x = 1:5000

for(i in 1:1e4) {
e = rcauchy(5000)
y = beta0 + beta1*x + e
model = lm(y ∼ x)
pval[i] = summary(model)[[4]][2,4]

}

In this code, the sample size is 5000. The conclusions are the same.

Looking at the histogram, you see that the first bar is much smaller than the
others. This means the OLS tests reject at a lower rate than 0.05. rejection rate

Note: When the underlying distribution does not have a finite variance, such
as the Cauchy distribution, the Central Limit Theorem does not apply. That
means increasing the sample size has absolutely no effect on the Normality of
the sums. The sample sums are never Normally distributed.

121



5.2: Constant Expected Value

A second requirement of ordinary least squares (OLS) is that the expected value of
the residuals is constant (and zero). From the gut, this means that the residuals
evenly bounce above and below our estimates (regression curve). If the residuals are
above (or below) our estimates more than expected, then the curve should be moved
up (or down) to provide a “better” fit.

We used this requirement in many places in Chapters 2 and 4. This require-
ment is entirely equivalent to the assumption that the underlying model (expect-equivalent
ed/predicted values) consistently fits the data, that there is no systematic error.

Note: Be aware, however, that the mathematics behind OLS will force the
average residual to be zero. This means two things. First, the OLS model is
“self-correcting,” in that the “line of best fit” will provide the best linear fit
to the data. Second, the OLS model ensures that it is impossible to detect a
systematic error in the measurements.

5.2.1 Graphical Test Graph the residuals against each of the independent vari-
ables. Look for non-linear patterns in the plot (parabolas, cubics, etc.). If such exists,
your model is misspecified. A fix is to transform the independent variable to elim-
inate that pattern. This is one place where the graphical “test” is superior to the
numeric test. If you can identify the pattern, you have the fix.

For instance, if the residuals have the pattern in Figure 5.4, then the solutionresiduals plot
may be to use x2 in place of (or in addition to) x. To see this, run the following code
to obtain Figure 5.4.

set.seed(370)
x = seq(0,3,length=20)
n = length(x)
e = rnorm(n)
y = 4 + 2*xˆ2 + e

mod = lm(y ∼ x)
E = residuals(mod)

plot(x, E) ## residuals plot

Note the strong quadratic shape to the residuals plot (Figure 5.4). This strongly
suggests that the model is misspecified.
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Figure 5.4: A residuals plot for a misspecified model. Note that the residuals show a
definite quadratic form to them. Fixing this issue may be as simple as including x2 as an
additional independent variable.

Note: As an aside, note that there are only three “runs” in the residuals. A run
run is a sequence of values on one side of the prediction line. According to
Figure 5.4, the first run consists of the first 5 values; the second, the next 12
values; and the third, the last 3 values.

Since the number of runs is based on the Binomial distribution, we
can calculate the probability of observing this number of runs under the null
hypothesis. Thus, we can calculate a p-value for the hypothesis that the model
is properly specified (see Section S.6.3).

This example clearly shows that the model is misspecified. There is
still some information contained in the residuals. It would be wrong to ignore information
that information.
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Figure 5.5: Residuals plots for the properly specified model. There is one residuals plot
per independent variable. Note that the residuals in neither plot suggest anything other
than a lack of pattern.

Since the residuals plot has a prominent quadratic shape, a solution is to include x2

in the model:

x2 = xˆ2
mod = lm(y ∼ x + x2)
E2 = residuals(mod)

plot(x, E2) ## residuals plot

With this change, we re-examine the residuals plot — one residuals plot for each
independent variable. Since we have two (one?), we need to examine two (one?)one?
residuals plots (Figure 5.5). Note the transformation was successful. Neither plot
shows anything other than random bouncing across the line y = 0.

Note: There is a habit to feel sad that some requirement is not met by the
model/data, such as above. However, do not feel sad. Feel happy, because
you have learned something new about the relationships in the data! We
know more! Celebrate!Happiness!
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5.2.2 A Numeric Test That last sentence leads us to a numeric test. Compare
the plots of Figure 5.4 and 5.5. The residual is colored blue if it is positive and pink
otherwise. In Figure 5.4, there are long unbroken streaks (runs) of blue and pink. In run
Figure 5.5, the length of those runs is much reduced and the number is increased.

The test suggested by the above is not-surprisingly called the runs test (Sec-
tion S.6.3). It is implemented in the lawstat package as the function runs.test.
It takes just one piece of information: the residuals in the order of the independent
variable.

It is also implemented in the randtests and snpar packages, as well as
the rfs add-on, which is what I use in this book.

Here, I demonstrate the runs.test function in the rfs add-on. Note that
this function currently requires the lawstat package to be installed. This restric-
tion may change in the future.

source("http://rfs.kvasaheim.com/rfs.R")
library(lawstat)

set.seed(370)
x = runif(100)
e = rnorm(100)

runs.test(e, order=x) ## The runs test

In this version of the runs.test function, the first slot goes to the residuals, and
the second slot goes to the independent variable.

The output of this code is

Runs Test - Two sided

data: e, as ordered by x
Standardized Runs Statistic = 1.6081, p-value = 0.1078

As usual, check the p-value. Since the p-value of 0.1078 is greater than the α level
of 0.05, we fail to reject the null hypothesis that the expected value of the residuals
is constant and zero. Thus, since the p-value is greater than α, the model passes this
test.

5.2.3 Exploration of the Effects of Non-Constant Expected Value To see
the effect of a non-constant expected value, let us revisit one of the proofs from
Chapter 2.
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What is the expected value of b1 (the slope)?

E [b1] = E

[∑n
i=1(xi − x )(Yi − Y )∑n

i=1(xi − x )2

]
(5.4)

= E

[∑n
i=1(xi − x )Yi∑n
i=1(xi − x )2

]
(5.5)

=
∑n
i=1(xi − x )E [Yi]∑n
i=1(xi − x )2 (5.6)

=
∑n
i=1(xi − x )(β0 + β1xi +E [εi])∑n

i=1(xi − x )2 (5.7)

= β0

∑n
i=1(xi − x )∑n
i=1(xi − x )2 + β1

∑n
i=1(xi − x )xi∑n
i=1(xi − x )2 +

∑n
i=1(xi − x )E [εi]∑n
i=1(xi − x )2 (5.8)

= β0
0∑n

i=1(xi − x )2 + β1

∑n
i=1(xi − x )(xi − x )∑n

i=1(xi − x )2 +
∑n
i=1(xi − x )E [εi]∑n
i=1(xi − x )2 (5.9)

= β1 +
∑n
i=1(xi − x )E [εi]∑n
i=1(xi − x )2 (5.10)

Now, this last line is β1 if ε is independent of x. So, if the expected value is constant
zero, the OLS estimator of β1 is clearly unbiased. I leave it as an exercise to showexercise
that if it is constant, but non-zero, then the OLS estimator of β1 remains unbiased.
(Hint: If the expected value is constant, the E [εi] = c for some constant c.)

If the assumption of a constant expected residual value is violated, the OLS
estimate of β1 is biased. This is not a good thing. It means that your predictions are
wrong. . . even “on average.”
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But, what about the OLS estimator of β0, the y-intercept? What effect does a
non-zero expected value have on it? To see, let us revisit the proof of the unbiased-
ness of b0.

E [b0] = E

[
Y − xb1

]
(5.11)

= E

[
Y

]
− x E [b1] (5.12)

= (β0 + xβ1 +E [εi])− x
(
β1 +

∑n
i=1(xi − x )E [εi]∑n
i=1(xi − x )2

)
(5.13)

The last term is the expected value of b1 from above. With that, we have

E [b0] = β0 +E [εi]− x
∑n
i=1(xi − x )E [εi]∑n
i=1(xi − x )2 (5.14)

Thus, there are two places that the non-constant expected value (poor model fit)
affects the OLS estimator of β0. If E [εi] = 0, the expected value of the errors is zero,
then b0 is unbiased for β0. If E [εi] is constant, but non-zero, then E [b0] = β0 +E [εi].
If E [εi] is a function of x, then E [b0] is β0 +E [εi] plus some function of x.

I leave it as an exercise for you to show that E [b0] = β0 + E [εi] if x = 0, exercise
regardless of whether the residuals are correlated with the independent variable.
This is yet another reason some disciplines center their data before analyzing it.

�Warning: The actual assumption is that the expected value of the residual is constantly
zero. However, because of the mathematics of OLS, the mean residual is guaranteed to
be zero (page 62). So, there is no way to test if the expected value of the residuals is
constantly zero, only that it is constant.

Of all assumptions/requirements, this is the most important to meet. If your resid- important?
uals depend on the value of x, then both the b0 and b1 estimators are biased. If the
expected value of the residuals is not zero, then the b0 estimator is biased.

It is even worse. Because OLS mathematically forces e = 0, one cannot test
if the expected value of the residuals really is zero (page 62). One must rely on
the assumption that the data were collected without systematic error. That is, the
statistician must trust the scientist to measure things correctly.

Question

When would the residuals be a function of the residuals?
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This is an excellent question that you need to grapple with. It fundamentally means
that you are missing an important variable from your model. Perhaps that variable
is not an independent variable. Perhaps it is a confounding variable. Perhaps it
is another dependent variable, which requires multivariate regression (beyond the
scope of this book). It definitely means your model is weak and should be rejected
if possible.
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5.3: Constant Variance

The last assumption/requirement we will explore is the assumption that the residu-
als have a constant variance, σ2. We used this in many places in Chapter 4. In fact,
every place you saw a σ2, we relied on the assumption it was a constant, that it was
not really σ2

i .

If the variance is not constant with respect to the independent variables,
neither the test statistic nor the confidence intervals will be correct.

Note: A note on vocabulary. If the variance of the residuals is constant, we
claim the residuals are “homoskedastic.” Otherwise, they are “heteroskedas-
tic.” Recall that “homo” means same, “hetero” means different, and “skedas-
tic” means scatter.

5.3.1 Graphical Test The graphical test is very similar to that for checking con-
stant expected value. In that assumption, a residual plot was created. The middle of
the vertical spread was traced out and checked to see if it was always near the zero
line.

For testing constant variance, a residual plot can be used. The vertical spread
of the data is traced out and checked that it does not vary too much. Note that the
“vertical spread” is not the range, but the middle portion that contains about two-
thirds of the data.

There are three stereotypical shapes that suggest heteroskedasticity. These
three shapes, along with a shape suggesting homoskedasticity, are presented in Fig-
ure 5.6.

5.3.2 Numeric Test In addition to what your eyes may tell you, it may be better
to also perform a numeric test of homoskedasticity.5 There are a couple. The main
test used in the regression area is the Breusch-Pagan test.

The way that the Breusch-Pagan test works is to refit the model including
higher-order terms of the independent variables and compare the ratio of the two
SSE values to a specific distribution. Since the null hypothesis is homoskedastic-
ity (constant variance), a ratio close to one (large p-value) indicates that the model
passes this test (the higher-order terms add little to the predictive ability of the

5I recommend performing both, when possible. If the p-value on the numeric test is too low,
then the graphical test either gives you clues on where the problem is, or that the problem is
practically minor and can be ignored.
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Figure 5.6: Residual plots illustrating homoskedasticity (top-left) and three typical types
of heteroskedasticity: trumpet (top-right), funnel (bottom-left), and bulge (bottom-right).

model). A sufficiently small p-value indicates the presence of heteroskedasticity
(those larger-order terms should be included to the model), which means the model
needs improvement.
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So, to examine the Breusch-Pagan test, let us generate our data, first accord-
ing to our assumptions, then in violation of them. The Breusch-Pagan test is con-
tained in the lmtest package as the function bptest. bptest

set.seed(30)
x = seq(0,100)
n = length(x)
e = rnorm(n, m=0, s=1)
y = 3 + 2*x + e

plot(x,y, pch=21, bg="dodgerblue")

The scatter plot of this data does not really seem to suggest a changing variation in
the residuals. Let us perform the Breusch-Pagan test to see if this numeric test also
fails to detect a problem with the constant-variance assumption.

mod = lm(y ∼ x)
bptest(mod)

If you get

Error: could not find function "bptest"

then you need to load (or install and load) the lmtest package.

Once you do, your output should look exactly like this

studentized Breusch-Pagan test

data: mod
BP = 0.23429, df = 1, p-value = 0.6284

Because the p-value is greater than α, we cannot reject the null hypothesis of homo-
skedasticity. The model passes the test.
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Let us look at what happens when the residuals are heteroskedastic.

set.seed(30)
x = seq(0,100)
n = length(x)
e = rnorm(n, m=0, s=sqrt(x))
y = 3 + 2*x + e

plot(x,y, pch=21,bg="dodgerblue")

The scatter plot of this data definitely suggests increasing variation in the residuals,
a trumpet shape that indicates heteroskedasticity. Let us perform the Breusch-Pagan
test to see if this numeric test also detects a problem with the constant-variance
assumption.

mod = lm(y ∼ x)
bptest(mod)

Your output should look like this

studentized Breusch-Pagan test

data: mod
BP = 8.0992, df = 1, p-value = 0.004428

Because the p-value is less than α, we reject the null hypothesis of homoskedasticity.
The model does not pass the test.

Note: Recall from your previous statistics course that a true null hypothesis
will be rejected α proportion of the time and a false null hypothesis will be
accepted β proportion of the time, where α is the Type I error rate and β is
the Type II error rate. Neither of these numbers can be zero without making
the other 1. So, be aware that you may be wrong.
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5.3.3 Exploration of the Effects of Non-Constant Variance (coverage) In-
stead of looking at proofs or the distribution of p-values, let us generate data and
look at the confidence intervals estimated using OLS. While it is easy to see that
there is an effect using proofs, this method may make it easier to see how serious
those effects are.

The first thing to do is to generate heteroskedastic data, calculate the 95%
confidence intervals, and check if the true population parameters β0 and β1 are in
the intervals. The second thing is to repeat this step many, many, many times to
approximate the probability that the confidence intervals contains the population
parameters. If the coverage of the estimated intervals are close to 95%, then the coverage
effect of heteroskedasticity is minor.

Here is the entire code

set.seed(30)
b0covered = numeric()
b1covered = numeric()

for(i in 1:1e4) {
x = seq(0, 10, 0.5)
n = length(x)
e = rnorm(n, m=0, s=sqrt(x))
y = 3 + 2*x + e
mod = lm(y ∼ x)
ci = confint(mod)
b0covered[i] = (3>ci[1,1]) && (3<ci[1,2])
b1covered[i] = (2>ci[2,1]) && (2<ci[2,2])

}

Running this may take anywhere from a few seconds to a minute or more. At the
end, you will have two variables, b0covered and b1covered, that contain 10,000
Boolean values (TRUE and FALSE) each. A TRUE indicates the population param-
eter was covered by the confidence interval for that random sample; a FALSE in-
dicates it was not. The proportion of TRUE values can quickly be calculated using
mean(b0covered) and mean(b1covered).

The proportion of times the β0 parameter was covered by the confidence
interval was 0.996. Thus, the estimated coverage for β0 when the data are het-
eroskedastic in this manner is 99.6%. The coverage rate for β1 is about 95.1%. Both
should be close to 1−α, 95%.
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From these results, we know a couple of things. First, this amount of hetero-interpretation
skedasticity did not (practically) significantly affect the confidence intervals for the
slope parameter, β1. Second, it did (practically) significantly affect it for the inter-
cept parameter. In fact, because the reported confidence interval is much wider that
the “true” confidence interval, a researcher will reject too infrequently. This means
the power of the test is too low.

Let us try a greater level of heteroskedasticity. And, let us make it funnel
instead of the above trumpet:

set.seed(30)
b0covered = b1covered = numeric()

for(i in 1:1e4) {
x = seq(0,10,0.5)
n = length(x)
e = rnorm(n, m=0, s=15-x)
y = 3 + 2*x + e
mod = lm(y ∼ x)
ci = confint(mod)
b0covered[i] = (3>ci[1,1]) && (3<ci[1,2])
b1covered[i] = (2>ci[2,1]) && (2<ci[2,2])

}

Note what changed: the standard deviation of the residuals. It starts high and gets
smaller — a funnel shape.

This scheme produces a coverage estimate of 88.8% for the intercept param-interpretation
eter and 93.9% for the slope parameter. Thus, the confidence interval for the in-
tercept is again affected more than that of the slope parameter. In fact, the slope
parameter is relatively unchanged.

Let us try once more. This time, let us look at bulge heteroskedasticity.

set.seed(30)
b0covered = b1covered = numeric()

for(i in 1:1e4) {
x = seq(0,10,0.5)
n = length(x)
e = rnorm(n, m=0, s=11-2*abs(x-5))
y = 3 + 2*x + e
mod = lm(y ∼ x)
ci = confint(mod)
b0covered[i] = (3>ci[1,1]) && (3<ci[1,2])
b1covered[i] = (2>ci[2,1]) && (2<ci[2,2])

}
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Again, note the common code and the slight changes. Here, the variance starts low
(1), gets higher (11), then decreases again to 1 — a bulge heteroskedasticity.

The coverage for both parameters are far from 95%. For β0, the coverage is interpretation
99.3%; for β1, 99.8%. Both indicate that the researcher will reject the hypotheses far
too infrequently.

Test Statstics: The test statistics for β0 and β1 are calculated using the MSE. That
test statistic, if all of the assumptions are true, follows the Student’s t distribution
with n − p degrees of freedom. However, if the variance is a function of the inde-
pendent variable, the distribution of the test statistic is also a function of the inde-
pendent variable. This is a problem, because the “correct” p-values and confidence
intervals would also be functions of x.

The analysis of the effect of heteroskdasticity can be repeated for the distri-
bution of test statistics. Or, we can realize that we reject the null hypothesis when rejection
the confidence interval does not contain our hypothesized value. That is, the analy-
sis for the confidence interval is sufficient for our understanding of the p-value:

1. If the confidence interval is too wide, then the p-values will be too high (reject
the null hypothesis too infrequently).

2. If the confidence intervals are too narrow, then the p-values are too low (reject
too frequently).

Of the two possibilities, the first (which produces a higher Type I error rate) may
be better from the researcher’s point of view in some cases: While the researcher
would end up rejecting too infrequently, those rejections are more sure because the
true p-value is less than the observed p-value. One may prefer this when it worse to
commit a Type I error (rejecting a true null hypothesis).

On the other hand, however, the second may be better in certain circum-
stances. It will have a lower Type II error rate. If it is more important to protect
against a Type II error, then this will be the better scenario.

Note: These findings regarding the hypothesis tests about β strictly relate only
to these particular three types of heteroskedasticity at these three particular
levels. If you find your heteroskedasticity is much higher than those used
in these examples, you should run a coverage analysis similar to these to see
how bad the heteroskedasticity really affects the confidence intervals.

The above analysis examined the effects of heteroskedasticity on the parameter es-
timates. It did not examine its effect on the prediction of y-values. Those effects are
much more pronounced and are also a function of the variance at the x-value.
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To see this in one example, let us generate trumpet-shaped heteroskedastic
residuals, predict the value of y at three points along the x-axis, and determine how
frequently those points are covered by the calculated confidence intervals.

Before we do this, let us see if we can determine what to expect. For low val-
ues of x, there is very little true variation in the predicted value. Thus, we would ex-
pect the predicted value to fall in the calculated confidence interval very frequently.

For middling values of x, the true and estimated variances are close to each
other. Thus, we would expect coverage to be close to the nominal 95%.

For large values of x, the true variation is much higher than the estimated
variation. Thus, a lot of the predicted y-values should fall outside the confidence
interval. We should expect the coverage to be relatively low. Let’s see if these expec-
tations are met by reality.coverage

Here is the entire code

set.seed(30)

y1covered = numeric()
y2covered = numeric()
y3covered = numeric()

for(i in 1:1e4) {
x = seq(0,10,0.5)
n = length(x)
e = rnorm(n, m=0, s=sqrt(x))
y = 3 + 2*x + e

mod = lm(y ∼ x)

ypr = predict(mod, newdata=data.frame(x=c(0,5,10)), interval=
"confidence")

y1covered[i] = ( 3>ypr[1,2]) && ( 3<ypr[1,3])
y2covered[i] = (13>ypr[2,2]) && (13<ypr[2,3])
y3covered[i] = (23>ypr[3,2]) && (23<ypr[3,3])

}

mean(y1covered)
mean(y2covered)
mean(y3covered)

The coverage for y when x is very low is 99.6%, which is very high. The coverage forinterpretation
y when x is in the middle is 94.5%, which is about what we want. The coverage for
y when x is very high is 88.7%, which is relatively low.

These results are what we expected.
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Note: Realize again the connection between p-values and confidence inter-
vals. To ensure that our p-values are “protected” — are no more than esti-
mated — we need to limit ourselves to the areas where the true spread is no
larger than the average.

5.3.4 Huber-White Heteroskedastic Estimators Because heteroskedasticity is
common in several areas of study, it would be helpful to find a method for reducing
its effect. This was the task that Professors Huber and White set for themselves.

Ultimately, their solution arises from using matrix multiplication to make
the residuals homoskedastic.

sgf sf sfg fgs

gf sfg sdf gs dfgs dfg sdf g

dgf s fs g dfs
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5.4: Multicollinearity

Recall that there was just one requirement of the mathematics on ordinary least
squares estimation: The independent variables could not be linear combinations of
each other (Section 3.1.1). If this is the case, then we cannot do the mathematics
behind OLS estimation.

However, such perfect multicollinearity is not the only problem that can oc-supercollinearity
cur. If two (or more) independent variables are highly correlated, then problems can
arise. These problems can be examined in terms of either the computer science or
the experimental logic.

5.4.1 The CS of Multicollinearity Note that we are using a computer to per-
form our calculations. Because a computer is not able to store most numbers in
memory perfectly, rounding errors creep into the calculations. While this will al-
ways happen when the number does not have a finite binary representation, it is
most important to understand when the decimal is close to zero, when it is less than
the “machine epsilon.” When this is the case, the number rounds to zero. In other
words, if the value is between −ϵ and +ϵ, the computer treats it as a zero.

On 64-bit computers, the value of epsilon is approximately 2.220446×10−16 =
0.000 000 000 000 000 222 044 6. If the determinant of the matrix is this value or
less in magnitude, the computer will claim it is singular (Appendix page 484).

solve( matrix( c(1,0, 0,2.220446e-16), ncol=2) )

Mathematically, we can calculate the determinant to be 2.220446 × 10−16, which
means the matrix is actually not singular. However, calculating the inverse returns
the following:

Error in solve.default(matrix(c(1, 0, 0, 2.220446e-17), ncol
= 2)) :

system is computationally singular: reciprocal condition
number = 2.22045e-17
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The lesson to take beyond this specific case is that the matrix does not have to be
singular for the computer to tell you it is. All that is needed is that the determinant
of the X′X matrix be close to zero.

I term this a Computer Science result because it is based on the vagaries of
computers instead of the vagaries of mathematics. The next section looks at what
multicollinearity means in terms of the logic of experimental design and interpreta-
tion.

5.4.2 The Logic of Multicollinearity The previous section examined the ef-
fects of multicollinearity on calculations, specifically of the inverse of the X′X ma-
trix. If its determinant is sufficiently close to zero, then the computer will treat is as
a zero, meaning the matrix will be effectively singular. However, this is only a CS
problem. A good statistician will pay attention to the conditions that cause multi-
collinearity. . . even minor amounts of it.

Recall that multicollinearity occurs when a column in the data matrix is a
linear combination of the other columns; that is, it happens when one variable is
a linear combination of the others; that is, it happens when one variable adds no
new information beyond what the other variables contain. For instance, if one
variable is a person’s height in inches and another variable is a person’s height in
centimeters, then multicollinearity exists. The first variable offer no information
that is not contained in the second.

A statistician cares about the independent variables in the model. They are
designed to explain the dependent variable. Each independent variable is supposed
to be independent of the others, because each is designed to explain a different aspect
of the response variable. If two explanatory variables are highly correlated with each
other, then it will be logically impossible to determine which of the two is causing
the change in the dependent variable:

• Is it the logarithm of a person’s height in inches or the logarithm of the square
of a person’s height in inches that can be used to estimate weight?

• Is it average daily temperature or ice cream consumption that can be used to
estimate the violent crime rate?

• Is it educational attainment or parental income that can be used to estimate a
person’s future income?

These three exemplify the issue with multicollinearity in practice. The first exam-
ple produces mathematical (“super-”) multicollinearity because the logarithm of the
square of a variable is exactly twice the logarithm of the variable. The first column
is twice the second.

The second example does not exemplify mathematical multicollinearity. There
is no function of average daily temperature that gives the ice cream consumption.
However, there is a very strong linear relationship between the two. Because of this,

139



one cannot statistically tell if it is the temperature or the ice cream that is affecting
violent crime. With this being said, unless the dairy farmers are attacking the very
foundation of society, the substantive scientific theory suggests that the temperature
is likely the factor affecting the crime rate, not the frigid dairy.

The third example is more subtle. There is also a strong relationship between
a person’s education attainment and the parent’s income (at least in the United
States). Because of this, we are unable to statistically determine if it is the person’s
educational attainment or the income of the person’s parents that affects the per-
son’s future income. Social science theories suggest each. The statistics with each
explanatory variable also suggest each. What can we do in this case?

Indications of Multicollinearity: To see some statistical indications of multi-
collinearity, try the following code.

set.seed(30)

b0 = 3
b1 = 2
b2 = 3

x1 = seq(0,10,length=8)
x2 = c(1,2,3,4,6,7,8,9)
e = rnorm(8)

y = b0 + b1*x1 + b2*x2 + e

mod1 = lm(y ∼ x1)
mod2 = lm(y ∼ x2)
modA = lm(y ∼ x1+x2)

Clearly, from how this experiment is set up, we know the following:

• There is a strong relationship between x1 and y.

• There is a strong relationship between x2 and y.

• There is a strong relationship between x1 and x2.

Running summary(mod1) shows us that the first statement is true, if we ignore the
effect of x2. Similarly, running summary(mod2) shows us that the second statement
is true, if we ignore the effect of x1. Combining the two explanatory variables in modA
is confusing if we do not think about multicollinearity. summary(modA) gives the
following results:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.814 1.898 1.483 0.198
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x1 2.145 1.681 1.276 0.258
x2 2.861 2.009 1.424 0.214

Residual standard error: 1.386 on 5 degrees of freedom
Multiple R-squared: 0.9946, Adjusted R-squared: 0.9924
F-statistic: 458.7 on 2 and 5 DF, p-value: 2.164e-06

Note that this model shows that neither independent variable is valuable in mod-
eling the dependent variable. Since a scientist will usually put all the explanatory
variables in the model, this is a lesson for us to pay attention to the relationships
among the independent variables.

Note: It is also important to look at all of the regression output. Note that nei-
ther of the two independent variables have small p-values. However, the R2

value is very close to 1. Thus, this inconsistency also suggests that something
is wrong.

A Test of Multicollinearity: How do we statistically detect this type of multi-
collinearity? A simple correlation test will not suffice if we have more than two
independent variables because correlation is between only two variables.

The answer comes from the cause of the multicollinearity: If there is multi-
collinearity, then one independent variable should be linearly related to the others.
A linear regression will be able to detect this. Technically, a linear regression for
each independent variable will detect this. To make this process easy, there is the
vif function in the car package. This function calculates the “variance inflation
factor” for each independent variable. The variance inflation factor for independent
variable i is defined as

VIFi :=
1

1−R2
i

(5.15)

Here, R2
i is the R-squared value for the model regressing the independent variables

on independent variable i.

In our example above, one can calculate the VIF by hand:

summary( lm(x1 ∼ x2) )
1/(1-0.9921)

The higher the value of R2, the more independent variable i can be explained by
the other independent variables. In other words, the higher the VIF, the less new
information that variable adds to the model.

As in much of the field, this description leads to the question
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How high is too high?

The “rule of thumb” depends on the discipline. Typical cut-offs are 5, 8, and 10. If
the VIF for any of the variables is greater than the cut-off, then there is “too much
multicollinearity in the the model.”

Fixing Multicollinearity: So, let’s say that you have detected multicollinearity in
your model. What can you do?

The presence of multicollinearity means that one of your independent vari-
ables is highly correlated with a linear function of the others. It adds little to the
understanding of the response variable. However, is it variable i that should be
examined or the others?

From a statistical standpoint, the model is not too helpful. Multiple variables
are trying to explain the same aspects of the dependent variable. In other words,

• Is it educational attainment or parent’s income that affects the respondent’s
income?

• Is it race or poverty that affects violent crime?

• Is it intelligence or birth position (oldest, youngest, middle, etc. child) that
affects success?

• Is it the ranch or the cattle feed that affects the weight?

• Is it race or income or religion or parental income or home state that affects
voting behavior?

• Is it Nordic ancestry or blood type or neanderthal genes that affect the severity
of CoViD-19?

In each of these, the explanatory variables are highly correlated and have been used
to model the response variable. Because of the correlations, conclusions about what
really affects the dependent variable are unclear. Statistically, the answer is “Yes,
each does.”

However, since each of the independent variables above are correlated, their
effects overlap. This is represented as the purple overlapping area in Figure 5.7.
While each variable has an effect on the dependent variable (red and blue), that
effect is also split with the other variable (or variables). As such, the key is trying to
separate the three sections to determine whether it is the red, the blue, or the purple
that is affecting the response variable.

Unfortunately, this is beyond the scope of this course. For those who are
interested, you may want to investigate factor analysis (FA) and principal compo-
nent analysis (PCA). These are two methods for dealing with that overlap (purpleFA and PCA
area). The first focuses on estimating the purple area; the second, on creating two
other variables that combine the two independent variables into their independent
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Figure 5.7: Diagram to illustrate multicollinearity. The left circle is the effect of the first
independent variable on the dependent variable; the right, the second. The purple overlap
represents the similarity between the two variables. The rectangle represents everything
that affects the dependent variable, which means the colored portion represents everything
in the model that affects the dependent variable.

components (the parts that are purely red and blue). The advantage is that the in-
dependent variables become independent (VIF = 1). The disadvantage is that the
newly-created independent variables are only related to the original explanatory
variables; thus, interpretation is made more complicated.

Note: By the way, Figure 5.7 illustrates several things about the model. Ev-
erything that affects the dependent variable is represented by the rectangle,
whereas the colored part represents only what the model explains. Thus, one
may think of the ratio of the colored area to the total area as being the R2

value.
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Question

Given that the size of the circles is fixed, how would you arrange them to
cover the most area of the rectangle? What would that mean in terms of the
variables?
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5.5: Conclusion

In this chapter, we looked at violating the primary assumptions of ordinary least
squares, as well as the effects of multicollinearity. Once we violated those require-
ments, we looked to see what effect that violation had on our parameters of interest.

We saw that violations of the Normality assumption cause very minor changes
to our test statistics, unless the residuals were generated from a distribution with
non-finite variance. In such a case, the tests were all but worthless.

Violations of constant expected value (proper model fit) were bad. They
cause the OLS estimators, test statistics, and confidence intervals to be biased. The
lesson here is to make sure that your measuring stick is properly calibrated.

Heteroskedasticity is not an issue for the estimators. They remain unbiased.
They are an issue, however, for any testing done. This includes both the test statistic
and the confidence interval. This is because the standard error used is the average,
not the actual value for a general point.

Multicollinearity arises from independent variables that measure highly sim-
ilar concepts. Thus, the statistical effect is that the standard errors are inflated. The
logical effect is that we are unsure which of the two variables actually affects the
dependent variable.

�Warning: Again, be aware of the multiple comparisons issue discussed in Appendix S.6.2.
It explains why you need to either adjust your p-value or your alpha level when performing
multiple tests, such as when you are testing both β0 = 4 and β1 = 0.
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5.6: End-of-Chapter Materials

5.6.1 R Functions In this chapter, we were introduced to many, many, many R
functions that will be useful in regression. In fact, this chapter uses more R functions
than any other chapter in this book. Here are the many.

Packages:

car This package provides several statistical tests used in the book “An R Compan-
ion to Applied Regression” by J. Fox and S. Weisberg. It is a great package that
provides a lot of additional functionality for R.

lawstat This package provides several statistical tests used in law and public policy
analysis. It provides the runs.test function for us.

lmtest This package provides many tests related to linear models. It provides an
implementation of the Breusch-Pagan test, bptest, which tests for hetero-
skedasticity in the residuals.

RFS This package does not yet exist. It is a package that adds much general func-
tionality to R. In lieu of using library(RFS) to access these functions, run
the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Statistics:

source(filename) This function runs an R script from a separate file. That file may
be local or on the Internet.

runs.test(E, order) This alteration to the lawstat function tests whether the vari-
able E, as ordered by order exhibits fit issues.

shapiroTest(E) This tests the null hypothesis that the variable E comes from a Nor-
mal distribution. It is based on the shapiro.test function in the basic R
installation. It adds capabilities to test Normality in several groups.

lm(formula) This is the function that performs ordinary least squares estimation
on linear models.

bptest(mod) This function from the lmtest package performs the Bresuch-Pagan
test for heteroskedasticity.

confint(mod) This calculates confidence intervals for the parameters in ordinary
least squares regression.

mean(x) This calculates the mean of a sample.
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summary(x) This produces the six-number summary or a frequency table of the
provided variable, depending on the type of variable.

summary.lm(mod) When applied to a linear model fit using either the aov func-
tion or the lm function, provides estimates of the effects of the numeric vari-
ables and the levels of the categorical variables in the model.

summary.aov(mod) When applied to a linear model fit using either the aov func-
tion or the lm function, provides estimates of the statistical significance of the
variables in the model.

predict(mod) This predicts the values of the dependent variable at each point in
the dataset or for the values specified.

fligner.test(formula) This tests for heteroskedasticity when the independent vari-
able is categorical.

aov(formula) This function performs ordinary least squares estimation on linear
models.

vif(model) This function calculates the variance inflation factor (VIF) for each of
the independent variables in the model.

set.base(var,level) This RFS package function redefines the base category in the
provided level. By default, the base category is the first according to the al-
phabet.

Probability:

set.seed(x) This sets the random number seed.

rexp(n, rate) This generates n random values from an Exponential distribution with
the specified rate parameter.

rnorm(n, mean, sd) This generates n random values from a Normal distribution
with specified mean and standard deviation. By default the mean is 0 and the
standard deviation is 1.

runif(n, min, max) This generates n random values from a Uniform distribution
with specified minimum and maximum values. By default, the minimum is 0
and the maximum is 1.

Mathematics:

head(x) This returns the first six values in the variable.

foot(x) This returns the last six values in the variable.

seq(from, to, by, length) This returns a vector of sequential values, where by indi-
cates the step size and length specifies the vector length.
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length(x) This calculates the length of a vector (variable), which is the sample size,
n.

residuals(mod) This calculates the residuals in the model, which is the difference
between the observed and the predicted.

Graphics:

qqnorm(x) This creates a Normal quantile-quantile plot for the given values.

qqline(x) This adds the diagonal line to the quantile-quantile plot.

overlay(x) This, from the RFS package, produces a histogram with a Normal curve
overlaying it.

par(. . . ) This sets parameters on the next graphic started. Look through the help
page for this function to see all you can specify.

plot(x,y) This produces a scatter plot of the y-values against the x-values.

axis(side) When a plot is already drawn, this adds values along axis number side.

title(. . . ) When a plot is already drawn, this adds the x- and y-labels.

lines(x,y) When a plot is already drawn, this draws lines between each subsequent
(x,y) pair.

points(x,y) When a plot is already drawn, this draws points at each (x,y) pair.

Programming:

attach(dataframe) This allows you to access the variables in the dataramewithout
having to prefix each with dataframe$.

library(package) This loads an external package that you have already installed on
your computer. It allows access to all functions and data sets in the package
package.

as.character(x) This changes the values in variable x to be characters.

as.numeric(x) This changes the values in variable x to be numbers.
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5.6.2 Exercises

1. Show that if the expected value of the residuals is constant, but non-zero, then
the OLS estimator of β1 remains unbiased.

2. Show that E [b0] = β0 + E [ε] if x = 0, regardless of whether the residuals are
correlated with the independent variable.
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Chapter 6:

ATimeforSomeExamples

Overview:

We have covered a lot of theory and mathematics over
the past several chapters. Here, we will apply what we
have learned to help settle the theory into our minds. In
other words, we will perform the analysis process with
the information and skills we now have.

This means we will use data to answer our re-
search questions. Of course, we will need to examine
the research question to determine the appropriate
model, check the assumptions — both statistically and
graphically — and properly interpret the results.

That is a lot of summarizing to do!

Forsberg, Ole J. (10 DEC 2024). “A Time for Some Examples.”
In Linear Models and Řurità Kràlovstvı̀. Version 0.704442η(α).
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❧ ❧ ❧

And so, we have completed a majority of the important mathematics underlying
ordinary least squares estimation. Be aware that OLS is how we estimate the pa-
rameters. The models itself is referred to as the classical linear model. It makes the
usual four assumptions. The observations follow the equation

yi = β0 + β1x1 + β2x2 + · · ·+ βp−1xp−1 + ε (6.1)

and the residuals follow this distribution

εi
iid∼ N

(
0; σ2

)
(6.2)

From those assumptions, we were able to use OLS to calculate formulas for the es-
timators of β0,β1, . . . ,βp−1. The next chapter used the distribution to determine the
distribution of those estimators. This led to confidence intervals for the parame-
ters and test statistics for testing hypotheses about the parameters. It also led to
distributions and intervals and test statistics for estimated and predicted values of
y.

All of that from four small assumptions.

❧ ❧ ❧

This chapter will apply these results to different research questions to illustrate the
statistical research process. So, turn the page and begin seeing applications of what
we have done.
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6.1: Full Example: Violent Crime

To help settle all of this, let’s see a simple extended example of modeling the violent
crime rate in 2000 using just the violent crime rate in 1990.

The preamble is the part of the code that imports the extra functions, loads
the data, and gives us an overview of it. This is a typical preamble preamble

### Preamble
source("http://rfs.kvasaheim.com/rfs.R")
library(lawstat)
library(lmtest)

dt = read.csv("http://rur.kvasaheim.com/data/crime.csv")
attach(dt)

summary(dt)

Note that there are many variables in this data set. Since we are modeling the violent
crime rate in 2000 using the rate in 1990, we will only use the variables vcrime00
and vcrime90. To fit the model and estimate the parameters using ordinary least
squares, run this line: OLS

crimeMod = lm(vcrime00 ∼ vcrime90)

Nothing gets outputted by this line. R just echoes it if you typed it correctly. How-
ever, a lot has happened behind the scenes. Inside R, the model was fit using ordi-
nary least squares (using matrices). The parameters were estimated. All of this was
done behind the scenes.

The next step is to check that the model does not violate any of the assump-
tions/requirements.

6.1.1 Normality of the Residuals The first we will check is the Normality of
the residuals:

e = residuals(crimeMod)

# Normal Residuals?
overlay(e)
shapiroTest(e)

The histogram overlaid with the normal curve suggests the residuals are slightly
skewed to the right. The Shapiro-Wilk test strongly indicates a lack of Normality
(p-value = 0.004424). The sample size of n = 51, however, definitely seems large
enough to ensure the sums of the residuals closely follows a normal distribution
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(this is the actual requirement). If you would like to check this, run the following
code (first think what it does and why it answers this problem):

et = numeric()
for(i in 1:1e3) {

x = sample(e, replace=TRUE)
et[i] = sum( x )

}
shapiroTest(et)

Since the reported p-value is much greater than α, we can conclude that the sample
sums are sufficiently Normal. And, it is the sample sums that affect the distribution
of b0 and b1.

Thus, the model passes the normality requirement.

6.1.2 Constant Expected Value (Functional Form) The second assumption to
test is constant expected value (proper model form):

# Constant Expected Value of Residuals
plot(vcrime90,e)
runs.test(e, order=vcrime90)

The residuals plot seems a bit inconclusive to me. This is mainly due to the single
point far to the right (the District of Columbia). The runs test, however, indicates
that there is no significant evidence the residuals follow anything other than a hori-
zontal line (p-value = 0.6732).

Thus, the model does not violate the second assumption.

6.1.3 Constant Variance The third assumption is that the variance of the resid-
uals is constant:

# Constant Variance of Residuals
plot(vcrime90,e)
bptest(crimeMod)

For me, the graphic is inconclusive because of DC. The Breusch-Pagan test did not
detect significant heteroskedasticity (p-value = 0.1041).

Thus, the model passes the third and final requirement.

6.1.4 The Final Model This model seems appropriate, and we can now see the
estimates:
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Call:
lm(formula = vcrime00 ∼ vcrime90)

Residuals:
Min 1Q Median 3Q Max

-241.32 -42.84 -18.04 40.97 208.41

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 109.52716 21.42679 5.112 5.27e-06 ***
vcrime90 0.58065 0.03107 18.689 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.10 1

Residual standard error: 85.55 on 49 degrees of freedom
Multiple R-squared: 0.877, Adjusted R-squared: 0.8745
F-statistic: 349.3 on 1 and 49 DF, p-value: < 2.2e-16

The first section reports the model you presented. Use it to double-check you typed
things in correctly or to remind you what the model is examining. The second part
produces the five-number summary of the residuals. Since the mean (0) is greater
than the median (−18.04), there is evidence of a positive skew to the residuals. This,
we discovered above.

The third section is the “regression table.” Each row corresponds to a dif-
ferent independent variable (or the intercept). The columns are the estimates, the
standard errors, the test statistic (estimate divided by standard error), and the p-
value.

In this example, there is very strong evidence that the relationship between
the violent crime rate in 1990 and in 2000 is positive (b1 = 0.58065). If State A had a
higher violent crime rates in 1990 than State B, then it also tended to have a higher
violent crime rates in 2000.

The intercept, b0 = 109.52716 indicates that for a state with 0 violent crime
in 1990, the expected violent crime rate in 2000 is 109.52716 crimes per 100,000
people. However, since no state was close to having a violent crime rate in 1990 of
0, this interpretation does not make statistical sense.

Remember that we should only use our models to predict and estimate for
values of the 1990 violent crime rate within the domain of the vcrime90 variable
in our data. interpolation

6.1.5 Graphic The following lengthy code produces a graphic like that at the
top of the page:

plot.new()
plot.window( xlim=c(0,2500), ylim=c(0,2500) )
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Figure 6.1: Plot of the violent crime rate in 2000 against that in 1990. The ordinary
least squares line of best fit is included. Red-colored states are those whose violent crime
rate increased from 1990 to 2000.

axis(1); axis(2)

title(xlab="Violent Crime Rate (1990)", line=2.75)
title(ylab="Violent Crime Rate (2000)", line=3.25)

xx = seq(0,2500)
yy = predict(crimeMod, newdata=data.frame(vcrime90=xx))
lines(xx,yy, col="steelblue", lwd=2)

points(vcrime90,vcrime00, pch=21, bg=1+(vcrime00>vcrime90))
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Note that the graphic also indicates which states had their violent crime rate in-
crease. It comes from this line:

points(vcrime90,vcrime00, pch=21, bg=1+(vcrime00>vcrime90))

The first two slots are the x- and y-values. The third slot specifies the plotting char-
acter. A pch of 21 is a dot with its insides colorable. The fourth slot, bg, specifies
the color to fill the inside of the dots (bg = “background”).

The part (vcrime00>vcrime90) takes on value 1 if the violent crime rate
increased and 0 otherwise. Adding 1 to each ensures that the two colors are 1 and 2
— black and red.

6.1.6 Confidence Interval for β1 In addition to calculating the point estimates
of the slope and intercept, we can also calculate confidence intervals:

confint(crimeMod)

From this output, we are 95% confident that the effect of the violent crime rate in
1990 on 2000 is between 0.518 and 0.643.

6.1.7 Confidence Interval for Y We can estimate the value of Y for a given estimation
value of x:

predict(crimeMod, newdata=data.frame(vcrime90=100), interval="
confidence")

We are 95% confident that the expected value of Y when x = 100 is between 129.5
and 205.6, with a point estimate of 167.6.

6.1.8 Prediction Interval for Y Finally, we can predict the value of Y for a new prediction
value of x:

predict(crimeMod, newdata=data.frame(vcrime90=100), interval="
prediction")

We are 95% sure that the next observation of the violent crime rate in 2000 for a state
with a violent crime rate in 1990 of 100 is between −8.5 and 343.7, with a prediction
of 167.6.
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6.2: Full Example: Violent Crime, Wealth, Region

That was fun! Let’s now try this with two independent variables. We will model
the violent crime rate in 2000 using the GSP per capita in 1990 and the region of
the state. This will give us the opportunity to reiterate and emphasize that these
methods are not constrained to numeric independent variables. As in Example 3.1.3
on page 53, we can represent categorical independent variables appropriately and
model using ordinary least squares estimation.

The following creates the interaction model between a numeric and a cat-
egorical variable. This particular type of interaction analysis is referred to as the
Analysis of Covariance, ANCOVA:interaction

modEd1 = lm(vcrime00 ∼ gspcap90 * census9)
summary.aov(modEd1)

The interaction model allows for the effect to vary between the levels. In terms of
this problem, the interaction model allows the effect of the 1990 violent crime rate
on the 2000 to be different for the Midwest, the Northeast, the South, and the West.

It does not force it to be different. It only allows it to be.

Because of the writings of a 14th-Century monk by the name of William of
Ockham, there is a bias in science to create models that are as simple as possible,Occam’s Razor
without being too simple (his doctrine of efficient reasoning).1

Non sunt multiplicanda entia sine necessitate.

The usual translation is “Things are not to be multiplied without necessity.” In other
words, simpler models tend to be more helpful than complicated ones. Realize that
they are more “helpful” and not more “correct.” To drive this point home, allow me
to quote George E. P. Box (1976):

Since all models are wrong the scientist cannot obtain a “correct” one
by excessive elaboration. On the contrary following William of Occam
he should seek an economical description of natural phenomena. Just
as the ability to devise simple but evocative models is the signature of
the great scientist so overelaboration and overparameterization is often
the mark of mediocrity.

The results from the above code are given here

Df Sum Sq Mean Sq F value Pr(>F)

1Note, however, that this doctrine/belief did not originate with William. It goes back to — at
least — Aristotle in his Posterior Analytics: “We may assume the superiority ceteris paribus of
the demonstration which derives from fewer postulates or hypotheses.”
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gspcap90 1 816163 816163 26.149 1.32e-05 ***
census9 8 794820 99353 3.183 0.0087 **
gspcap90:census9 8 273868 34233 1.097 0.3901
Residuals 33 1029986 31212

Note that the p-value (last column) for the interaction term is greater than our usual
α = 0.05 (p− value = 0.3901). This tells us that the interaction term is not statisti-
cally significant. In other words, we can remove it from our model without adversely
affecting our model.

When the model has no interaction terms, it is called an additive model. The additive
following code fits the additive model.

modEd2 = lm(vcrime00 ∼ gspcap90 + census9)

As usual, the next step is to test the assumptions. Note that this process is the same,
even if the particulars differ. The census9 variable is categorical, not numeric. That
requires we think a bit more about how to perform the assumption testing.

6.2.1 Normality Again, the first assumption to test is the Normality of the
residuals:

e = residuals(modEd2)

# Normality checking
overlay(e)
shapiroTest(e)

According to the Shapiro-Wilk test there is no significant evidence that the residuals
come from a non-Normal distribution (p− value = 0.1732). Thus, the model passes
this test.

6.2.2 Constant Expected Value (Functional Form) The second requirement
we test is that the expected value of the residuals is constant against each of the
independent variables.

# Expected Value
plot(gspcap90, e)
runs.test(e, order=gspcap90)

The runs test indicates that there is no evidence the expected values are not constant
(p− value = 0.2038). Thus, this test is passed, too. Yippee!
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But wait! This only tested for constant expected value of the residuals against
one of the two independent variables. It is required that the expected value is con-
stant against all of them.

Here is the problem with just using the runs test when the independent vari-
able is categorical: The ordering within each level is not uniquely defined. For a
hint2 on what to do, look at the graphic:

plot(census9,e)

Holy side-by-side box-and-whiskers plot, Batman! This makes sense, because we are
plotting a numeric variable (e) across nine levels. We need to test that the expected
value (mean) is the same in each group.

From your prior statistics class, this screams ANOVA!

summary(aov(e ∼ census9))

The p-value returned is 1, which is greater than α. So we fail to reject the null
hypothesis of equal expected values.

Well, this result should not be surprising. Because of the mathematics of
OLS, the means in each group will be centered at zero. Thus, you should expect
p-values of 1 whenever doing this test.

6.2.3 Constant Variance The last requirement is that the residuals have a con-
stant variance against each of the independent variables. For the numeric variable,
this is not a problem:

# Heteroskedasticity
plot(gspcap90,e)
hetero.test(e,gspcap90)

With a p-value of 0.7008, this test is passed for the numeric independent variable.

2When not sure what to do, plotting things frequently helps. It seems to force the researcher
into determining what needs to be examined. When in doubt: Graph and Interpret.
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For the categorical variable, remember that we need to test equality of vari-
ance across several groups. From your previous statistics course, you may recall that
the Fligner-Killeen test does just this:

plot(census9,e)
fligner.test(e ∼ census9)

According the the Fligner-Killeen test, there is no evidence of heteroskedasticity
(p− value = 0.7869).

Thus, this model passes the homoskedastic requirement. Vahooo!

Note: We could have taken care of both tests for heteroskedasticity using the
Breusch-Pagan test. However, if the model fails that test, we have no clue as to
how to fix it. Breaking it into two parts allows us the additional information
of which variable caused the issues.

Personally, I run the Breusch-Pagan test to determine if there is a vio-
lation, then the separate tests to get information on where it issue lies.

6.2.4 The Final Model This model is appropriate, and we can now see the es-
timates. However, if we are in the ‘model creation’ or ‘model selection’ mode, we
need to determine if both variables are statistically significant. If either is not, then
that variable needs to be dropped and the new model tested.

To get p-values for the variables, just run

summary.aov(modEd2)

Yeppers, that is summary.aov that you are using. It provides statistical significance
of the variables, while summary and summary.lm provide the statistical significance
of the levels of the categorical variables.

The output from the summary.aov(modEd2) command is

Df Sum Sq Mean Sq F value Pr(>F)
gspcap90 1 816163 816163 25.664 9.07e-06 ***
census9 8 794820 99353 3.124 0.00753 **
Residuals 41 1303854 31801

The p-value for the gspcap90 variable is less than alpha, so that variable has a
significant effect on the violent crime rate. The p-value for the census9 variable is
also less than alpha, so it too needs to be included in the final model.
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In short, this is the model we need to use. The abbreviated regression table
from this model is

Coefficients:
Estimate Pr(>|t|)

(Intercept) 1.125e+02 0.308
gspcap90 1.550e-02 6.7e-05 ***
census9East South Central 7.518e+01 0.535
census9Middle Atlantic -6.777e+01 0.608
census9Mountain -1.707e+02 0.101
census9New England -1.708e+02 0.122
census9Pacific -1.316e+02 0.263
census9South Atlantic 1.590e+02 0.125
census9West North Central -4.953e+01 0.638
census9West South Central 1.197e+02 0.323

From this, we can conclude that there is a statistically significant, and positive (!),
effect of average state wealth on the violent crime rate. We get that conclusion from
the gspcap90 line in the table.

The rest of the table compares the effect of each level of the census9 variable
to the base category, East North Central. As no p-values is less than alpha, we canbase category
conclude that none of the regions is statistically different in its effect from the East
North Central region.

What about when compared to the Mountain region?

First, we have to specify that we want the Mountain region to be the base
category against which everything else is calculated. Then, we need to re-fit the
model with the new base.

census9 = set.base(census9, "Mountain")
modEd3 = lm(vcrime00 ∼ gspcap90 + census9)
summary(modEd3)

The regression table now indicates that the violent crime rate in the Mountain region
is significantly lower than that in the East South Central, South Atlantic, and West
South Central regions.
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How does the violent crime rate in the different regions compare to the Pa-
cific region?

census9 = set.base(census9, "Pacific")
modEd3 = lm(vcrime00 ∼ gspcap90 + census9)
summary(modEd3)

The violent crime rate in the Pacific region is significantly lower than that in the
South Atlantic and the West South Central regions.

How do the regions compare to the South Atlantic region?

census9 = set.base(census9, "South Atlantic")
modEd3 = lm(vcrime00 ∼ gspcap90 + census9)
summary(modEd3)

The violent crime rate in the South Atlantic region is significantly higher than in the
Mountain, New England, Pacific, and West South Central regions.

Note: Be aware of the multiple comparisons issue (see Section S.6.2). Remem-
ber that these individual analyses only work if you perform only one of them.
Multiple comparisons require adjustment of the alpha-level. For a reminder,
see Appendix Section S.6.2.

6.2.5 The Graphic The following code generates the graphic at the top of the
next page:

par(mar=c(4,4,0,1)+0.5, family="serif", las=1)
par(xaxs="i", yaxs="i")
par(cex.lab=1.2, font.lab=2)

plot.new()
plot.window( xlim=c(0,75), ylim=c(0,2500) )

axis(1); axis(2)

title(xlab="GSP per Capita (1990) [$000]", line=2.75)
title(ylab="Violent Crime Rate (2000)", line=3.5)

xx = seq(15,70)*1000
yyPac = predict(modEd2, newdata=data.frame(gspcap90=xx, census9

="Pacific"))
yyMtn = predict(modEd2, newdata=data.frame(gspcap90=xx, census9

="Mountain"))
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Figure 6.2: Plot of the violent crime rate in 2000 against the GSP per capita in 1990
(in thousands of dollars). The ordinary least squares line of best fit is included. The red-
colored line is the estimate for the South Atlantic states; blue, Pacific states; and gold,
Mountain states.

yySAt = predict(modEd2, newdata=data.frame(gspcap90=xx, census9
="South Atlantic"))

lines(xx/1000,yyPac, col="steelblue", lwd=2)
lines(xx/1000,yyMtn, col="gold", lwd=2)
lines(xx/1000,yySAt, col="pink", lwd=2)

points(gspcap90/1000,vcrime00, pch=21, bg="lightsteelblue")

It would be helpful to have a legend, but let us leave that for another day!

Also, you need to be able to determine what each line of this script does.
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6.2.6 Confidence Interval for Slope We can obtain confidence intervals for
the effects using the same method as before. The interpretation follows the same
rules, but the table is much bigger:

confint(modEd2)

We are 95% confident that the effect of the GSP per capita on the violent crime rate
is between 8 and 23 additional violent crimes (per 100,000 population) for every
$10,000 increase in GSP per capita.

The confidence intervals for the effects of each of the levels is as compared
to the base level. Thus, we are 95% confident that the average violent crime rate in
the West North Central region is between 21 and 396 lower than that in the South
Atlantic region (the base level).

6.2.7 Confidence Interval for ŷ Again, we can estimate the expected value of
a violent crime rate, given the GSP per capita and the region.

predict(modEd2, newdata=data.frame(gspcap90=50000, census9="
Pacific"), interval="confidence")

We are 95% confident that the expected violent crime rate in a Pacific-region state
with a GSP per capita of $50,000 is between 537 and 975, with a point estimate of
756 violent crimes per 100,000 people.

6.2.8 Prediction Interval for ynew Finally, we can also calculate a prediction
interval for a new observation:

predict(modEd2, newdata=data.frame(gspcap90=50000, census9="
Pacific"), interval="prediction")

We are 95% sure that the violent crime rate for a new observation of a Pacific-region
state with a GSP per capita of $50,000 is between 334 and 1177, with a best guess of
756 violent crimes per 100,000 people.

Note: As is always the case, the width of the prediction interval is larger than
the width of the confidence interval. Remember why this is the case.
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6.3: Full Example: Cows in the City of Děčı́n

To illustrate the process of model selection, let us examine Děčı́n’s ballot measure
of 2009. That ballot measure sought to constitutionally restrict the number of cows
that can be housed within the city limits. While this extended example seems rather
dated, it does cover some interesting issues in statistical modeling and questions we
can answer with our model.

Example 1

The voters of Děčı́n are being sent to the polls to vote on a constitutional
referendum that proposes to limit the number of cows that could be housed
within the city limits. This was not the first time that Ruritanians were sent
to the polls to vote on this or a closely related issue. Given the informa-
tion from previous votes, and the demographics of Děčı́n voters, what is the
probability that this ballot measure will pass?

Before attempting any analysis, there needs to be a search of the literature to inform
us as to which variables should be present, and which directions those variables
should affect the dependent variable. From that literature review, we hypothesize
that the vote in favor of such ballot measures depends on three variables: age of
the population, religiosity of the population, and whether the ballot measure also
restricts chickens. The effect direction for each is that kraj that are more religious
should vote against cow-housing at a higher rate; Measures that also ban chickens
should have a harder time passing; Measures passed more recently should have a
more difficult chance of passing, as the young tend to support cows, and the elderly
tend to oppose them (wanting quiet, dung-free neighborhoods).directional hypotheses

With this theory and the resulting hypotheses, we can take our next step:
Getting to know the data.
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Year Passed Chicken Ban Religious Percent

Minimum 1998 0 51.00
Maximum 2008 1 85.00
Median 2004 1 67.50
Mean 2004 0.5938 66.75
Variance 6.0650 0.2490 88.1935
Coefficient of Variation 0.5794 0.8404 0.1407

Table 6.1: Descriptive statistics on the variables in the cows dataset.

6.3.1 Get to Know the Data Before we begin trying to answer this question, we
must get to know our data. There are several functions available to us to visualize the
data: histogram, scatter plots, and quantile-quantile plots. In addition to visualizing
the data, we should calculate several of the descriptive statistics for the variables of
interest.

source("http://rfs.kvasaheim.com/rfs.R")

cows = read.csv("http://rur.kvasaheim.com/data/cows.csv")
summary(cows)

Variability: Since we have multiple independent variables, we should calculate
both univariate and bivariate descriptive statistics. Table 6.1 provides the univariate
descriptive statistics. The primary univariate question to ask about the independent
variables here is whether there is sufficient variation. The two measures we need to variation
examine are the variance and the coefficient of variation. If both of these numbers
are small, then there may be an issue.

In this data, the variance of the Chicken Ban variable is small and potentially
worrisome; however, its coefficient of variation (a scaled standard deviation, coefficient of variation

cv =
∣∣∣∣ s
x

∣∣∣∣ (6.3)

indicates that there is no serious issue (the value is close to 1).3 None of the three
variables have small enough variation to cause us concern.

3As this is a dichotomous variable, the mean is the percent of the values equal to 1. Thus, there
are about 60% of the values 1 and 40% of the values 0 — more than sufficient variation.
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Year Passed Chicken Ban Religious Percent

Year Passed 0.1903 0.2399
Chicken Ban 0.1903 0.5146
Religious Percent 0.2399 0.5146

Table 6.2: The correlations between the variables in the cows data. The correlation
between Chicken Ban and Percent Religious is statistically significant (t = 3.2869;ν =
30;p = 0.0026). This is the sole statistically significant correlation.

Relationships: After getting to know the variables individually, it is important to
get to know the relationships between the variables. This can be done through cor-
relation tests and bivariate scatter plots. Independent variables with strong correla-
tions with the dependent variable should be considered for inclusion in the model.
Independent variables with strong correlations with other independent variables
should be of concern. Remember that one of the assumptions of OLS regression
is that the independent variables are statistically independent of each other. If in-
dependent variables are highly correlated, the statistical properties of the methodcorrelated
weaken.

Question

If independent variables are highly correlated, the statistical properties of
the method weaken. Why?

The pairwise correlations are provided in Table 6.2. Of the three independent vari-
ables, only Chicken Ban and Religious Percent have a statistically significant corre-
lation (t = 3.2869;ν = 30;p = 0.0026). Should the level of correlation be a concern?
Perhaps. While their correlation is r = 0.5146, this corresponds to an R2 value of
just 0.2648. As such, the correlation may not be large enough to severely affect our
coefficient estimates (see Sections ?? and ??). Let us just remember this relationship
for the future.

Note: The issue is actually more than a statistics issue. If two independent
variables are highly correlated with each other, it is logically impossible to
determine which affects the dependent variable or how much of the effect to
partition to each independent variable. Statistics is, however, able to tease
out the independent relationships better than not. As a rule of thumb, if the
correlation is greater than r = 0.90, there may be a serious logical issue. If
two variables are so highly correlated, which of the two is the “correct” inde-
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Figure 6.3: Correlation plots between the three independent variables. The correlation
between Civil Ban and Percent Religious was statistically significant according
to the Pearson product-moment correlation test. This is evident in this graph, as well.

pendent variable? How can one tell? Can both be good? Is the commonality
between them the real independent variable?
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6.3.2 Variance Inflation Factor This problem is a bit more extensive than sug-
gested above. Recall that one of the mathematical requirements is that the rank ofVIF
the design matrix equals p (the number of parameters to be estimated). This can
happen if one variable is perfectly correlated with (linear function of) another vari-
able. It can also happen if a variable is a linear function of the other variables.

Thus, while checking the bivariate correlations is helpful, it is not the answer
we need. We need to check if the independent variable is a linear function of (or
close to) a combination of the others.

To determine the level of multicollinearity we can use the “variance inflation
factor” (VIF). Recall from Section 5.4.2 how to calculate the VIF for a given inde-
pendent variable: Regress all other independent variables on it, calculate the R2

i ,
and calculate the VIF from

VIFi =
1

1−R2
i

(6.4)

Once you have calculated the VIF for each independent variable, compare the values
to the “usual” Rule of Thumb.4

There is nothing magical about using the R2 value to calculate your variance
inflation factor. One could advocate using the adjusted-R2. However, in doing so,
the Rules of Thumb may need to be adjusted.

Of course, if we think about the effects of multicollinearity, rather than just
detecting “severe levels,” then we may wish to eschew such tests, assume multi-
collinearity is an issue, and adjust for it. On the other hand, if there is no reason
to think that the model should suffer from multicollinearity, we will want to avoid
such adjustments.

These are science questions, not statistics questions.

Know the science behind your theory.

4This Rule of Thumb depends on the discipline. The three typical boundaries are 5, 8, and 10.
If all of your VIF scores are greater than 10, then there is an issue with multicollinearity. If all
are less than 5, then there is no issue. If it is between those extremes, then you should think
about the effect of multicollinearity on your estimators. What do those VIF values correspond
to? A VIF of 5 means the R2 value is 0.80. A VIF of 10 means the R2 is 0.90. Keep that in
mind. In other words, the other independent variables explain 90% of the variation in this
independent variable.
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∼ Separates the dependent variable (left-hand side) and the
independent variables (right-hand side)

+ Indicates the following variable is added to the formula

− Indicates the following variable is removed from the for-
mula

: Indicates the following and the preceding variable are mul-
tiplied in the formula

∗ Indicates the following and the preceding variable are
crossed in the formula

∧ Includes the specified level of interactions

I() Replaces the formula grammar of what is in the parenthe-
ses with algebraic grammar

Table 6.3: The symbols and their meanings in the grammar of formulas. I sure wish I
could locate the book that created these, but I cannot find it anymore. It is in the Oklahoma
State University library. . . somewhere.

6.3.3 Model the Data The example asked us to determine the probability that
the ballot measure will pass. Before we can answer that question, we need to model
the proportion of the vote in favor of the ballot measure using our independent
variables; that is, we need to be able to predict the proportion of the vote in favor of prediction
the ballot measure with the information we have.

Thus, the dependent variable will be propWin and the independent vari-
ables will be yearPassed, chickens, and religPct. For now, let us assume a
linear relationship between the independent variables and the dependent variable.

Model Selection: Unless you have a lot of independent variables, I recommend
you start with the interaction model.5 The interaction model includes the effects of interaction model
each independent variable singly (main effects) as well as all possible combinations
of those variables (interaction effects).

R uses the usual formula grammar (Table 6.3). Its use takes a little practice grammar

5Some will disagree and recommend starting with the simplest model and building complexity
from that. There tends to be little difference between the two model-building methods. On
either case, one has to worry about the multiple comparisons issue (Appendix S.6.2). How
we should address it in the realm of model building is still unknown. We are certain of
two things, however. First, the Bonferroni procedure is far too conservative. Second, doing
nothing is not an acceptable option.
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to get the hang of, but it is entirely logical (for the most part). For instance, if you
wish to fit the model y = β0 + β1x+ ε, you would use y ∼ x.

However, if you wish to force the y-intercept to be 0, that is to fit the model
y = β1x+ ε, then you have a choice:

y ∼ x - 1

y ∼ x + 0

The first is logically interpreted as the usual model, “less the intercept term” (hence
the - 1). This is the usual method I use. The second exists for backward compati-
bility. I strongly encourage you to use the first method.
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Some other examples of this grammar include:

Algebraic form Formula form
y = β0 + β1x1 + β2x2 + β3x1x2 y ∼ x1*x2

y = β0 + β1x1 + β2x2 + β3x1x2 y ∼ x1 + x2 + x1:x2

y = β0 + β1x1x2 y ∼ x1:x2

y = β0 + β1x13 + β2 sin(x2) y ∼ I(x1∧3) + I(sin(x2))

y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2+ y ∼ x1*x2*x3
β5x1x3 + β6x2x3 + β7x1x2x3

y = β0 + β1x1 + β2x2 + β3x1x2 y ∼ (x1 + x2)∧2

y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2
+β5x1x3 + β6x2x3 y ∼ (x1 + x2 + x3)∧2

Note that the first two examples above are the same model. These illustrate what
comprises a “crossed” model. Also note that the “wedge” operator, ∧, indicates how
many variables are multiplied in the terms. So ∧2 indicates you want all one-way
and two-way interactions for the model, and ∧3 means you want all one-, two-, and
three-way interactions.

Thus, we can see the following pairs are equivalent:
y ∼ (x1 + x2 + x3)∧3 and y ∼ (x1 * x2 * x3)
y ∼ (x1 + x2 + x3)∧2 and y ∼ (x1 * x2 * x3) - x1:x2:x3

With this brief introduction to the grammar of formulas, we can return to our ex-
ample. We have three independent variables; the formula to give a full three-way
interaction model is asterisk

propWin ∼ yearPassed * chickens * religPct

As we will use this model a bit, we save the linear regression results into a variable.
Thus, the two lines to run are

mod1 = lm(propWin ∼ yearPassed * chickens * religPct)
summary(mod1)

These lines give the following output (well the first, fourth, and fifth column of that
output):

t value Pr(>|t|)
(Intercept) 1.148 0.262
yearPassed -0.901 0.377
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chickens -1.084 0.289
religPct 1.557 0.133
yearPassed:chickens 0.950 0.352
yearPassed:religPct 0.510 0.615
chickens:religPct 0.979 0.338
yearPassed:chickens:religPct -0.895 0.379

The line starting yearPassed:chickens:religPct is the three-way interaction
term. As it is the highest interaction, it is the only one we can interpret here. Notethree-way
that it is not statistically significant (p = 0.379). Thus, removing that term will do
two things. First, it will simplify the model. Second, it will not significantly harmOccam
the model’s descriptive (or predictive) ability.
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That second model can be written as either

mod2 = lm(propWin ∼ yearPassed * chickens * religPct -
yearPassed:chickens:religPct)

or as

mod2 = lm( propWin ∼ (yearPassed + chickens + religPct)ˆ2 )

The two formulas are equivalent. formula grammar

Note that the summary.aov(mod2) command indicates that none of the
three two-way interactions are statistically significant. Thus, these two-way interac- two-ways
tions should be removed from the model.6 This leaves a model with no interactions—
an additive model. Fitting the additive model and checking the statistical signifi- additive model
cance of the variables is as above

mod3 = lm(propWin ∼ yearPassed + chickens + religPct)
summary.aov(mod3)

Note that all three variables are significant according to this output (the chicken
variable is statistically significant because we specified an effect direction). Thus,
this is our provisional model. provisional model

Question

Given that the additive model is the appropriate model, does the effect of
religiosity (religPct) change over time?

Question

Given the analysis above, is there evidence that the effect of religiosity (religPct)
changes over time?

6Again, some would alternatively advocate removing just the least significant effect, then refit
the new model. Others would suggest refitting with three different models, one for each
combination of interaction. There is no “always best” answer, other than the one that your
science suggests.
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The Additive Model: That is, the equation we will use to fit the data is

propWin = β0 + β1(yearPassed) + β2(chickens) + β3(religPct) + ε (6.5)

If ε ∼ N (0,σ2), then we know

E [propWin] = β0 + β1(yearPassed) + β2(chickens) + β3(religPct) (6.6)

Check the Assumptions: But, does this model violate any of the assumptions of
OLS regression? All of the usual tests (Shapiro-Wilk, Breusch-Pagan, and runs) pass.

What about multicollinearity? Remember that the effect of multicollinearity
is to inflate the standard errors (reduce the t-value, increase the p-value). Thus,
if multicollinearity exists, fixing it will make the variables even more statistically
significant.

How do we test it? We can do it the hard way or the easy way. The hard way
is to estimate three regression equations, calculate the individual R2 values, and
calculate the resulting VIF values.

vif1 = lm(yearPassed ∼ chickens + religPct)
vif2 = lm(chickens ∼ yearPassed + religPct)
vif3 = lm(religPct ∼ yearPassed + chickens)

1/(1-summary(vif1)$r.squared)
1/(1-summary(vif2)$r.squared)
1/(1-summary(vif3)$r.squared)

Or, you can use the car package:

library(car)
vif(mod3)

The results of these VIF checks are

yearPassed chickens religPct
1.067965 1.368963 1.399954

None of these three are even close to the lowest “Rule of Thumb.” As such, multi-
collinearity is not an issue in this model.
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Estimate Std. Error t-value p-value

Constant Term 0.1512 0.0659 2.293 0.0295
Year Passed (post 2000) -0.0201 0.0036 -5.618 ≪ 0.0001
Banned Chickens -0.0373 0.0200 -1.868 0.0723
Percent Religious 0.0095 0.0011 8.801 ≪ 0.0001

Table 6.4: Results table for the regression of proportion support of a generic ballot lim-
iting the number of cows housed in the city against the three included variables. The R2

for the model is 0.7801; the R
2
, 0.7565. The p-values calculated are based on two-tailed

test. The hypotheses were one-tailed hypotheses. As such, all three explanatory variables
are statistically significant at the standard level of significance (α = 0.05).

6.3.4 Results The regression table for model mod3 is given in Table 6.4. Notice
that all three variables of interest are statistically significant at the α = 0.05 level.7 directional hypothesis
Additionally, the model has an R

2
of 0.7565, which is a great fit in most of the social

sciences. The direction of the coefficients also agrees with theory. research hypotheses

Thus, the equation for the line of best fit is approximately
prediction line

E [propWin] = 0.1512

− 0.0201(yearPassed)

− 0.0373(chickens)

+ 0.0095(religPct) (6.7)

From this, we can make the following observations. First, the expected vote propor-
tion is declining as time passes by about 2 percentage points per year. Second, ballot
measures that also ban chickens are less likely to pass. Finally, the more religious a
kraj, the more likely a cow ban is to pass.

Question

What does the 0.1512 represent in this context (in real terms)?

7You may claim that the Chicken variable is not statistically significant at the α = 0.05 level.
However, the provided p-values are two-tailed (non-directional) p-values. Our hypotheses
were all directional hypotheses (one-tailed). Thus, to get the one-tailed p-values just halve the
two-tailed p-values. With that, all three independent variables are statistically significant.
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6.3.5 Predicting Děčı́n According to this model, what is the expected vote in
Děčı́n? To answer this, we need information about the Děčı́n ballot measure, specif-
ically the value of the independent variables:

yearPassed = 9,

chickens = 0, and

religPct = 48.

With this information, and under the assumption that the model is correct, we have
our prediction that 42% of the Děčı́n voters will vote in favor of this ballot measure.

Thankfully, R does not require us to do this calculation by hand. The R code
for predicting the percent of Děčı́n voters voting in favor of this ballot measure can
be

DECIN = data.frame(yearPassed=9, chickens=0, religPct=48)
predict(mod3, newdata=DECIN)

The first line was used to make the code more readable. It is also helpful to first de-
fine the variable DECIN if you are going to make predictions for Děčı́n using several
models.

If neither of these appeal to you and you wish to do this in one line, that line
would be

predict(mod3, newdata=data.frame(yearPassed=9, chickens=0,
religPct=48))

Note the inclusion of the predict function, which predicts the dependent vari-predict
able value given values for each of the independent variables (read the help file on
predict; we will use this function frequently).

Question

How does the estimate change if you specify more variables than are in the
model for Decin? For instance:

DECIN = data.frame(yearPassed=9, chickens=0, religPct
=48, age=45.2, channels=12, turnout=0.72)
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6.3.6 Graphing the Results Now that we have confidence in our model, we can
use it to predict the effects of each of the three independent variables on the vote in
favor of these ballot measures. There are three independent variables, so we cannot
create a single graph that displays the results. However, as one of the variables is
dichotomous, we can show the results in just two graphs (the number of continuous
independent variables).

Both of these graphs will have the vote in favor as the dependent variable
(vertical axis). One of the two graphs will have percent religious as the primary
independent variable, whereas the other will have the year passed as the primary
independent variable. The chicken variable will be present in both graphs, signi-
fied by two separate curves, one where the ballot measure banned chickens and one
where it did not (Figure 6.4).

The graphs illustrate the results of the model — this is their purpose. Al-
though the graphs “illustrate the story,” we must still “tell the story” of the graphics,
including numbers from the prediction table (Table 6.4). The following paragraphs
explain the graphics.

Both graphics show that the effect of adding a chicken ban to the refer- tell the story
endum tends to reduce the vote in favor of the referendum. All things
being equal, a ballot measure banning chickens will have 3.7% fewer
people vote for it than a like measure not banning chickens (s = 1.9988, t =
−1.87,p = 0.0723).

The top graphic illustrates the effect of passing time on the propor-
tion of the vote in favor of these referenda: As the year increases by
one, the proportion voting in favor of the referendum decreases by 2%
on average (t = −5.62,p≪ 0.0001).

The bottom graphic shows the effect of religiosity on the ballot out-
come: those kraj with higher levels of religiosity tend to vote in favor
of these measures at a higher level than kraj with lower levels of re-
ligiosity. In fact, increasing the level of religiosity in the kraj by 1%
will tend to increase the vote in favor of the ballot measure by 0.95%
(t = 8.80,p≪ 0.0001).

Note the interweaving of the graphic discussion with concrete, numerical effects
(and statistical significance in parentheses) from the prediction table. This combi- regression table
nation aids the reader in interpreting the graphic(s) in terms of statistical language.
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Figure 6.4: Prediction graphs of our cows model. These graphs contain two indepen-
dent variables plotted against the dependent variable, with the dichotomous independent
variable included as separate lines. Note that the effect of each of the three independent
variables is made manifest by these two graphs.
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6.3.7 Answering the Question with the Parametric Bootstrap* Thus, we have
a prediction of 42% of the voters will support the ballot measure. However, this point prediction
is not an answer to the original question, which asked about the probability of the
ballot measure passing. From a modeling standpoint, this probability depends on
the coefficient estimates, which are just estimates of the true population value, and
the standard errors, which are measures of our certainty in those estimates.

In the ordinary least squares method, those parameter estimates are ran-
dom variables, since they are functions of the data. In other words, if we re-ran random variable
human history, the estimated effect would be different, since reality would be dif-
ferent. Furthermore, as these are random variables, they have an associated dis-
tribution — the normal distribution. In fact, the distribution of each parameter
estimate is normal, with expected value equal to the estimate and standard devia-
tion equal to the standard error. Thus, for example, the effect of yearPassed is distribution

of estimatorsβ̂1 ∼ N (µ = −0.0201,σ = 0.0036); of chicken, β̂2 ∼ N (µ = −0.0373,σ = 0.0200);
and of pctRelig, β̂3 ∼ N (µ = 0.0095,σ = 0.0011).

Let us leverage these facts to (virtually) re-run human history multiple times,
get the parameter estimates for each history, and predict the outcome of the ballot
measure in Děčı́n.8 In other words, let us perform a Monte Carlo analysis. The steps Monte Carlo
are the same as with any Monte Carlo analysis we have done (Kennedy 2008). The
only difference is what we do within the loop. Here, we draw random numbers from
the appropriate distribution and calculate the predicted vote.

Before you look at the following algorithm, write your own and compare it
to the one below:

1. Initialize variables

2. Perform loop

a) Draw from the four distributions

b) Predict the Děčı́n outcome

3. Calculate the proportion of times the ballot measure garnered more than 50%
of the vote

One can also store the random numbers inside the loop and predict outside the loop.
Also, if the statistical program allows it, you can avoid the loop and just draw all the
numbers at once. This last has the advantage of being very fast.

It is also the method I use here, in the R script:

8Note that this process assumes the parameter estimates are independent of each other. This is
not the case. See Theorem 3.1.3. The effects are dependent on each other, as is the intercept.
As such, treat this sub-section as a pedagogical exercise rather than a statistical exercise.
There are a lot of questions dealt with here that help better understand things.
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# Initialize variables
outcome <- numeric()
trials <- 1000000

# Coefficient estimates
b.intc <- 0.151221
b.year <- -0.020095
b.cban <- -0.037331
b.rpct <- 0.009452

# Coefficient standard errors
s.intc <- 0.065938
s.year <- 0.003577
s.cban <- 0.019988
s.rpct <- 0.001074

# Distributions (the "loop")
e.intc <- rnorm(trials, m=b.intc, s=s.intc)
e.year <- rnorm(trials, m=b.year, s=s.year)
e.cban <- rnorm(trials, m=b.cban, s=s.cban)
e.rpct <- rnorm(trials, m=b.rpct, s=s.rpct)
outcome <- e.intc + e.year*9 + e.cban*0 + e.rpct*48

At this point, the variable outcome holds the proportion of people voting in favor
of the ballot measure in one million simulated elections. To answer the question,
we just need to determine the proportion of those elections in which the outcome
is greater than 0.50: mean(outcome>0.50) will work.

Of course the numbers are nice, but a histogram may tell a better story. The
following code will give a histogram simliar that in Figure 6.5.

hist(outcome, main="", xlab="Proportion Vote for Ballot Measure
", breaks=-1:99/100)

hist(outcome[outcome>0.50], main="", yaxt="n", breaks=-1:99/
100, col=2, add=TRUE)

axis(1, at=0.50, labels="50%")
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Figure 6.5: Plot of the predicted vote outcomes from the Monte Carlo experiment de-
scribed in the text. Note that, while the expected proportion of the vote in favor of the
ballot measure is 42%, there is still a 20% chance of the ballot measure passing, given
that our model is correct.

The histogram of the Děčı́n predictions is presented in Figure 6.5. Note that the
expected outcome is still 42%, which we found above, but that there is a spread to confidence interval
that prediction the histogram makes manifest, which the single prediction did not.
In fact, prior to this analysis, we may have concluded that there was no possibility
that the ballot measure would pass in Děčı́n based on our model; now, we see that
there is a 20% chance of the ballot measure passing.9

❧ ❧ ❧

Thus, we have an estimated answer to our original question. Given that our model
is correct, there is approximately a 20% chance that the ballot measure to limit the
number of cows in the city will pass in Děčı́n, with a point prediction of 42% in
favor of the bill. point estimate

The actual results of the 2009 ballot measure in Děčı́n was that the ballot
measure passed with 53% of the vote. This result is well within the 95% prediction
interval suggested by Figure 6.5. Also, the fact that the ballot measure passed should
not be too surprising, since this model gave it a 20% probability of passing, and 20%
is not a rare event by any stretch of the imagination.

9As with all statistical analysis, the caveat is that the model and the assumptions must be
correct.
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6.3.8 A Fundamental Problem There is a really big problem with these results,
however. Run the following code and interpret it.

mean(outcome>1) + mean(outcome<0)

This is an important exercise: Always check that predictions make sense.

In a future chapter, we will revisit this issue and propose a solution.

6.4: Conclusion

In this chapter, we performed full analyses, demonstrating the entire process.

� Warning: Again, be aware of the multiple comparisons issue discussed in Appendix S.6.2.
It explains why you need to either adjust your p-value or your alpha level when performing
multiple tests, such as when you are testing both β0 = 0 and β1 = 0.
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6.5: End-of-Chapter Materials

6.5.1 R Functions In this chapter, we were introduced to many, many, many R
functions that will be useful in regression. In fact, this chapter uses more R functions
than any other chapter in this book. Here are the many.

Packages:

car This package provides several statistical tests used in the book “An R Compan-
ion to Applied Regression” by J. Fox and S. Weisberg. It is a great package that
provides a lot of additional functionality for R.

lawstat This package provides several statistical tests used in law and public policy
analysis. It provides the runs.test function for us.

lmtest This package provides many tests related to linear models. It provides an
implementation of the Breusch-Pagan test, bptest, which tests for hetero-
skedasticity in the residuals.

RFS This package does not yet exist. It is a package that adds much general func-
tionality to R. In lieu of using library(RFS) to access these functions, run
the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Statistics:

source(filename) This function runs an R script from a separate file. That file may
be local or on the Internet.

runs.test(E, order) This alteration to the lawstat function tests whether the vari-
able E, as ordered by order exhibits fit issues.

shapiroTest(E) This tests the null hypothesis that the variable E comes from a Nor-
mal distribution. It is based on the shapiro.test function in the basic R
installation. It adds capabilities to test Normality in several groups.

lm(formula) This is the function that performs ordinary least squares estimation
on linear models.

bptest(mod) This function from the lmtest package performs the Bresuch-Pagan
test for heteroskedasticity.

confint(mod) This calculates confidence intervals for the parameters in ordinary
least squares regression.

mean(x) This calculates the mean of a sample.
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summary(x) This produces the six-number summary or a frequency table of the
provided variable, depending on the type of variable.

summary.lm(mod) When applied to a linear model fit using either the aov func-
tion or the lm function, provides estimates of the effects of the numeric vari-
ables and the levels of the categorical variables in the model.

summary.aov(mod) When applied to a linear model fit using either the aov func-
tion or the lm function, provides estimates of the statistical significance of the
variables in the model.

predict(mod) This predicts the values of the dependent variable at each point in
the dataset or for the values specified.

fligner.test(formula) This tests for heteroskedasticity when the independent vari-
able is categorical.

aov(formula) This function performs ordinary least squares estimation on linear
models.

vif(model) This function calculates the variance inflation factor (VIF) for each of
the independent variables in the model.

set.base(var,level) This RFS package function redefines the base category in the
provided level. By default, the base category is the first according to the al-
phabet.

Probability:

set.seed(x) This sets the random number seed.

rexp(n, rate) This generates n random values from an Exponential distribution with
the specified rate parameter.

rnorm(n, mean, sd) This generates n random values from a Normal distribution
with specified mean and standard deviation. By default the mean is 0 and the
standard deviation is 1.

runif(n, min, max) This generates n random values from a Uniform distribution
with specified minimum and maximum values. By default, the minimum is 0
and the maximum is 1.

Mathematics:

head(x) This returns the first six values in the variable.

foot(x) This returns the last six values in the variable.

seq(from, to, by, length) This returns a vector of sequential values, where by indi-
cates the step size and length specifies the vector length.
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length(x) This calculates the length of a vector (variable), which is the sample size,
n.

residuals(mod) This calculates the residuals in the model, which is the difference
between the observed and the predicted.

Graphics:

qqnorm(x) This creates a Normal quantile-quantile plot for the given values.

qqline(x) This adds the diagonal line to the quantile-quantile plot.

overlay(x) This, from the RFS package, produces a histogram with a Normal curve
overlaying it.

par(. . . ) This sets parameters on the next graphic started. Look through the help
page for this function to see all you can specify.

plot(x,y) This produces a scatter plot of the y-values against the x-values.

axis(side) When a plot is already drawn, this adds values along axis number side.

title(. . . ) When a plot is already drawn, this adds the x- and y-labels.

lines(x,y) When a plot is already drawn, this draws lines between each subsequent
(x,y) pair.

points(x,y) When a plot is already drawn, this draws points at each (x,y) pair.

Programming:

attach(dataframe) This allows you to access the variables in the dataramewithout
having to prefix each with dataframe$.

library(package) This loads an external package that you have already installed on
your computer. It allows access to all functions and data sets in the package
package.

as.character(x) This changes the values in variable x to be characters.

as.numeric(x) This changes the values in variable x to be numbers.
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6.5.2 Exercises

1. In the two panels in Figure 6.4, the lines of best fit do not go beyond the data.
Why?

2. Section 6.3.8 mentioned that there was a really big problem with this analysis.
Run the following code.

mean(outcome>1) + mean(outcome<0)

What value is given, what does it mean, and why does it imply there is some-
thing fundamentally wrong with the analysis?
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Chapter 7:

FixingtheViolations

Overview:

In Chapter 5, we examined the assumptions of ordinary
least squares and how to check that they are not vio-
lated by your model. The requirements (assumptions)
have different importance to our estimation method.
The most important requirement is that the model uni-
formly fits the data (constant expected value of the
residuals). In this chapter, we see some ways to fix those
violations.

Much of this chapter will deal with transforming
the dependent variable, because mis-identified models
is the greatest problem in modeling. Frequently, fixing
this problem also fixes other problems with assumption
violations.

Forsberg, Ole J. (10 DEC 2024). “Fixing the Violations.” In Lin-
ear Models and Řurità Kràlovstvı̀. Version 0.704442η(α).
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❧ ❧ ❧

In the previous chapters, we introduced the ordinary least squares (OLS) estimation
method for the classical linear model (CLM) — and its assumptions (requirements).
Last chapter, we looked at how to test that the requirements are sufficiently met
in our data and model. We also looked at the importance of the assumptions. In
this chapter, we determine some methods for dealing with some violations of those
requirements. Hopefully, this extends the usefulness of this simple and straight-
forward estimation method.

Recall that the ordinary least squares estimation method (OLS) requires that
the error terms have a constant expected value, have a constant variance, and are
generated from a Normal (Gaussian) process. But, what happens when these re-
quirements are not met?

There are essentially three ways of handling violations depending on the
type and the severity: First, you can ignore it. Ignoring the violations is usually
not too bad when you are dealing with predicting within the domain of the observed
data, as the increase in bias and the loss of efficiency are usually minor. However, if it
is important to estimate parameters, you definitely should not ignore this violation.
Furthermore, if the assumption of a constant expected value is practically violated,
you need to fix it.

Second, we can use other methods (and modeling paradigms) to perform
regression. Two popular alternatives to the Classical Linear Model paradigm are
the Generalized Linear Model (GLM) and the Generalized Additive Model (GAM).
The former paradigm will be covered in Chapters 11 through 15. The latter is well
examined in Wood (2006). The strength of these models (and estimation methods)
is that they extend the CLM to include (for instance) discrete dependent variables
and non-linear relationships (Nelder and Wedderburn 1972; Wood 2006). These
unified paradigms allow the computer to estimate the effect coefficients using a very
powerful method (called Maximum Likelihood Estimation). The drawback is that
not all problems lend themselves to fitting using Maximum Likelihood Estimation
(MLE; Chapter 10). Luckily, most do. Even more luckily, new estimation methods
are developed frequently.

However, if we desire to stay within the realm of the classical linear model,
estimating the parameters using ordinary least squares, we can fix many violations
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simply by transforming the dependent variable — especially if the violations are
minor.

These transformations are very flexible. Once you get used to working in two
different systems of units, you can easily use transformation methods to ‘Normal- two systems
ize’ many restricted dependent variable. Unfortunately, one cannot transform an
arbitrary dependent variable; there are types that cannot be fit using this technique,
such as categorical. To handle these types of dependent variables, we will need to
introduce a new modeling paradigm (Chapter 11).

Finally, you can make adjustments to the estimates and their standard errors
to “fix” or “adjust for” the violation. This is a common practice in the presence of
heteroskedasticity (Section 7.3) and multicollinearity (Section 5.4.2).

Unfortunately, these do not work for violations of model fit (non-constant
expected residuals).
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7.1: The Issue of Boundedness

We finished Chapter 6 with a model of vote proportions for ballot measures concern-
ing keeping cows in the city (Section 6.3). We applied that model to an upcoming
vote in Děčı́n to predict the outcome. Finally, we used Monte Carlo methods to es-
timate the probability that the ballot measure would pass. In the end, we predicted
that the ballot measure had a 20% chance of passing, with a point-prediction of 42%
of the voters in favor of the bill.

Results, however, suggest that there may be something gravely wrong with
this model (Section 6.3.8). To see this more clearly, let us predict the proportion
of voters in support of a hypothetical 1994 ballot measure in Venkovský (religious
percent = 85) that also banned chickens (the results table from our Cow-Vote model
is in Table 6.4 on page 177).

From the results summarized in the table, the point-prediction for this 1994
Venkovský ballot measure is

p̂ = 0.1512 +−0.0201(yearPassed)+

− 0.0373(chicken) + 0.0095(religPct) (7.1)

= 0.1512 +−0.0201(−6) +−0.0373(1) + 0.0095(85) (7.2)

= 1.0379 (7.3)

Thus, this model predicts that the ballot measure will pass with over 103% of the
vote — a physically impossible outcome. What went wrong? How can we fix this
model so that this cannot happen?

First, nothing “went wrong,” per se. The model did exactly what it was sup-
posed to do. The prediction, however, is based on assuming the effect (slope) is
constant. If the slope is constant, one can find large enough (or small enough) val-
ues for the independent variables to make the prediction arbitrarily large or small.
When we are predicting a bounded dependent variable, this will necessarily lead to
an impossible prediction, such as a 103.79% support rate.

Thus, the issue is either with the linear (constant slope) aspect of the predic-
tion equation or with the bounded nature of the dependent variable (bounded below
by 0 and above by 1).
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Level Units: Y P

Transform: ỹ = f (y) ↓ ↑ Back-transform: p = f −1(p̃)

Transformed Units: Ỹ −→ P̃
regression

Figure 7.1: Schematic of a variable transformation procedure, such as described in the
text. Here, Y is the original values of the dependent variable, Ỹ is the transformed values
of the dependent variable, P̃ is the result from the regression in transformed units, and P
is the result in the original (level) units.

So, to improve the model, we can either model using non-linear coefficient
functions (Chapter 11) or eliminate the boundedness. At this point, the easier of
the two is to eliminate this boundedness; that is, we need to change the dependent
variable so that all values make physical sense. This is done through the process of
variable transformation. There are three steps:

• First, transform the dependent variable from a restricted range to an unre-
stricted range.

• Second, perform the analysis on this transformed variable.

• Finally, back-transform the estimated values (not estimated effects) into the
original units.

The overview of this plan is shown in Figure 7.1.

The key is the transformation. It must change the range of Y from its current
limited version to an unlimited version, denoted Ỹ . Luckily, there are two transfor-
mations that take care of most of our needs, in general: the logit (LOH-jit) and the
logarithm transformations.

7.1.1 Data Bounded by 0 and 1 One type of data you may come across in your
research is proportion data, data where the values are bounded below and above
(by 0 and 1, respectively); that is, if Y is the dependent variable, then 0 < Y < 1.
One appropriate function that transforms this bounded domain into an unbounded
range is the logit function:

ỹ = logit(y) := log
(
y

1− y

)
(7.4)

The logit function transforms (maps) variables bounded by 0 and 1 into unbounded
variables; in symbols,

logit : (0,1) 7→R (7.5)
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Figure 7.2: Graphic of the logistic function. The logit function is the inverse of the
logistic. Note that the graph is symmetric about the point (0,0.5).

The logit’s inverse, which maps it from logit units back into level units is called the
logistic function:

y = logistic(ỹ) :=
1

1 + exp(−ỹ)
=

exp(ỹ)
1 + exp(ỹ)

(7.6)

The logistic function transforms unbounded variables into variables bounded by 0
and 1:

logistic : R 7→ (0,1) (7.7)

Figure 7.2 shows a graphic of the logistic function. The logit is the inverse.

While other transforms are available, the logit is frequently used for the fol-
lowing three reasons:

1. The transformation and its inverse are both functions (the transform is a bi-
jective function). This means that the results are always commensurate to the
original problem.

2. The transformation is symmetric. This means that stretching above 0 is the
same as below.

3. The function is exact, as opposed to the probit transform which requires nu-
merical approximations. This increases the speed and accuracy of your pre-
dictions.

A careful reader will note that the domain of Y includes neither 0 nor 1. This is
because there is no way of transforming a closed (or a half-closed) interval into an
open interval such as R while ensuring that the inverse is also a function. This is a
provable fact of mathematics (Strichartz 2000).
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But, what do we do if there are y-values that are zero or one? One solution is
to add (subtract) an extremely small number, δ, to the zero (one). A second solution Delta

Adjustmentis to completely drop those data from the analysis.

Note: Neither of these solutions is perfect. If you insist on using linear
regression, then you should use both methods and see how much your answer
changes.

A general rule of thumb is that if your underlying research model is rule of thumb
correct, then the results should not vary wildly based on similar models. That
is, if we know Y depends on X1 and X2, then all appropriate modeling tech-
niques should give approximately the same results. If they do not, then there
is something seriously wrong with our assumptions about the underlying re-
lationships — the model.

A third solution is to change the proportion into a bounded count and use a different
paradigm (Chapter 13). While this is the best option, it requires more background
before we can cover it.

Example 1

Let us return to the cows data file and the example of Section 6.3. The voters
of Děčı́n are being sent to the polls to vote on a constitutional referendum
that proposes to limit the number of cows kept in the city. This was not
the first time that Ruritanians were sent to the polls to vote on this or a
closely related issue. Given the information from previous votes, what is the
estimated probability that this ballot measure will pass in Děčı́n?

Solution: Let us now answer this question more correctly. Recall that without per-
forming a transformation of the dependent variable, there existed predictions which
fell outside possible reality. To fix this, let us transform the dependent variable us-
ing the logit function, repeat the analysis, back-transform these transformed results
to the original units, and compare results (a lá Figure 7.1). steps

The first step is to transform the dependent variable. As the dependent vari-
able is a proportion, let us use the logit transform (from the RFS package). If we
decide to call the new variable logitWin, then the command will be

logitWin = logit(propWin)

Now, this is our new dependent variable. As such, we perform the same analysis as
in Chapter 6:

195



Estimate Std. Error t-value p-value

Constant Term -1.8909 0.2898 -6.53 ≪ 0.0001
Year Passed (after 2000) -0.0885 0.0157 -5.64 ≪ 0.0001
Contains a Chicken Ban -0.2318 0.0878 -2.64 0.0134
Percent Religious in Kraj 0.4750 0.0047 10.06 ≪ 0.0001

Table 7.1: Results table of the results of regression on the dependent variable, using a
logit transformation of the dependent variable.

modLgt = lm(logitWin ∼ yearPassed + chickens + religPct)

The summary(modLgt) command provides the results summarized in Table 7.1.
Note that all three independent variables are more statistically significant than in
the non-transformed model, Table 6.4. Also note that the effect directions are the
same as before. ♦

How shall we interpret the results? There are a few ways. The graphic is the best.
However, an older manner relies on the “log odds ratio.” The odds ratio is frequently
used to illustrate the strength of the association between two variables. For every
increase of 1 in the percent religious in the kraj, the log of the odds of the vote
passing increases by 0.4750. Said another way, the odds of it passing increases by
approximately 60.80% for each increase of 1 percentage point in religiosity. (Note:
exp[0.4750] = 1.6080.)

An increase of 2pp in religiosity increases the odds by about 157%. (Note:
exp[2× 0.4750] = 2.5857.) Thus, if the original odds were 3-to-1 against, increasing
the religiosity by 2pp means that the odds are now about 7.75-to-1 against.

Note: Beyond this, one cannot directly compare the magnitudes of these co-
efficients with the magnitudes of the previous coefficients; these effect esti-
mates are in different units. The coefficients seen in Table 6.4 predict in the
original units (proportions). The coefficients in Table 7.1 predict in logit (of
proportions) units.

Furthermore, merely taking the logistic of the coefficients will not put
them in level units; the transform is non-linear, as we designed, thus the effect
of any depends on the values of all. In order to compare the two models, we
need to perform predictions (remembering to back-transform them). Refer to
Figure 7.3 for the steps we use in this particular example.
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Level Units: propWin voteEst

logit() ↓ ↑ logistic()

Transformed Units: logitWin −→ modLgt
lm()

Figure 7.3: Schematic of the variable transformation procedure used in Example 7.1.1.
Note that the results table, Table 7.1, displays the coefficients of modLgt, which is in the
transformed units, not the original units. As such you cannot compare these magnitudes
with the magnitudes in Table 6.4.

Predicting the proportion of the vote for the Děčı́n ballot measure is almost as easy
as it was before. The only additional step is that we need to back-transform the
prediction to get it in proportion units.

So, according to this transformed model, what is the expected vote in Děčı́n?
To answer this, we need the Děčı́n information: yearPassed = 9, chickens = 0,
religPct = 48. With this information, and under the assumption that the model
is correct, we have our prediction of −0.4091 logits. Back-transforming this value
gives a prediction of logistic(−0.4091) = 40% of the population will vote in favor of
this ballot measure — just slightly different from our original prediction of 42%.

DECIN = data.frame(yearPassed=9, chickens=0, religPct=48)
voteLgt = predict(modLgt, newdata=DECIN)
voteEst = logistic(voteLgt)

However, remember that the original question was not this point estimate, it was a
probability of the ballot measure passing. To determine this probability, we just need
to repeat the same steps as we did answering this question before (Section 6.3.7), but
remembering to back-transform the results.

The Monte Carlo results of the transformed model indicate that there is a
15% chance that the ballot measure will pass in Děčı́n. The histogram of a million
predictions is presented as Figure 7.4. From this information, we can conclude that
there is a definite possibility that the cow ballot measure will pass in Děčı́n (15%),
with a predicted 40% vote in favor.
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Figure 7.4: Histogram of the results of the Monte Carlo experiment described in the
text. Note that the distribution has a slight right-skew as a result of the transformation
process. Also note that there are no predicted vote outcomes less than 0 or greater than
1, as compared to the original untransformed model of Section 6.3.8. In fact, the lowest
prediction is 9.0%, while the largest is 81.6%.
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If we were into betting, we could also conclude that this model predicts that
the odds of this ballot measure passing is 1−p

p = 1−0.15
0.15 , 5.67-to-1 against. Thus, a

‘fair’ bet would pay $5.67 for every $1.00 bet in favor of the ballot measure and
$1/5.67 = $0.176 for every dollar bet against the ballot measure passing.

Regardless, since the probability of the measure passing is 15%, a pass would
not be wholly unexpected. Its passing is more likely than flipping a fair coin three
times and having it come up heads all three times (15% vs. 12.5%) — definitely not
unheard of.

The 95% prediction interval for the Děčı́n referendum outcome, according
to our model, is from 23.5% to 59.0%. The observed value of 53% is well-within that
interval.

Note: From this past discussion, we were able to estimate success probabili-
ties and fair betting odds. This is yet another use of statistical modeling.

Note that we are estimating the probability of an event. Unless that
probability is 0 or 1, there is always a chance the event will (or will not)
happen. Thus, the passing of the Děčı́n referendum in 2009 does not directly
detract from our model. There was a 15% chance it would pass, according to
our model.

�Warning: Stay aware of what statistical model says and does not say — the choice is
humility or humiliation.
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7.1.2 Data Bounded Below by 0 When the dependent variable represents a pro-
portion (bounded by 0 and 1), we can use the logit function to transform it into an
unbounded variable, perform the usual analysis, and back-transform those results
into level units (the previous section). However, not all bounded variables fit this
bounding, e.g., age, height, income. These variables are bounded below by 0 and
have no theoretical upper bound. For such variables, we may want to use the loga-
rithm transform.1logarithm

The logarithm function transforms variables bounded below by 0 into un-
bounded variables; in symbols,

log : (0,∞) 7→R

Its inverse is the exponential function, exp : R 7→ (0,∞) . Both functions are bijec-
tions and strictly increasing and so are appropriate functions for transforming our
variables.

Note that values of 0 are problematic for the logarithm in much the same
way that values of 0 and 1 were problematic for the logistic function. Solutions are
similar (Section 7.1.1, page 195).

Example 2

The gross domestic product (GDP) per capita is one of many measures of
average wealth in countries. If extant theory is correct, then the wealth in
the country is directly affected by the level of honesty in the government —
countries with high levels of honesty (low levels of corruption) should be
wealthier than those with low levels of honesty (high levels of corruption).
Furthermore, if theory is correct, the level of democracy in a country should
also influence the country’s level of wealth — countries with higher levels of
democracy should be wealthier than countries with lower levels of democ-
racy.

Let us determine if reality (in the form of the data in the gdp data file)
supports the current theory or if current theory needs to explain the severe
discrepancies. Furthermore, let us estimate the GDP per capita for Ruritania
and provide a 95% confidence interval for that estimate.

Solution: For this section, recall that the level of honesty in government for Ru-
ritania is 5.1 and the level of democracy is -7. With that information, I leave it
as an exercise for you to model the data without transforming the dependent vari-
able and discovering the predicted GDP per capita for Ruritania is $26,795.64. This

1By “theoretical upper bound,” we mean there exists a limit (a single value) such that the
variable can get sufficiently close to that limit, but no greater.
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seems awesome for Ruritania. The 95% prediction interval is from $5232 to $48,360.
That’s rather wide. It is a function of the high level of variation in the data.

However, to see a problem with the model, let us estimate the GDP per capita
for Papua New Guinea (democracy=10, hig=2.1). According to the model, the pre-
dicted GDP per capita is -$2337, which is not physically possible. If nothing else,
this prediction should suggest to you that the data needs transformation before be-
ing modeled.

The process to estimate the GDP per capita in Ruritania using a transformed
model is formulaic for us by now: transform the dependent variable by applying the
logarithm function, model the transformed variable, estimate in the transformed
units, back-transformed into level units — here, dollars.

One feature of R that is shared by few other statistical packages is that you
do not have to actually create a new variable; you can perform the transformation
within the modeling command; e.g.,

modLog = lm(log(gdpcap) ∼ democracy + hig)

The results table for this model is provided in Table 7.2. Again, as we have trans-
formed the dependent variable, the coefficients are not in units of dollars. As such,
their magnitudes cannot be directly compared to those in the untransformed model.
Their directions, however, can be compared because the transformation we used was
strictly increasing. Thus, this model tells us that higher levels of honesty in govern-
ment correspond to countries with higher GDPs per capita (in this sample). Addi-
tionally, countries with higher democracy scores correspond to countries with lower
GDPs per capita (in this sample).

The first finding is so strong in this sample that we can conclude that there is
evidence of this relationship in the population. This second finding, which conflicts
with current theory, is not statistically significant at the usual α = 0.05 level. Thus,
we cannot conclude that the effect in the population is negative, positive, or null
(zero). All we can conclude is that we did not detect an effect with this data. Whether
this is due to a lack of effect in the population, the sample selected, the sample size,
no one can tell.

With this model, we can estimate the GDP per capita in Ruritania using the
standard method, but remembering that we must back-transform the final estimate.
That is, if we used the commands

Estimate Std. Error t-value p-value

Constant term 6.9333 0.1479 46.89 ≪ 0.0001
Level of Democracy -0.0028 0.0113 -0.25 0.8055
Honesty in Government 0.4702 0.0359 13.11 ≪ 0.0001

Table 7.2: Results table for the GDP per capita modeling exercise. As the model is a
transformed model, these effects estimates are not in units of dollars.
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RUR = data.frame(hig=5.1, democracy=-7)}
estLog = predict(modLog, newdata=RUR)

then we would report Ruritania’s GDP per capita as an estimated value of $11,508
(using exp(estLog)). ♦

Note: From your mathematics course, you may recall that log(1 + x) ≈ x for
small values of x. This means we can interpret the coefficients in the log-
model as percent increases/decreases. For instance, the coefficient for the
level of democracy in the country is -0.0028. We can interpret this as “one
increase in the level of democracy decreases the GDP per capita by 0.28%, on
average.” The coefficient of the level of honesty in government is 0.4702. We
could interpret this as “one increase in the level of honesty in the government
increases the GDP per capita by approximately 47%, on average.”

However, what do we mean by “small values of x”? Anything less
than 0.2 is usually fine. Our interpretation of the honesty-in-government
coefficient probably should not have been done. A log-coefficient value of
0.4702 really corresponds to a percent increase of only 38.5%. It is more
accurate, but less spiffy.
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Here is my code to explore the relationship log(1 + x) ≈ x:

x = seq(0,1, length=1e4)
y = log(1+x)
plot(x,y, col="blue1")
abline(0,1, col="orange")

❧ ❧ ❧

The question asked us to calculate the estimate, but to also provide a 95% confidence
interval. One way of doing this is to use Monte Carlo methods. The steps are all the
same, with the additional step of back-transforming the estimates (last line).

Here is the code for parametric bootstrapping:

b.int = 6.933298
b.dem = -0.002776
b.hig = 0.470225

s.int = 0.147873
s.dem = 0.011253
s.hig = 0.035855

e.int = rnorm(trials, m=b.int, s=s.int)
e.dem = rnorm(trials, m=b.dem, s=s.dem)
e.hig = rnorm(trials, m=b.hig, s=s.hig)

outcome = e.int + e.dem*-7 + e.hig*5.1
est = exp(outcome)

The assignments in the second and third group are the coefficient estimates and
standard errors from the model (Table 7.2). The histogram of these results are pro-
vided in Figure 7.5. To calculate a 95% confidence interval, we merely find the
values of est for which 2.5% and 97.5% of the data are less.

quantile(est, c(0.025,0.975))

From this, we can conclude that our model estimates the GDP per capita for Ruri-
tania is $11,508, with a 95% confidence interval being from $7075 to $18,733. It
is interesting to note that the actual GDP per capita in Ruritania is $55,000, which
is well above our confidence interval. Thus, our question is this: Is our model that
weak, or is Ruritania doing that well?

Note: Here, I use the original estimate as the point estimate for the GDP per
capita of Ruritania ($11,508). It would have also been appropriate to use the
mean of the Monte Carlo trials ($11,870) or the median of the Monte Carlo
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Figure 7.5: Results of the Monte Carlo experiment estimating the GDP per capita for
Ruritania and its 95% confidence interval. Note that 5% of the estimates fall in the
rejection (tan) region, 2.5% above and 2.5% below. The median of this distribution is
designated by x̃.

trials ($11,510). All three are acceptable measures of the center. It is usual,
however, to use the original prediction.

Here is an interesting question. In the previous example, we estimated a confidence
interval. How could we estimate a prediction interval?

To answer this, we need to remember the only difference between confidence
and prediction intervals. In a confidence interval, we are estimating an expected
value. In a prediction interval, we are predicting a new outcome. That new outcome
is a combination of the expected value and the σ2 from the ε term.

And so, to get a prediction interval, we use the following. Check to see the
difference between this and the previous script.

b.int = 6.933298
b.dem = -0.002776
b.hig = 0.470225
b.err = 0

s.int = 0.147873
s.dem = 0.011253
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s.hig = 0.035855
s.err = 0.8841

e.int = rnorm(trials, m=b.int, s=s.int)
e.dem = rnorm(trials, m=b.dem, s=s.dem)
e.hig = rnorm(trials, m=b.hig, s=s.hig)
e.err = rnorm(trials, m=b.err, s=s.err)

outcome = e.int + e.dem*-7 + e.hig*5.1 + e.err
est = exp(outcome)

From this, the 95% prediction interval is from $1907 to $69,345. Note that it is much
wider than the confidence interval. Also note that this should not surprise us at all.
Prediction intervals are always wider than the corresponding confidence interval.
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7.1.3 Additional Bounds Thus far, we have looked at transformation of a de-
pendent variable when it is bounded above and below by 0 and 1 (two bounds), and
when it is only bounded below by 0 (one bound). Other bounds are possible.2 In
this section, we figure out how to handle all types of bounds. The basic steps are to
determine if the variable is bounded on one side or two. If one, then perform an alge-
braic transformation so that the new variable is bounded below by 0, then use the log
transform. If two, then perform an algebraic transformation so that the new variable
is bounded by 0 and 1, then use the logit transform. In either case, you will need to
remember to back-transform the predictions with this algebraic transformation.

Note: The only bounds I frequently come across in my own research are those
bounded by 0 and 1, bounded by 0 and 100 (percentages), bounded by 0 and
4 (GPAs), and bounded below by 0. The quick solution for percentages is to
divide them by 100 to make them proportions, then multiply the predictions
by 100 to turn the predictions back into percentages.

Bounded by L and U : What if our data has a theoretic lower bound L and a the-
oretic upper bound U? As it is bounded above and below, we will change it into a
proportion and using the logit transform as in Section 7.1.1, remembering to back-
transform with the additional transformation. The algebraic transformation is

a(y) = p =
y −L
U −L

(7.8)

The back-transform is
a−1(p) = y = p(U −L) +L (7.9)

Example 3

The scores on the quantitative portion of the Graduate Record Examination
(GRE) range from L = 200 to U = 800. If we wished to properly model a
person’s GRE quantitative score, we would first subtract 200 from each score,
then divide by 800−200 = 600. The new variable would range from 0 to 1, a
proportion.

2While other bounds are possible, the number of bounds can only be 0, 1, or 2. This makes
this section so important.
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Example 4

The grade point averages (GPAs) are bounded below by L = 0 and above by
U = 4. To appropriately model GPAs, we would have to subtract 0, then
divide by 4. This new variable would now be a proportion.

Bounded Below by L : It may be that your dependent variables is bounded below
by a specific value, L, but not bounded above. As it is bounded on only one side, we
will transform it into a variable bounded below by 0 and then apply the logarithm
transform as in Section 7.1.2, remembering to back-transform with the additional
transformation. The algebraic transformation is

a(y) = p = y −L (7.10)

The back-transform is
a−1(p) = y = p+L (7.11)

Example 5

Hourly workers make at least $7.25 per hour. To model excess hourly wage,
we would subtract off L = 7.25 from each hourly wage. This new variable is
bounded below by 0, so we can apply the log transformation to it.

Bounded Above by U : It may be that your dependent variable is theoretically bounded
above by U . As there is only one bound, we will perform an algebraic transformation
so that it is bounded below by 0 and then apply the log transform as in Section 7.1.2,
remembering to back-transform with the additional transformation. The algebraic
transformation is

a(y) = p =U − y (7.12)

The back-transform is
a−1(p) = y =U − p (7.13)

Example 6

In the ocean, different species live at different depths. In fact, we can predict
the depth based solely on the species observed. Ocean depth is bounded
above by 0 and has no theoretic lower bound (although it certainly has a
genuine lower bound at the Challenger Deep in the Mariana Trench, which
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has a depth of -35,994 ft). To transform the depths into a variable upon
which we can perform a log transform, we subtract each value from U = 0.
After we predict, we will have to back-transform by again subtracting each
prediction from U = 0.

Of course, the transformation in this last example is equivalent to measuring depth
in terms of ‘distance below the surface’, which is a positive number requiring no
additional transformation.
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7.2: Full Example: The South Sudanese Referendum

Free and fair elections are one of the requirements for a legitimate democratic sys-
tem; furthermore, being a legitimate democratic State is necessary for some forms of
external assistance. As such, many not-so-democratic States wish to appear demo-
cratic. They hold elections, but the elections are either fraudulent or the electoral
system (rules governing the elections) is unfair.

There are many definitions for fairness in an election, but they all contain
the same requirement that a person’s vote has the same probability of being counted
as anyone else’s. In other words, the probability of a vote being invalidated is inde-
pendent of the characteristics of the person casting the vote — including who the
vote was for. This aspect of fairness can actually be tested in elections where the
number of invalidated votes is counted: If the proportion of the vote for a specific
candidate or position is not independent of the proportion of the vote invalidated in
the electoral division, then there is evidence against this assumption of fairness.

❧ ❧ ❧

And so, with this background, . . .

Question

Does the 2011 independence referendum in southern Sudan indicate an issue
with fairness?

Narrative Solution: As one of the conditions to the 2005 Naivasha Agreement,
which ended the civil war in Sudan, the South was allowed to vote on indepen-
dence from the North. That referendum was held January 9–15, 2011. Official re-
sults stated that 98.83% of the South Sudanese voted against unity and in favor of
independence.

The xsd2011referendum data contains the number of votes in favor of
independence (Secession), the number of votes declared invalid (Invalid), and
the total number of votes cast (Votes). Load it and save it into the xsd variable
without attaching the data. Because we need to determine if there is a relationship
between the proportion of the vote for a specific side and the proportion of the
vote invalidated in the electoral division, and because we just have vote counts, we
need to create those proportions. The proportion of the vote for the candidate is
the number of votes for the candidate divided by the number of valid votes. The
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Figure 7.6: A scatterplot of the results of the 2011 referendum on independence for South
Sudan. Note the apparent presence of a relationship between these two variables. As
such, there appears to be evidence that the election was not fair for those voting against
independence.

invalidation rate is the number of invalid ballots divided by the number of cast
ballots (recall Section 7.1.3).

Once that is done, we need to transform these proportions using the logit
transformation (why?), perform linear regression, and check for a (linear) relation-
ship. If a relationship exists in the transformed variables, then a relationship exists
in the untransformed variables. First, however, it is always a good idea to plot the
variables to see if there is an obvious answer to the question. Figure 7.6 a the plot
of proportion of the vote invalidated against the proportion of the vote in favor of
independence.

Suggested by the plot, there appears to be a strong relationship between the
two variables, evidence of an election that is not fair. Because of the direction of the
slope, it appears as though those areas voting most strongly in favor of independence
had a much lower probability of having their votes rejected.

Note: As we are using the logit transform, we must drop any electoral division
(here, county) which has zero invalid votes or zero votes in favor of secession.
We need to do this because the domain of the logit function is p ∈ (0,1).
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Estimate Std. Error t-value p-value

Constant term 1.8978 0.7690 2.468 0.0155
Proportion of Vote for Independence -9.3991 0.8287 -11.342 ≪ 0.0001

Table 7.3: Results table for the South Sudan referendum. The results are in logit units.
Note the high level of statistical significance in the effect of the proportion of the vote in
favor of independence. This is very indicative of a lack of fairness in the election.

Question

How will removing these counties affect the conclusions drawn?

To easily do this in R, we can use the which function, which returns which entries
have the provided condition. Thus,

dr = which(xsd$Invalid==0)

returns a vector of values
{
15,19,23,24,28,46,47,49,50,57,72,73

}
. These numbers

correspond to the counties that had zero invalid votes cast. Storing this vector in the
variable dr allows us to remove those counties from any subsequent calculations.
As such, our proportion calculations are:

p.ind = xsd$Secession[-dr]/xsd$Votes[-dr]
p.inv = xsd$Invalid[-dr]/xsd$Votes[-dr]

The negative signs tells R to return values in the vector other than these entries.

And so, the two lines to transform the dependent variable and fit the OLS
model are

l.inv = logit(p.inv)
model.xsd = lm(l.inv ∼ p.ind)

The results of the linear regression on the transformed dependent variable are given
in Table 7.3. There is a very strong relationship between the proportion of the vote
invalidated in the county and the proportion of the vote in favor of secession: Those
counties with a greater proportion of people voting for independence also had a
lower proportion of the vote invalidated. That there is a strong relationship between
these two variables is troubling.
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To make this relationship more obvious, and to make our point stronger, we
can plot the data, the prediction curve, and the 95% Working-Hotelling confidence
bands on the same plot.

Note: What confidence intervals are to univariate data, confidence bands are
to bivariate data. We briefly saw the Working-Hotelling confidence bands in
Section 4.4.

7.2.1 The Graphing Philosophy of R In R, the philosophy behind graphing us-
ing base graphics is to start with a fresh plot and paint successive layers on top of
it. This allows us to create graphs that tell the story and to do so easily. To make the
graph described above, we need to

1. Plot the points (displayed in proportion units),

2. Plot the prediction curve (displayed in proportion units, but calculated in
logit units),

3. Plot the 95% confidence bands (displayed in proportion units, but calculated
in logit units).

The first step has been done already (Figure 7.6).

The second step requires the repeated use of the predict function. First,
to make things easier, let us define newX as a series of “proportion of vote in favor
of independence” values for which we want to make predictions: newX = seq(0,
1, length=1e4). This creates a vector containing 10,000 values equally spaced
between 0 and 1.

With this, our predict statement will be

l.pred = predict(model.xsd,
newdata=data.frame(p.ind=newX),
se.fit=TRUE)

Note: The se.fit=TRUE parameter, which calculates the standard error of
the fit at that x-value, will be important for calculating the confidence bands.
This is just a courtesy from R, as we know how to calculate this value from
Theorem 4.3.

Remember that these predictions are in logit units. To get them into level units, we
just apply the logistic function to these point predictions:
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p.pred = logistic(l.pred$fit)

Note: The $fit selects only the fitted predictions from the l.pred variable.
This is necessary as we are also using the se.fit=TRUE parameter.

Now that we have the predictions in the original units, we merely paint it on the
current plot (from Step 1):

lines(newX, p.pred)

The third step requires us to calculate the 95% confidence bands and paint them
on the plot as well. For want of better estimates, let us use the Working-Hotelling
bands (Section 4.4). The formula to calculate the upper 95% confidence bands is

ucb.l = l.pred$fit+W*l.pred$se.fit

the lower,

lcb.l = l.pred$fit-W*l.pred$se.fit
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Figure 7.7: A plot of the results of the South Sudan referendum. Included are the pre-
diction line (in black) and the 95% confidence bands (in grey). Note that a horizontal
line cannot fit between the confidence bands. This indicates a statistically significant re-
lationship between the proportion of the votes invalidated and the proportion of the votes
in favor of independence. This, in turn, supports the conclusion of an unfair election.

Here, W =
√

2 F(1−α,2,n− 2) , which translates to

W = sqrt( 2 * qf(1-0.05, 2, n-2) )

Note: The form of these formulas should look vaguely familiar. They are of
the same form as when we calculated the upper and lower limits for Normal
confidence intervals,

u = x + 1.96sx and l = x − 1.96sx

The W distributional multiplier comes from Working-Hotelling (1929) and
its Scheffé extension (1959).

Once again, we must back-transform these two variables using the logistic function.
So, our final confidence bands are

ucb = logistic(ucb.l)
lcb = logistic(lcb.l)

Finally, we paint this on the current plot with
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lines(newX, ucb, col="grey")
lines(newX, lcb, col="grey")

Putting all this together gives us Figure 7.7. Note that the predictions are curved
in these units; they are straight in logit units. Also note the confidence bands are
wider where the value of x is farther from x (Theorem 4.3). Lastly, note that no
horizontal line can fit between the two confidence bands. This illustrates that there
is a statistically significant relationship between the two variables at the α = 0.05
level.

Question

This illustrates that there is a statistically significant relationship between
the two variables at the α = 0.05 level. (Why?)

Note that the figure gives the same information as Table 7.3 The difference is that
the graphic tells a clear story. Graphs usually make the points more manifest.
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7.3: Heteroskedastic Adjustments

The above transformations also work well on fixing problems with heteroskedastic-
ity and non-Normality. Unfortunately, if you perform an appropriate transforma-
tion to fix the problem with model fit, further transformations to fix heteroskedas-
ticity may end up creating a new problem with model fit.

Thus, it may happen that you cannot find a way of fixing the heteroskedas-
ticity without breaking something else. In such cases, we can adjust the standard
errors using a technique introduced by White in 1980.

Recall from ordinary least squares estimation (page 48) that our estimator
for B is

b = (X′X)−1 X′Y (7.14)

From this we showed in Theorem 3.1.3 that this estimator was unbiased; that is,
E [b] = B. In Theorem 3.1.3, we also calculated the variance of the estimator as

V [b] = σ2 (X′X)−1 (7.15)

That result, however, required that V [Y] = σ2I. This is the assumption of homoske-
dasticity (Section 3.1.2). Under heteroskedasticity, V [Y] cannot be reduced. This
leaves the variance of our OLS estimators as

V [b] = (X′X)−1 X′ V [Y | X] X (X′X)−1 (7.16)

So, to better estimate V [b], we need to estimate V [Y | X] from the data. (Everything
else in Equation 7.16 is known.) How do we estimate V [Y | X] from the data? We
recall that V [Y | X] = V [E]. Thus, we estimate V [Y] from the residuals, specifically
from how large each residual is. If the ith residual is large, then the value of V [Yi]
will be large; if ei is small, then V [Yi] will be small.

Note: The Huber-White Sandwich Estimator makes adjustments for hetero-
skedasticity. These adjustments, however, are based on the data, which are
random. Including this new source of randomness affects all confidence in-
tervals and needs to be acknowledged.

It seems to me that it would be easier to create an entirely new esti-
mation method than to just pile on adjustment after adjustment on OLS. This
is, in fact, where we are headed in this book.
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Estimate Std. Error t-value p-value

Constant term 1.8978 0.6704 2.831 0.0045
Proportion of Vote for Independence -9.3991 0.7420 -12.667 ≪ 0.0001

Table 7.4: Results table for the South Sudan referendum using White (heteroskedastic-
consistent) standard errors. Compare this to Table 7.3. The results are in logit units. Note
the high level of statistical significance in the effect of the proportion of the vote in favor
of independence. This is very indicative of a lack of fairness in the election.

7.3.1 Having R Do This for Us Instead of performing the above calculations by
hand, we can have R do the adjustments for us. That helps with the accuracy and
precision. The summaryHCE function in the RFS package provides the adjustment
and presents it in the form of our usual regression table.

Example 7

To illustrate the operation of the summaryHCE function, let us calculate the
White-adjusted standard errors for the South Sudanese model above.

Solution: We have already calculated the regression table for the logit model (Ta-
ble 7.3). From looking at the graphic, it seems as though there may be heteroskedas-
ticity. There appears to be a lot more variation in the invalidation rate for smaller
values of secession support than for larger values of secession support.

Running the following adjusts the standard errors to reflect the observed
heteroskedasticity.

summaryHCE(model.xsd)

The heteroskedasticity-adjusted regression table is given in Table 7.4. Note that the
estimates remain the same. That is because heteroskedasticity does not affect the
estimates. The only changes are in the standard errors (and the test statistics and
the p-values). ♦

Notice that adjusting the standard errors is rather easy using R. It is just a single
line. Also notice that we did not model the heteroskedasticity, we merely adjusted
for it.

At some level, it is unsettling to adjust for model weaknesses. It is a strong
model that does not need fixes. Thus, if you can avoid using these Huber-White
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standard errors, I recommend it strongly. Heteroskedasticity is an important part of
the data/model. It seems sinful to ignore it.apple

7.4: Conclusion

In this chapter, we focused on transforming bounded variables so that they did not
violate the Normality assumptions as strongly as they did without the transforma-
tion. To accomplish this, we noted that there are three basic types of continuous
variables: unbounded, bounded on one side, and bounded on two sides. If the
dependent variable is unbounded, we do not necessarily need to transform it (al-
though some transforms may reduce the non-Normality of the residuals). If the
variable is bounded on one side, we performed an algebraic transformation so that
it is bounded below by zero, then applied a log transformation. If the variable is
bounded on two sides, we performed an algebraic transformation so that it was
bounded by 0 and 1, then applied a logit transformation.

In either case, we needed to ensure that we back-transformed to the original
units, first using an exponential or a logistic back-transform, then the inverse of our
algebraic transform — order matters.

While this chapter does not exactly mark the end of continuous dependent
variables, it does end our view of them in terms of the Classical Linear Model (CLM).
This chapter already shows why the CLM needs to be replaced. Here, we were able
to stay within the framework, but we had to perform variable transformations to
make it work. Once we stray from continuous data, the CLM cannot work; there is
no way of transforming a discrete dependent variable into a Normally distributed
random variable. As such, we need an new paradigm — Generalized Linear Models
(GLMs). The next chapter introduces GLMs, while still using a continuous depen-
dent variable. This is done to show that GLMs can do anything CLMs can do. In
fact, if you had used the glm function in this and the previous chapter, in lieu of the
lm function, the results would be exactly the same, only the table layout would be
different.
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7.5: End-of-Chapter Materials

7.5.1 R Functions In this chapter, we were introduced to several R functions
that will be useful in the future. These are listed here.

Packages:

RFS This package does not yet exist. It is a package that adds much general func-
tionality to R. In lieu of using library(RFS) to access these functions, run
the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Statistics:

lm(formula) This function performs linear modeling on the data, with the supplied
formula. As there is much information contained in this function, you will
want to save the results in a variable, to retrieve the information through the
summary and names functions.

predict(model) The predict function calculates the value of the dependent vari-
able in the model given the independent variables used to create the model.
If new predictions are required, the newdata= parameter must be used. This
parameter takes a new set of data as its argument. Make sure that all inde-
pendent variables used in the model are defined in the newdata= parameter.
If not, an error message will results. Finally, the se.fit=TRUE parameter
calculates the standard error at each prediction point.

summaryHCE(model) This function, a part of the RFS package, allows us to easily
calculate the heteroskedastic-consistent standard errors (White 1980).

Probability:

pnorm(x) This function is the cumulative distribution function (CDF) for the Nor-
mal distribution. It returns a probability that a Normally-distributed variable
will be less than or equal to x. This function has two additional parameters
that remove the requirement that x has undergone the z-transformation, m
and s.

rnorm(n, m, s) This function returns n draws from a Normal distribution centered
at m and with a standard deviation s. This function is the cornerstone of much
Monte Carlo analysis.
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Graphics:

lines(x,y) This is an extremely handy line-generating function, painting a line on
the current plot (or returns an error if no plot exists). It first invisibly plots
the pairs of points (x,y) then connects the points with drawn line segments.

If the col parameter is not set, then the line will be black. Otherwise, the line
will be the color specified. There are three ways of stating the color: using the
Windows 1-16 values, using names, and using the rgb values. The following
all refer to ‘red’: col=2, col="red", and col="#ff0000".

plot() This function produces a scatterplot of the two-dimensional data. The call
can be either plot(x,y) or plot(y∼x); both give identical results. This
function can produce graphs that are very customized. The R help file for par
is invaluable. Some important parameters include xlab="" (label for the x-
axis), ylab="" (label for the y-axis), xlim=c(min,max) and ylim=c(min,max)
(axis limits, min and max, for the x- and y-axis), and las=1 (makes axis values
painted horizontal).

Mathematics:

log(x, b) This returns the logarithm of x, with a base of b. If you omit the b,
this function returns the natural logarithm of x. To calculate the common
logarithm, set b=10. The logarithm function is used to transform variables
bounded on one side into variables bounded on neither side.

exp(x) This function returns the exponential of the argument, x; that is, it returns
ex. The exponential function is the inverse of the logarithm function.

logit(x) This function returns the logit of the provided number. This number must
be between 0 and 1, not including either 0 or 1. The logit function is fre-
quently used to transform proportions into unbounded data. It is available
through the RFS package.

logistic(x) This function returns the logistic of a given number. The range of the
logistic function is 0 to 1, exclusive. it is the inverse of the logit function. As
such, it is often used to transform predictions from logit units to proportion
units. It is available through the RFS package.

cloglog(x) The complementary log-log function is a second appropriate transfor-
mation for proportion data. It is, however, not a symmetric function. It is
available through the RFS package.

cloglog.inv(x) This function is the inverse of the complementary log-log function.
It is available through the RFS package.
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Programming:

which(condition) This function returns a vector of indices corresponding to the
original vector’s values meeting the criteria. Thus, which(x==4) returns the
indices of all elements in vector x that equal 4. Note that equality is checked
with a double equals, ==. Other comparisons include: >, <, >=, <=, !=, &, |,
and !. The last four are ‘not equal to’, ‘and’, ‘or’, and ‘not’.
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7.5.2 Exercises This section offers suggestions on things you can practice from
this chapter.

1. Predict the Venkovský 1994 cow ballot measure vote using the transformed
vote model. Is this prediction physically possible?

2. Determine a 95% confidence interval, with the untransformed cow vote model,
for predicting Děčı́n’s vote. Is the actual outcome within the 95% confidence
interval?

3. Determine a 95% confidence interval, with the transformed cow vote model,
for predicting Děčı́n’s vote. Is the actual outcome within the 95% confidence
interval?

4. Determine if the assumptions of OLS are violated in the transformed cow vote
model.

5. The actual vote share for Děčı́n was 52.8%. Explain why both models failed
in predicting the actual vote outcome. How bad was the error? What can be
done to improve the predictions?

6. The logit transformation is not the only possible choice. There is also the
asymmetric complementary log-log transformation (cloglog in the RFS pack-
age). Use this function as the transformation to predict Děčı́n’s vote, its 95%
confidence interval, and the probability of the cow ballot measure passing.
The inverse of the complementary log-log transform has no name, but the R
function is cloglog.inv, also in the RFS package.

7. Estimate the GDP per capita for Papua New Guinea using the untransformed
model, as well as the 95% confidence interval. How close is this estimate to the
real answer, and it the real answer within the predicted confidence interval?
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Chapter 8:

OtherLeastSquares

Overview:

In Chapter 5, we examined the three assumptions and
how to check that they are not violated by your model.
In the previous chapter, we saw how to fix our model to
handle some of those violations. We were left, however,
with some violations we could not fix.

In this chapter, we jettison ordinary least squares
regression and examine other types of regressions that
rely on minimizing the sum of squared residuals. Each
of these techniques allows you to specify a different co-
variance matrix. The requirement is that you actually
know its structure without having to estimate it.

Forsberg, Ole J. (10 DEC 2024). “Other Least Squares.” In Lin-
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❧ ❧ ❧

In the past several chapters, we have examined the classical linear model (CLM) and
how to estimate the parameters using ordinary least squares (OLS). That introduc-
tion came in Chapters 2, 3 and 4. In Chapter 5, we discovered how to check the
requirements (assumptions) of the ordinary least squares method. Chapter 7 gave
us some options for dealing with violations of the requirements.

However, it may be that those fixes do not fully succeed — or cannot fully
succeed. This chapter provides two estimation methods that offer advantages over
ordinary least squares, as long as you have sufficient knowledge (science) of the
structure of the problem — also known as the data-generation process.

This chapter reintroduces ordinary least squares. It then focuses on the co-
variance matrix of the residuals. As we reduce requirements on that matrix, we move
from ordinary least squares to weighted least squares to generalized least squares.
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8.1: Ordinary Least Squares

First, let us review ordinary least squares (OLS). When formulating OLS estimation
of the classical linear model (CLM), we made the assumption that the residuals are
independent and identically distributed Normal with constant zero expected value
and variance.

In symbols, this is written as either

εi
iid∼ N

(
0; σ2

)
(8.1)

or as

E ∼ Nn
(
0; σ2I

)
(8.2)

The two statements are different ways of saying the exact same thing.

Note that the covariance matrix of E is σ2I:

V [E] = σ2



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 0
...

...
. . .

...
0 0 0 · · · 1


=



σ2 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ2 0
...

...
. . .

...
0 0 0 · · · σ2


(8.3)

The values along the diagonal represent the variances of each residual in the popula-
tion. That they are the same value, σ2, indicates that the variance of the residuals is
constant. homoskedastic

The values off the diagonal represent the covariance between the residuals.
For instance, the value at position 1,2 is the covariance between ε1 and ε2, which we
symbolized as σ1,2 in Appendix S. Since that value is 0, we are specifying that the
two are linearly uncorrelated (a.k.a. independent). independent

Thus, the covariance matrix above specifies that the variances of the resid-
uals are constant and that the residuals are independent of each other. If this re-
quirement is met, then we should use ordinary least squares regression. However,
not always is this requirement met. foreshadowing
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8.2: Weighted Least Squares

It may be that the residuals are independent, but that their variance is known to not
be constant. That is, we may have a model that leads to this assumption:

εi
ind∼ N

(
0; σ2

i

)
(8.4)

or as

E ∼ Nn
(
0; σ2D

)
(8.5)

Here, D is a diagonal matrix. Again, the two statements are different ways of saying
the same thing.

Note that the covariance matrix of this E is

V [E] = σ2



d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 0
...

...
. . .

...
0 0 0 · · · dn


=



σ2
1 0 0 · · · 0

0 σ2
2 0 · · · 0

0 0 σ2
3 0

...
...

. . .
...

0 0 0 · · · σ2
n


(8.6)

The values along the diagonal represent the variances of each residual (in the pop-
ulation). That they are not necessarily the same value indicates that the variance of
the residuals can differ from observation to observation.heteroskedastic

The values off the diagonal represent the covariance between the values of
the residuals. So, the value at position 1,2 is the covariance between ε1 and ε2, which
we symbolized as σ1,2 in Appendix S (note that these are population values). Since
σ1,2 = 0, we are specifying that the two residuals are linearly uncorrelated in the
population.independent

Note: Remember that Greek letters refer to the population, while Latin refer
to the sample (usually).

Thus, the covariance matrix above specifies that the variances of the residuals are
allowed to be different and that the residuals are independent of each other.

This assumption is the only difference between weighted least squares and
ordinary least squares. But, it is a rather significant difference.

Note: Remember that the value of σ2 can indicate the variance of the popu-
lation residuals or our uncertainty in the value of that residual.
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To use weighted least squares (WLS), we need to know the structure of the D matrix.
We do not need to know the exact values, but we need to know them up to a constant
multiplier. That is, we need to know the structure of that heteroskedasticity. This
usually comes from understanding the data-generating process.

Frequently, this is not known (thus, WLS should probably not be used). How-
ever, there are some cases when we would know this structure. For instance, if we
are working with a response variable that is a proportion arising from a binomially-
distributed variable, we know that the variance is

σ2
i =

π(1−π)
ni

= π(1−π)
1
ni

(8.7)

Thus, the diagonal elements will be di = 1/ni and the multiplier (constant part) will
be π(1−π).

8.2.1 Fitting WLS: The Mathematics Assuming we know the structure of the
D matrix, we can determine all we need to about the WLS estimators and estimates.
We just reduce this problem to a previous problem.

To clarify the similarities and differences between ordinary and weighted
least squares, here is the classical linear model (CLM) for ordinary least squares:

Y = XB + E (8.8)

and for weighted least squares:

Y = XB + E (8.9)
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Those are the same, whether one does OLS or WLS, because both come from the fact
you are using the classical linear model. The difference comes in the assumption.CLM
Here is the assumption for OLS:

E ∼ Nn
(
0; σ2I

)
(8.10)

Here is the assumption for WLS:

E ∼ Nn
(
0; σ2D

)
(8.11)

Remember that D is a diagonal matrix.

The Transformation: There is a joke about how a mathematician solved the prob-
lem of a hose connected to a fire hydrant:

A mathematician and a physicist were asked the following question:

Suppose you walked by a burning house and saw a hydrant and a hose
not connected to the hydrant. What would you do?
P: I would attach the hose to the hydrant, turn on the water, and put out
the fire.
M: I would attach the hose to the hydrant, turn on the water, and put
out the fire.

Then they were asked this question:

Suppose you walked by a house and saw a hose connected to a hydrant.
What would you do?
P: I would keep walking, as there is no problem to solve.
M: I would disconnect the hose from the hydrant and set the house on
fire, reducing the problem to a previously solved form.

And so, in the spirit of mathematicians, let us reduce the weighted least squares
problem to that of ordinary least squares. If we can do this via a bijective transfor-
mation, then we have our confidence intervals and test statistics.

If we define our weighting matrix W = D−1/2, then our problem is solved,Talking
Heads sans burning down the house.
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Theorem 8.2.1

Let E ∼ Nn
(
0, σ2D

)
. If we define W = D−1/2, then

WE ∼ Nn
(
0, σ2I

)

Proof. Since W is a diagonal matrix and E has a Normal distribution, WE will also
follow a Normal distribution. Thus, we need to calculate E [WE] and V [WE]. In
doing this, note that W is not a random matrix; it is known.

The expected value of WE is

E [WE] = W E [E] (8.12)

= W 0 (8.13)

= 0 (8.14)

For the variance we have

V [WE] = W V [E] W′ (8.15)

= W σ2D W′ (8.16)

= σ2 D W W′ (8.17)

= σ2 D D−1/2
(
D−1/2

)′
(8.18)

= σ2 D D−1/2 D−1/2 (8.19)

= σ2 D D−1 (8.20)

= σ2 I (8.21)

In these steps, remember that matrix multiplication is commutative if the matrices
are diagonal (Theorem M.3.3).

Thus, putting these three parts together gives our conclusion.
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How do we use this theorem? We pre-multiply the model equation by the matrix W
to obtain the following:

Y = XB + E (8.22)

WY = WXB + WE (8.23)

Now, redefine the parts to see how useful this result is

Y∗ = X∗B + E∗ (8.24)

with E∗ ∼ Nn
(
0, σ2I

)
from Theorem 8.2.1. Thus, we can apply all of our OLS re-

sults to WLS, as long as we speak to the transformed response variable WY and the
transformed independent variable(s) WX.

This quickly leads to our weighted least squares estimators of B.

To prove this, we could proceed as we did back in Section 3.1 (page 46). Or, since we
have reduced the WLS problem to an OLS problem, we can just write out the results
and simplify:

bWLS = (X∗′X∗)−1 X∗′Y∗ (8.25)

= ((WX)′WX)−1 WX′WY (8.26)

= (X′W′WX)−1 X′W′WY (8.27)

=
(
X′D−1X

)−1
X′D−1Y (8.28)

It also quickly leads to showing that the WLS estimator is unbiased for B:

Theorem 8.2.2

Under the assumptions of weighted least squares, the WLS estimator for B is
unbiased.

Proof. I am tempted to give this to you as an exercise, but let’s see how to prove it.

E [bWLS ] = E

[(
X′D−1X

)−1
X′D−1Y

]
(8.29)
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Remember that the D matrix is known, is not a random variable.

=
(
X′D−1X

)−1
X′D−1

E [Y] (8.30)

Since WY = WXB + WE, and since W and D are invertible (why?), we have

=
(
X′D−1X

)−1
X′D−1XB (8.31)

= B (8.32)

Thus, the WLS estimator is unbiased if D is invertible and if D is known (non- exercise
stochastic). I will leave it as an exercise for you to prove this theorem if D is a
random variable independent of X.

Theorem 8.2.3

Under the assumptions of weighted least squares, the variance of the WLS
estimator for B is

V [bWLS ] = σ2
(
X′D−1X

)−1
(8.33)

Proof. There should be no surprises with this proof. All you have to do is figure out exercise
what is a random variable and what is not. As such, I leave it as an exercise for you.

So very generous of me. =)
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Note that the WLS estimator of B is a linear combination of independent Normal
random variables. With that final observation, we have the distribution of the WLS
estimator of B:

bWLS ∼ N
(
B, σ2

(
X′D−1X

)−1
)

(8.34)

Note: We again note that the individual estimators are not independent of
each other under typical circumstances. We also note that the confidenceexercises
intervals for the estimators, estimates of y, etc. can easily be determined in
the WLS realm. Nothing new is here, only the mathematics is a bit more
involved.

8.2.2 The Real Question Weighted least squares takes care of the problem of
heteroskedasticity in our data without introducing any major change in our model-
ing process or understanding. It just requires that we determine W and transform
our dependent and independent variables by premultiplying by that weighting ma-
trix.

Question

How do we obtain that weighting matrix?

The best way of obtaining it is through theory. The second best way is to utilize the
hat matrix, H.

Theory: Frequently, knowledge of the problem suggests the weighting matrix. Re-
call that the V [E] covariance matrix measures our uncertainty in the residuals. If
that uncertainty is known by the way the experiment is constructed, then W can be
determined.

For instance, if the dependent variable is the result of a Binomial experiment,
perhaps it is the number of successes out of a given number of trials (which may
change), then the weighting matrix is just a diagonal matrix of the square root of
trial sizes.

Why? Recall that the variance of a binomially-distributed random variable
is σ2 = π(1−π)

N . The π are the unknown (constant) population proportion. The Ni
is the (known) size within group i. The population parameter is assumed constant.
The sample size is measurable.
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This leads to the D matrix being of the form

D =



1/N1 0 0 · · · 0
0 1/N2 0 · · · 0
0 0 1/N3 0
...

...
. . .

...
0 0 0 · · · 1/Nn


(8.35)

The Hat Matrix: When we do not have the theory to know the structure of the D
matrix, one may want to use the hat matrix to give us a hint about its structure.

�Warning: Make no mistake. This process is not mathematically correct and perfect. . . but
what statistics procedure is? Statistics stands astride the real and the ideal, trying to get
as much information about the real while acknowledging its limitations.

Remembering Chapter 5, not all violations affect inferences the same. Perhaps
a good thing for you to do is to use the processes of Chapter 5 to see how much using
the hat matrix in lieu of a theoretically-driven D matrix affects the estimates, confidence
intervals, and p-values.
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Let us use the symbol e to represent the observed residuals. Until this point, we
have only been working with the theoretical residuals, E. The conceptual difference
between the two is really just the difference between the population (theoretical)
and the sample (observations). In effect, the difference is in terms of the variances.

Question

What is the variance of e?

Theorem 8.2.4

The variance of e is V [e] = σ2(I−H).

Proof.

V [e] = V [(I−H)Y] (8.36)

= (I−H)V [Y] (I−H)′ (8.37)

= (I−H)σ2I(I−H) (8.38)

= σ2(I−H) (8.39)

So, that was totes cool. What was its purpose? What does it mean?

Remember how we can interpret that variance. It is either the variance of
a gazillion observed residuals, or we can see it as the uncertainty inherent in the
measured residual.uncertainty

For example, the inherent uncertainty in the first residual can be estimated
as

s1,1 = MSE
(
1− h1,1

)
(8.40)

Here, h1,1 is the first element of the diagonal of the hat matrix.

That means, those diagonal elements of I −H indicate (or are estimates of)
the precision of the y estimate for a given value of x. An estimate of the structure ofprecision
the D matrix is just the diagonal of the I−H matrix.
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Note: The problem is that weighted least squares requires us to know the
D matrix, not that we estimate it from the data. This explains why the hat
matrix technique is used only until something better comes along.

It does work nicely, but we statisticians like to “see the math” — some-
times. Also, if we are trying to draw important conclusions, using approx-
imate methods tends to undercut the conclusions for many, especially for
those who do not really understand statistics.

Question

What do the off-diagonal elements of I−H estimate?
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8.3: Generalized Least Squares

Both ordinary least squares and weighted least squares requires the errors be in-
dependent. Reality does not always meet this requirement. If the dependent vari-
able consists of repeated measures on one unit over time, such as in modeling stock
prices, it is quite likely that the residuals will be correlated. Also, if the dependent
variable is measured on geographic structure, such as states in a country or trees in
a forest, it is also likely that errors of near units are correlated.

In such examples, the covariance matrix of E will not be diagonal. Thank-
fully, it is a covariance matrix, and therefore positive definite under the usual as-
sumption of no multi-colinearity (Appendix M, Section M.5.1). Since it is positive
definite, it is invertible. Thus, we can do a trick not unlike what we did for weighted
least squares.

For a reminder, here are the model equations for ordinary, weighted, and
general least squares:

Ordinary Least Squares Y = XB + E

Weighted Least Squares Y = XB + E

General Least Squares Y = XB + E

They sure do look similar. That’s because this is the classical linear model (CLM).
The requirements on the residuals differs, however:

Ordinary Least Squares E ∼ N
(
0; σ2I

)
Weighted Least Squares E ∼ N

(
0; σ2D

)
General Least Squares E ∼ N (0; Σ/Σ/Σ/ )

For ordinary least squares, the covariance matrix of the residuals is a constant mul-
tiple of the identity matrix, I. This indicates the residuals are independent and have
the same variance (uncertainty). For weighted least squares, the covariance matrix
of the residuals is a constant multiple of a diagonal matrix, D. This indicates the
residuals are independent, but possibly with unequal variances.

For generalized least squares (GLS), the covariance matrix is (a constant mul-
tiple of) a symmetric, positive definite matrix, Σ/Σ/Σ/ . This indicates the residuals are
possibly correlated and with possibly unequal variances.

As with weighted least squares, you do need to know the structure of the
covariance matrix. This requirement is sometimes met by the structure of the prob-
lem. The following are two examples showing how one can determine the Σ/Σ/Σ/ matrix.
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An understanding of these examples is not needed. They are here only to illustrate
that there are times Σ/Σ/Σ/ can be determined from the problem.

8.3.1 Time Series Issues When data are collected on a single unit over time, the
measurements will tend to be correlated. For instance, the unemployment rate in
Ruritania over the past 20 years is 11.35, 11.41, 11.12, 11.08, 10.93, 10.86, 10.96,
11.05, 11.10, 10.87, 10.79, 10.76, 10.94, 10.94, 10.92, 11.01, 11.04, 11.16, 11.13, and
11.14.

Solution: Let us fit this using ordinary least squares regression, then examine the
residuals for autocorrelation (correlation between subsequent values).

unemp = c(11.35, 11.41, 11.12, 11.08, 10.93, 10.86, 10.96,
11.05, 11.10, 10.87, 10.79, 10.76, 10.94, 10.94, 10.92,
11.01, 11.04, 11.16, 11.13, 11.14)

year = 1:20

mod = lm(unemp ∼ year)
E = residuals(mod)

autocor.test(E)

Note the sample autocorrelation is 0.719 with a p-value of 0.0005 and a 95% con-
fidence interval from 0.393 to 0.884. The p-value indicates the autocorrelation is
not 0. The confidence interval indicates that the residuals are moderately-to-highly
correlated.

In other words, adjacent observations are not independent, as both ordinary
and weighted least squares require. Really, this makes sense because next year’s
unemployment rate will be heavily influenced by this year’s rate.
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There are many ways of modeling such a situation. One is called “Autoregressive-
1” or AR(1) or ARIMA(1,0,0). This model assumes that the primary correlation is
only directly between adjacent years. The covariance matrix, Σ/Σ/Σ/ , would have this
structure if the correlation between those adjacent years is ρ = 0.500:

Σ/Σ/Σ/ = σ2



1 0.5 0.25 0.125 · · ·
0.5 1 0.5 0.25 · · ·

0.25 0.5 1 0.5 · · ·
0.125 0.25 0.5 1
...

...
...

...
. . .

1


(8.41)

You can get this particular matrix using this R code:

Sigma = diag(20)
Sigma = 0.5ˆabs(row(Sigma)-col(Sigma))

Note that the matrix has 1s along the diagonal and higher powers of 0.5 farther from
the diagonal. The zeroes arise from the fact that the matrix is 20 × 20; that is, e.g.,
the entry in cell (1,20) is actually 0.5019 ≈ 0. ♦

Note: Again, this was just an example to show that the structure of Σ/Σ/Σ/ can be
determined from some problems. There are entire sub-disciplines of statis-
tics that examine such serial correlation. This sub-discipline is called “time
series.”
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Figure 8.1: A map showing the administrative divisions (kraj) or the Kingdom of Ruri-
tania. For this example, note that no kraj abuts all other kraj.

8.3.2 Geographic Issues When data are collected from geographical units, such
as neighborhoods, counties, or states, the residuals may be spatially correlated. This
is a violation of the independence assumption of ordinary least squares.

How that geographic correlation is modeled is up to the expert (researcher).
The subject of spatial modeling is extensive and quite interesting. . . and impor-
tant. It can, with appropriate matrices, be extended to modeling three-dimensional
spatial correlation over time. If you have the opportunity, I suggest studying this
topic (Bivand, Pebesma, and Gómez-Rubio 2013, Blangiardo and Cameletti 2013,
Sen 2016). If nothing else, it leads to fun maps!

Figure 8.1 is a map of Ruritania showing the nine Kraj. Note that some kraj
abut some kraj but not others. For instance, region CS does not touch region CC.

If we are trying to model the spread of something (disease, unemployment,
wealth), we may decide to take into consideration the fact that some units neigh-
bor others. Thus, from the map above, we know there is a first-level transmission
between CS and CD but not between CS and CF.

Example 1

Geographical Data Let us determine a matrix describing the adjacencies for
the nine kraj.
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Solution: Check that the following is the adjacency matrix for Ruritania1

Σ/Σ/Σ/ =



1 1 0 0 0 0 0 0 1
1 1 0 1 1 1 0 1 1
0 0 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0
0 1 0 1 1 1 1 0 0
0 1 1 0 1 1 1 0 1
0 0 0 0 1 1 1 0 0
0 1 0 1 0 0 0 1 0
1 1 1 0 0 1 0 0 1


(8.42)

It is important to ensure the kraj order for the columns is the same as for the rows.
The kraj ordering is: CA, CB, CC, CD, CF, CI, CM, CS, CSM. ♦

Note that the adjacency matrix is symmetric. Why will this matrix always be sym-
metric, regardless of the map? Now, that we know Σ/Σ/Σ/ is symmetric, we can use thesymmetry
discussion following Lemma M.10 to conclude that Σ/Σ/Σ/ is positive definite, which in-
dicates it is allowable as a covariance matrix.

Note: We do not know the constant multiplier, σ2. No probs. We only need
to know the structure of the covariance matrix. We use the data to estimate
the constant multiplier σ2.

Also, note that the analysis based on this covariance structure is only as good as our
assumption that the contagion spreads through touch. If it spreads based on some
sort of distance, then the Σ/Σ/Σ/ is not correct and we will need to create an appropriate
covariance matrix given our scientific understanding. . . if such exists.

Finally, let me reiterate a point I made above. The purpose of this exam-
ple is only to illustrate that these covariance structures can be determined from the
problem without resorting to estimating them from the data.

Note: However, there is a lesson for all of us here. If we do not know the
correct structure of the correlation matrix, then we should use several and
see how sensitive our estimates, confidence intervals, and p-values are to that
matrix. The results may be very sensitive, which is not a good position to be
in, especially if we do not know the right mode of transmission.

1One area of geographical analysis tries to decide what adjacency rules are appropriate for
a given research question. This example uses a simple 0-1 scheme. Other schemes include
distances (measured in some manner).
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If the estimates, etc. are not sensitive to our choice of covariance ma-
trix, then we need not be as concerned.

The rule is to explore all models that make sense and see how impor-
tant our assumptions are to our results.

8.3.3 One More Note Above, we have only focused on being able to determine
the structure of the covariance matrix (at least to a scalar multiple). There is one
more thing that we need to pay attention to: What is the square root of Σ/Σ/Σ/?

When we introduced D1/2 in Section 8.2, we knew we could calculate it.
After all, one square root for a diagonal matrix would be[

D1/2
]
i,j

= d1/2
i,j (8.43)

That is, the elements of the square root matrix are the square root of the entries of
the matrix. This shortcut works because D is diagonal.

In general, Σ/Σ/Σ/ does not have to have a well-defined square root. Some do, but
some do not. Without Σ/Σ/Σ/1/2, calculating the GLS estimates is not possible using this
method.

Sadness abounds.
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8.4: Full Example: May the (Strong) Force be with You

Ruritania is a patron of high-energy physics — and of Star Wars enthusiasts. King
Rudolph donated several million crowns to Switzerland to aid in researching the
strong force.

That money was used at CERN (the Conseil Européen pour la Recherche Nucléaire)
for several experiments. Each experiment consisted of a beam of protons crashing
into a target. That beam had a constant energy level. What changed were the target
sizes and the energy level of the proton after the collision. Many experiments were
run at each energy level, and the standard deviation of the energies was measured.

In a theory proposed by Ruritanian scientists that is not entirely clear to His
Majesty (or to your author), there should be a linear relationship between the cross
sectional area and the inverse of the energy. The data are given in Table 8.1.

The first column is the value of the independent variable. The second column
is the mean of the energy level of the photon after the collision. The third column is
the standard deviation in those energy levels. Note that the variability at each cross-
section differs. This is based on both the number of experiments and the inherent
variability at that area.

Cross Section [b] Energy [MeV] St. Dev. [MeV]

1 848.9 7.8
2 476.9 9.2
3 350.9 9.4
4 289.2 10.2
5 251.7 7.4
6 225.8 9.3
7 209.7 7.2
8 193.9 5.3

Table 8.1: Data for the example regarding the strong nuclear force. Units are given in
brackets.
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8.4.1 Ordinary Least Squares Let us ignore the different uncertainties in each
energy level (the standard deviations). That is, let us just fit this as an OLS model.

Here is the code:

barns = c(1,2,3,4,5,6,7,8)
energy = c(848.9,476.9,350.9,289.2,251.7,225.8,209.7,193.9)
Ibarns = 1/barns

modOLS = lm(energy ∼ Ibarns)
summary(modOLS)
confint(modOLS)

The output suggests that the relationship between the cross sectional area of the
target and the inverse of the resulting energy of the photon is statistically significant.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 101.9148 0.5464 186.5 1.60e-12 ***
Ibarns 747.5306 1.2505 597.8 1.48e-15 ***
---

Residual standard error: 0.9719 on 6 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 3.574e+05 on 1 and 6 DF, p-value: 1.479e-15

A 95% confidence interval for the relationship is from 744.5 to 750.6 (with units of
MeV·barn).
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8.4.2 Weighted Least Squares Note, however, that the uncertainty in the mea-
surements varies. We are more uncertain with some of our estimated energy than
with others. If we do not take this uncertainty into consideration, we may be bi-
asing our results. To include this information, we can use weighted least squares
regression.

The code to fit with weighted least regression is as follows:

barns = c(1,2,3,4,5,6,7,8)
energy = c(848.9,476.9,350.9,289.2,251.7,225.8,209.7,193.9)
stdev = c(7.8,9.2,9.4,10.2,7.4,9.3,7.2,5.3)
v = stdevˆ2

Ibarns = 1/barns

modWLS = lm(energy ∼ Ibarns, weight=1/v)
summary(modWLS)
confint(modWLS)

Note that we are 95% confident the effect of the target’s cross section on the resulting
energy is from 744.5 to 751.2 MeV·barn.

Note: In R, as in many statistical programs, the weights you provide in the
function call are inversely proportional to the variances. This is why we used
weight=1/v in the function call.

With that being said, always check the documentation to make dou-
bly sure. Frequently, this information is difficult to find and an error will not
be thrown to let you know.

How do we know this?

Or, an even better question:

Question

How do we check that the weights really are proportional to the inverse of
the variance?
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The short answer is to check your work “by hand.” As we once did OLS by hand
using the matrix functions in R, we can also do WLS by hand.

As always, make sure you know what each line does and why they are put
together as they are:

## The data
barns = c(1,2,3,4,5,6,7,8)
energy = c(848.9,476.9,350.9,289.2,251.7,225.8,209.7,193.9)
stdev = c(7.8,9.2,9.4,10.2,7.4,9.3,7.2,5.3)

## A few minor calculations
v = stdevˆ2
Ibarns = 1/barns
n = length(Ibarns)

## The needed matrices
Y = matrix(energy, ncol=1)
X = matrix( c(rep(1,n), Ibarns), ncol=2 )
colnames(X) = c("b0","b1")
D = diag(v)

## The estimate vector
solve(t(X) %*% solve(D) %*% X) %*% t(X) %*% solve(D) %*% Y

When I run this, I get the following output

[,1]
b0 101.6074
b1 747.8364

These are the matrix calculations according to Equation 8.28 on page 234. Thus,
this is the correct answer. Double-check that this known correct answer matches the
answer given in modWLS. If it does not, then you will need to change the expression
in the weights part of the function call. In R, it will match. In other pieces of
software, it may not. Be aware.

Note: The difference between the effects estimated from using ordinary least
squares and using weighted least squares is rather minor in this example. It
need not be, as the next example shows.
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8.5: Full Example: Elections in Ruritania

Even though it is an absolute monarchy, national elections are held in Ruritania
to elect members of the Ruritanian parliament, the Národnı́ Shromážděnı́ (National
Assembly). There are many parties represented in the parliament, but the party that
consistently receives a majority of the seats and votes is the monarchist Pohyb pro
Ruritánii (PR; Movement for Ruritania).

The main opposition party is the Demokratické Hnutı́ (DH; Democratic Move-
ment) party, but votes are also usually received by the Socialistická (SP; Socialist
Party), Křstanská Demokratická (KD, Christian Democratic), and Republikánská (RS,
Republican) parties.

It is fortuitous that Ruritania does not use computerized ballots. They use
ballot papers for the parliamentary election that consist of the party names, symbols,
and abbreviations. . . and a box for the voter to place their inked fingerprint next to
the party. After voting, the ballot is placed in a ballot box to await counting.

At the end of the evening, the ballot papers at each precinct are securely
transported to the division headquarters, where they are counted by electoral offi-
cials. Each ballot is checked by that official to ensure that it was lawfully cast and
that the “will of the voter” can be discerned.

When the division is finished counting the ballots, the totals are then tele-
phoned to the Independent Electoral Commission (Nezávislá Volebnı́ Komise, NVK)
in the capital. With much pomp and circumstance, and not a little fanfare, the divi-
sion totals are added and reported to the people.

After the last election, the exiles in Denmark claimed that the ballot boxes
were stuffed. That is, the ballot boxes had votes for the PR party in them before
voting began. Because guarantees of the secret ballot are built into the Ruritanian
Constitution, the ballot boxes are opaque.

In other words, direct evidence of ballot box stuffing does not exist, only
claims by those who live in exile in another country (Denmark). However, if ballot
box stuffing existed in this election to any great extent, it would leave evidence.
Why/how?

Question

What do stuffing ballots have that naturally cast ballots do not?

Easy: The stuffing ballots are all for the ruling PR party and they are all completed
(filled in) correctly. The naturally cast ballots will consist of votes for all parties and
will include ballots not filled-in correctly.
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And so, in the presence of systematic and significant ballot box stuffing, there
will be a relationship between the invalidation rate and the level of support for the
ruling party.

That is the theory. The exiles are paying for this analysis. We like the money,
so we need to be confident — and clear — in our conclusions. The NVK is providing
the official counts in the rur2013parl data file, so we need to ensure that the
statistical analysis is clean. That is, it is up to us to do the analysis correctly, neither
concluding too much nor too little.

And, as always, being clear in our reasoning.

8.5.1 Ordinary Least Squares The first analysis we will do is ordinary least
squares. The dependent variable is the invalidation rate; the independent variable
is the support for the Movement for Ruritania (PR) party. Why them? Since they
were in charge before the election, they were in position to stuff the ballot boxes.

Here is the code to load the data, create the variables, fit the model, and
determine if a relationship between the invalidation rate and PR support rate can be
detected.

votes=read.csv("http://rur.kvasaheim.com/data/rur2013parl.csv")
attach(votes)

Valid = Total-Invalid
pPR = PR/Valid
pInv = Invalid/Total

modOLS = lm(pInv ∼ pPR)
summary(modOLS)

These results indicate that we did not detect a relationship. . . at the α = 0.05 level
(p = 0.0668). Thus, ordinary least squares did not detect unfairness in the vote.

Note: It is important to emphasize here that the correct terminology is that
we did not detect unfairness. We cannot say there was no fairness. We can
only say we didn’t detect it.

Remember to check the assumptions. This point cannot be over-emphasized. If the
assumptions are not met, then the model is not correct. Well, not perfectly correct.
See Chapter 5 for a discussion of this point.
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8.5.2 Weighted Least Squares Note that ordinary least squares is not be the
best option here. The invalidation rate has greater inherent variability in smaller
divisions than in larger. We know this because of the distribution of the invalidation
rate. Invalidation counts follow something akin to a Binomial distribution. Its two
parameters are sample size (number of votes cast) and success probability (invalida-
tion rate). The variance of a Binomial random variable is nπ(1−π).

Dividing the invalidation count by the number of votes cast gives the inval-
idation rate. The distribution of the invalidation rate can be approximated with a
Normal distribution (see the Central Limit Theorem, Section S.6.4). The expected
value of the observed invalidation rate is π, the inherent invalidation rate. The vari-
ance is π(1−π)/n ∝ 1/n.

Because the data are heteroskedastic in nature, and because the structure of
the heteroskedasticity is known, weighted least squares will be more appropriate
here.

Here is the code. Compare it to the ordinary least squares code from above.

Valid = Total-Invalid
pPR = PR/Valid
pInv = Invalid/Total

modWLS = lm(pInv ∼ pPR, weights=Total)
summary(modWLS)

252



Figure 8.2: An invalidation plot for the 2013 Ruritanian parliamentary election. The
lines of best fit are provided. The OLS fit is in brown and the WLS is in red.

This produces the following (abbreviated) output:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.0726 0.7109 2.915 0.0225 *
pPR -2.8808 1.0124 -2.845 0.0249 *

Note that this method did detect a relationship between the invalidation rate and the
PR party support rate (p-value < 0.05 = α). Furthermore, that differential invalida-
tion helped the ruling party. The negative coefficient indicates that those kraj with
higher PR support also tended to count more of the votes (reject fewer). Thus, we
can conclude that the data are consistent with the exile claim of ballot box stuffing.
Figure 8.2 illustrates this.
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Question

How much is the differential invalidation?

Well, from the regression output, we know that when the support for PR increases
by 10 percentage points (from 65 to 75%, for instance), the invalidation drops by an
average of 27pp.

That seems rather substantial to me.

Note: Nothing in statistics ever constitutes proof. Nothing. Ever. Period. End
of thought. Žádné dalšı́!proof

Statistics only provides evidence in favor of — or against — the null
hypothesis. In this case, the p-value is 0.0249. If the null hypothesis is cor-
rect, then we would observed results this extreme or more so 2.49% of the
time. This is not too rare, especially when you realize you are claiming the
government cheated. Cheating is a more serious claim than just that someone
was mistaken.

It is always better to report the results, interpret the results, be explicit
that there is no proof and that the null hypothesis has a non-zero probability
of being reality.

Do not live your statistical life ruled by α = 0.05. Realize — and ac-
cept — that the p-value is a measure of how well the data support the null
hypothesis, the hypothesis of no relationship/difference/effect/evidence.
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8.6: Conclusion

In the previous chapters, we focused on ordinary least squares. This method re-
quired that the residuals were independent and identically distributed. From that
assumption, we were able to generate a series of rich conclusions.

However, it is not true that residuals are always identically distributed or
independent. While we did find a way of “fixing” the problem of heteroskedasticity,
it is frequently better to use a modeling scheme that uses that heteroskedasticity
instead of merely finding a way of ignoring it. This is what weighted least squares
does. If you have theory behind how the variances should vary for each record, you
can use this method. If not, then you are reduced to the “fixes” of Chapter 7.

Similarly, if your data are not independent, but you understand the structure
of that dependence, you can use generalized least squares to model the relationship
better. . . as long as that covariance matrix has an inverse square root matrix. And,
there is no guarantee that it does.
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8.7: End-of-Chapter Materials

8.7.1 R Functions In this chapter, we were introduced to a few R functions that
will be useful in the future. These are listed here.

Packages:

nlme This package gives R the functionality to fit generalized least squares using
the gls function. It actually has many other useful functions that allow us to
fit non-linear models and random-effects models. Those are beyond the scope
of this book, however.

RFS This package does not yet exist. It is a package that adds much general func-
tionality to R. In lieu of using library(RFS) to access these functions, run
the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Statistics:

autocor.test(e) This function calculates the auto-correlation, which is just the cor-
relation between sequential values in the vector. It is a part of the RFS pack-
age.

gls(formula) This function performs generalized least squares regression. It even
allows you to specify the correlation structure via the correlation param-
eter.

lm(formula) This function performs linear regression on the data, with the sup-
plied formula. If you specify the weights, then they are applied and you are
fitting the model using weighted least squares. As there is much information
contained in this function, you will want to save the results in a variable.

residuals(mod) This calculates the simple residuals in a model, the observed values
minus the predicted values.
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Mathematics:

%*% This multiplies two matrices in R. Thus, running the command A%*%B will
return the matrix product AB.

abs(x) This returns the absolute value of the real number x, a.k.a. | x |.

column(A) This returns the column number of the matrix A.

diag(n) If n is an integer, then this returns the In identity matrix.

diag(v) This returns a diagonal matrix with the elements of the vector v along the
diagonal.

diag(A) This returns the diagonal entries of the matrix A.

rep(n,x) This returns a vector of the number x repeated n times.

row(A) This returns the row number of the matrix A.

solve(A) This returns the inverse of the matrix A.

t(A) This returns the transpose of the matrix A.
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8.7.2 Exercises

1. Let E ∼ N
(
0; σ2D

)
be the residuals. Prove that if D is a diagonal covariance

matrix, then it is invertible.

2. Let E ∼ N
(
0; σ2D

)
be the residuals. Here, D is a diagonal covariance matrix.

Determine a matrix W such that WW = D.

3. Prove Theorem 8.2.2.

4. Under the assumptions of weighted least squares, determine the formula for
a confidence interval for β1.

5. What is the difference between e and E?

6. Under the assumptions of generalized least squares, determine the formula
for the estimator of B.

7. Under the assumptions of generalized least squares, determine the formula
for a confidence interval for b.

8. Determine if Theorem 8.2.1 holds if the weights matrix D is a random matrix
independent of X. If it does not, what is the distribution of WE?

9. Prove Theorem 8.2.2 if D is independent of X.

10. Theorem 8.2.3 requires D is non-random. Determine the variance of bwls if D
is random, but independent of X.

11. In Example 8.3.2, I state that the adjacency matrix is symmetric. Explain why
this is so.
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Chapter 9:

QuantileRegression

Overview:

In the previous chapters, we defined “best” by minimiz-
ing the sum of the squared residuals. An even func-
tion was required to ensure that the values in the target
function were positive. In this chapter, we use the abso-
lute value function.

While this may sound like a trivial move, it is not.
Since the magnitude of the slope of the absolute value
is constant, optimization is difficult. Furthermore, since it
is undefined at its minimum, we can only use an iterative
technique to estimate (approximate) our parameters of
interest.

However, in building this structure, we are able to
go beyond just estimating the median, we can estimate
any quantile. This allows us to model the tails of the
data-generating process.

Forsberg, Ole J. (10 DEC 2024). “Quantile Regression.” In Lin-
ear Models and Řurità Kràlovstvı̀. Version 0.704442η(α).
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❧ ❧ ❧

In the previous sections we examined three types of least squares regressions — or-least squares
dinary, weighted, and general. These three estimation methods have one thing in
common: The estimates were obtained by minimizing the sum of squared residuals
(properly weighted). We used the squaring function for two reasons. First, it is ev-
erywhere differentiable, especially at its minimum. Second, squaring the residuals
ensures that you are adding non-negative values. All even functions attain the sec-
ond goal. The class of functions that meet the first requirement is more restrictive.

The higher the even power, the more outliers affect the estimates; that is,
the outliers will tend to have an increased effect on the estimator when the power
is larger. One option to reduce the effect of these outliers is to use a different even
function. The absolute value function has been used quite successfully in the past.

Unfortunately, the absolute value function is not everywhere differentiable.
Even worse: it is not differentiable at its minimum — the point of interest. This
means we cannot obtain a simple set of equations for our estimators. We can still,
however, obtain estimators to an arbitrary degree of precision by using a set of equa-
tions that get us closer and closer to the true value of the estimate.
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9.1: Parameter Estimation

Let us first think about how we could do this by hand:

In least squares, we just did calculus to get equations for the estimators.
Here, since such solutions do not exist and since we need to use an iterative tech-
nique, I think working through a toy example may help understanding. And so, let
us start with the data in the left two columns of Table 9.1.

Remember that we want to minimize the sum of the absolute values of the L1 Norm
residuals.1 Thus, the first step is to obtain residuals. This means we need to some-
how obtain our first estimated regression line. Any will work as a starting point.
So, let’s say our first estimate of the line-of-best-fit is ℓ1 : y = 3, which is just the
horizontal line at the median.

The next step is to calculate the residuals. This is the e1 column in Table 9.1.
The the target function is

Q1 =
n∑
i=1

| ei | (9.1)

=
n∑
i=1

∣∣∣ yi − ŷi ∣∣∣ (9.2)

=
n∑
i=1

∣∣∣ yi − 3
∣∣∣ (9.3)

=
∣∣∣ y1 − 3

∣∣∣+
∣∣∣ y2 − 3

∣∣∣+
∣∣∣ y3 − 3

∣∣∣+
∣∣∣ y4 − 3

∣∣∣ (9.4)

= | 1− 3 |+ | 3− 3 |+ | 3− 3 |+ | 9− 3 | (9.5)

= 2 + 0 + 0 + 6 (9.6)

Thus, for line ℓ1, the value of the target function is 8.

1In other words, we want to minimize the L1 distance between the n-dimensional data vector
and the p-dimensional parameter space. Recall Figure 3.2 where we illustrated this with least
squares.
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x y ŷ1 e1 ŷ2 e2 ŷ3 e3

0 1 3 -2.0 1.5 -0.5 0.0 1.0
1 3 3 0.0 2.5 0.5 2.0 1.0
2 3 3 0.0 3.5 -0.5 4.0 -1.0
3 9 3 6.0 4.5 3.5 6.0 3.0

Table 9.1: Raw data and a few columns of the median regression estimation process. This
is more heuristic than actual. The actual fitting method depends on the program used.

The next step is to change the regression line. How? Well, that is the important
question. Different methods may ultimately lead to slightly different answers. As
this section only seeks to illustrate a method — and not even a good method — let’s
use logic to see what would be next. Note that the lower values have estimates that
are too low, and the higher values have estimates that are too high. So, it makes
sense to increase the slope. So, let us increase the slope to 1. If we force the line
to pass through the dimension-wise median (x̃, ỹ) = (1.5, 3.0), the linear equation
will be ℓ2 : y = 1.5 + 1x. This produces the estimates and residuals in the next two
columns of Table 9.1.

The value of the target function is

Q2 =
n∑
i=1

| ei | =
n∑
i=1

∣∣∣ yi − ŷi ∣∣∣ =
n∑
i=1

∣∣∣ yi − (1.5 + xi)
∣∣∣ (9.7)

Note that this value is 5. As this is lower than the previous value, we headed in the
right direction; we are closer to the estimates because we have reduced the sum of
the absolute errors.

We got closer. Note that the error for higher x-values is greater than for
lower x-values. This suggests we should increase the slope yet again. So, let us
select our third line as ℓ3 : y = 0 + 2x. Again, we are forcing the line to pass through
the dimension-wise median.2 The last pair of columns in Table 9.1 provide the
predictions and residuals for this third line.

The value of the target function for this third line is Q3 = 6. This value is not
lower than Q2. Thus, this line is a worse fit than line ℓ2. The next line, ℓ4, needs to
take this into consideration.

This process would continue until the change in target function values is
“small enough.” Usually, we define “small enough” as being less than some toler-
ance, like τ = 0.000001.

2Do we need to do this? No. There are algorithms that do not force this restriction. Again, the
actual mathematics cannot reasonably be done by hand. I write this part so that you can get
a feel for what the computer is doing.
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9.1.1 The Big Question The big question is how we get from one line-of-best-fit
to the next, from ℓi to ℓi+1. Unfortunately, there is no “best method” to minimize the
L1 norm when there are more points than dimensions. It is even worse: We were able
to find closed-form solutions to the unique estimators for the L2 norm (squaring).
That cannot be done when using the L1 norm (absolute values). There are multiple
appropriate algorithms. The estimators may not be unique. Those are just a few
problems working with the L1 norm.

For those interested, here are some methods:

• Barrodale and Roberts (1974),

• Koenecker and Bassett (1978),

• Koenker and d’Orey(1987, 1994),

• Li and Arce (2004), and

• Shu-guang and Jian-wen (1992).

Note: These algorithms make use of different paradigms, different ways of
seeing the problems. That is what makes studying statistics fun and interest-
ing. Looking at a problem differently may be the key to its solution.

In R, a function to perform median regression is rq in the package quantreg, which
does not come with the default R installation. Its use is very similar to what we are
used to. While the rq function allows you to select different optimization methods,
the default is the Barrodale and Roberts (1974) method.

From my experience the optimization algorithm matters little for real data.
If the data are all integers, there may be issues with non-unique solutions or non- problem
convergent algorithms. The cause in these cases is the non-uniqueness of the me-
dian.
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Example 1

Using median regression, what is the relationship between the violent crime
rates in 2000 and 1990 in the crime data?

Solution: The following code estimates the median regression line for the relation-
ship between the violent crime rates in 2000 and 1990 in the crime data:

library(quantreg)

dt = read.csv("http://rfs.kvasaheim.com/data/crime.csv")
attach(dt)

mod1 = rq(vcrime00 ∼ vcrime90)
summary(mod1)

The following is the output:

Call: rq(formula = vcrime00 ∼ vcrime90)

tau: [1] 0.50

Coefficients:
coefficients lower bd upper bd

(Intercept) 93.24525 72.83955 102.31731
vcrime90 0.57764 0.57518 0.62676

The output is the usual output. The value of tau is 0.50, because we are examining
the regression line for the median, the 50th percentile.

The coefficients are the estimates for the intercept and slope. The lower and
upper bounds are the 95% confidence interval for those parameters. There are no
p-values, because the distribution of the estimators does not follow a nice test dis-
tribution. However, because we have a confidence interval, we have even more in-
formation than what a simple p-value would give. We are 95% confident that the
relationship between the violent crime rate in 1990 and 2000 is between 0.575 and
0.627. Since this does not include the value 0, we can conclude that there is a signif-
icant relationship between the two variables. ♦

I leave it as an exercise for you to see that the OLS estimator for that effect is 0.581,exercise
with a 95% confidence interval from 0.518 to 0.643.
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There is a difference between the two estimation methods. That difference
is in how the method is affected by influential points like the District of Columbia. influential
Median regression reduces the influence of DC, while ordinary least squares does
not.

The absolute value function increases linearly as the residual increases. The
squaring function increases quadratically as the residual increases. Thus, ordinary
least squares will work harder to avoid making the DC residual too big. Median
regression will not weight it as heavily.

Example 2

Here is another example of using median regression. What is the relationship
between the property crime rates in 1990 and 2000?

Solution: The code is quite similar to that above:

mod3 = rq(pcrime00 ∼ pcrime90)
summary(mod3)

The following is the partial output:

Coefficients:
coefficients lower bd upper bd

(Intercept) 730.46936 349.56585 1093.31979
pcrime90 0.60584 0.50893 0.77457

Again, the relationship is positive. A point estimate for that relationship is β̃1 =
0.606, with a 95% confidence interval from 0.509 to 0.775. I again leave it as an
exercise for you to show that the OLS estimator is 0.582 with a 95% confidence
interval from 0.458 to 0.707. ♦

Note: When the data are “well behaved” without influential points, there
tends to be little difference in the estimators. Figure 9.1 illustrates this.
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Figure 9.1: A graphic comparing the estimated lines from ordinary least squares (gold)
and median (red) regression.
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9.2: Quantile Regression

The previous section covered median regression. There, we motivated the method
by focusing on minimizing the sum of the absolute value of the residuals. It turns
out that this is equivalent to estimating the conditional median of the dependent conditional

medianvariable (hence its name). In other words, the line of best fit is the line that best goes
through the medians at each x-value.

Compare this to how we motivated ordinary least squares in Chapter 2: by
minimizing the sum of the squared errors. This is equivalent to estimating the con-
ditional mean of the dependent variable. conditional

mean
In other words, OLS estimates E [Y | x] while median regression estimates

Med[Y | x], for want of better notation. (Perhaps Q2 [Y | x] would be better nota-
tion?) P50 [Y | x]?

There is absolutely no reason we need to focus only on the conditional me-
dian of the dependent variable (conditional on the independent variable). We may
want to focus on other quantiles, like the 10th percentile. This happens a lot in so-
ciology when studying poverty (10th percentile of income) or education (90th per-
centile of academic achievement).

The idea behind the fitting is the same (Koenker and Hallock 2001). The R
function is also the same. The only difference is that you need to specify the quantile.
To see this, let us see a couple familiar examples.

Example 3

What is the relationship between the violent crime rates in 2000 and 1990 in
the crime data at the 10th percentile?

Solution: Here is the code the perform this estimation:

mod5 = rq(vcrime00 ∼ vcrime90, tau=0.10)
summary(mod5)
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The following is the output:

Call: rq(formula = vcrime00 ∼ vcrime90, tau = 0.1)

tau: [1] 0.1

Coefficients:
coefficients lower bd upper bd

(Intercept) 40.29964 -14.80397 100.38757
vcrime90 0.55616 0.38948 0.60422

Thus, for those states near the 10th percentile, the relationship between the 1990
and 2000 violent crime rate is between 0.389 and 0.604, with a point estimate of
0.556. This is only a little different from the median results, which suggests those
states that are less crime-ridden (at the 10th percentile) still followed the same
“rule” with respect to violent crime rate changes between 1990 and 2000. ♦

Example 4

What is the relationship between the property crime rates in 2000 and 1990
in the crime data at the 90th percentile?

Solution: Here is the code to perform this estimation:

mod6 = rq(pcrime00 ∼ pcrime90, tau=0.90)
summary(mod6)

The following is the output:

Call: rq(formula = pcrime00 ∼ pcrime90, tau = 0.9)

tau: [1] 0.9

Coefficients:
coefficients lower bd upper bd

(Intercept) 1761.72465 327.54503 2436.15997
pcrime90 0.53326 0.40262 0.84489

Thus, for those near the 90th percentile, the relationship between the 1990 and 2000
property crime rate is between 0.403 and 0.845, with a point estimate of 0.533. This
differs a little from the median results (Example 9.1.1), which suggests those states
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Figure 9.2: Graphic illustrating the changing effect based on the quantile examined. The
nine lines are regression lines for the deciles 0.10 through 0.90, with darker lines corre-
sponding to higher quantiles.

that are more (property) crime-ridden (at the 90th percentile) followed a similar
“rule” with respect to violent crime rate changes between 1990 and 2000. Their
rates dropped slightly more than did the typical (median) state. ♦

By the way, Figure 9.2 is a graphic of the deciles from 10 to 90% for the relationship
between property crime rates in 1990 and 2000. Note that the effect does appear to
change as one looks at middle-rate states. The highest levels, quantiles 80 and 90, are
very similar in effect to the lower levels, quantile 10 and 20. However, those states
near quantile 50 seem to have a greater slope. If we had only looked at the median,
we would have only reported these steeper effects. This may have overstated the
effect.
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Example 5

What is the relationship between the state’s wealth in 1990 and the property
crime rate in 2000? Show the effects at the first, second, and third quartiles.

Solution: We will use the GSP per capita as a proxy measure of wealth in the state.
I leave the coding to you. Here is the appropriate output for the median:proxy

Call: rq(formula = pcrime00 ∼ gspcap90)

tau: [1] 0.5

Coefficients:
coefficients lower bd upper bd

(Intercept) 3061.50674 2383.13082 4989.55600
gspcap90 0.02403 -0.08109 0.04996

Interpreting the table indicates that there is no significant evidence that there is a
relationship between the average wealth in 1990 and the property crime rate in 2000
for the median state (the confidence interval contains 0).

For the first and third quartile, the conclusions will be the same. As both
confidence interval contain both positive and negative numbers, we are unsure of
the relationship between these two variables. ♦

I leave it as an exercise for you to show that ordinary least squares indicates a statis-
tical significant relationship (p− value = 0.0475). It also provides a point estimate
of that relationship of b1 = 0.03025).

Figure 9.3 provides the results for all deciles. Note that the slopes also seem
to vary according to the quantile examined. Thus, the effect of wealth on property
crime rates seem to be a function of those property crime rates. The lowest quan-
tiles suggest the steepest effect. However, performing the analysis shows that the
relationship is not statistically significant at the α = 0.05 level. In other words, we
were unable to detect a relationship.
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Figure 9.3: Graphic illustrating the changing effect based on the quantile examined. The
nine lines are regression lines for the quantiles 0.10 through 0.90, with darker lines cor-
responding to higher quantiles.
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9.2.1 The Ultimate Question So, is there a relationship between average wealth
in 1990 and the property crime rate in 2000? One thing we know is that if there is a
relationship, then it is minor.

It is not surprising that median regression does not detect a relationship
while ordinary least squares does. Median regression, like all statistics based on
the median (ranks), has a lower power than ordinary least squares (these statistics
require Normality).

Note: So, the answer to the ultimate question is “I’m not sure.” This is un-
satisfying. It is also reality. By using both OLS and median regression, we
have a better understanding of the relationship between average wealth and
property crime rates. That is the goal of statistics, not coming up with binary
answers.

9.2.2 The Ultimate Answer 42Douglas Adams
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9.3: Conclusion

In this chapter, we covered quantile regression. We initially motivated the topic by
modifying our definition of “best fit” to focus on the absolute value of the residuals
in lieu of the square of the residuals. This led to an iterative process that allowed
us to obtain estimates to any desired accuracy — at the cost of time and computing
power.

This chapter then noted that median regression was just a specific instance of
quantile regression, one in which the quantile was 0.500. This set the stage to intro-
duce the results of quantile regression, in general. One may see quantile regression
in research that focuses on better understanding the “wings” of the distribution in-
stead of its middle.

Quantile regression uses the entire data set. It does not look at only the data
corresponding to the qth quantile. Such data may not actually exist. What states are
at the 10th quantile of the property crime rates in 1990 and 2000? That’s not enough
data to obtain any meaningful estimates.

Quantile regression estimates the qth quantile of the response variable given
the value of the independent variable.
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9.4: End-of-Chapter Materials

9.4.1 R Functions In this chapter, we were introduced to several R functions
that will be useful in quantile regression. These are listed here.

Packages:

quantreg This package contains many functions associated with quantile regres-
sion. This chapter just skimmed the surface of what can be done and what
should be checked. As this package is not a part of the base R, you will need
to install it before loading it with library(quantreg).

Statistics:

rq(formula) This is the function that performs quantile regression. The formula
is required. By default, the quantile examined is τ = 0.50, but that can be
changed by specifying the value of that τ .

summary(model) This is the familiar command that allows us to see the regres-
sion table produced by the regression method. Here, it provides the effect
estimates (coefficients) and the central 95% confidence interval for that effect.
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9.4.2 Exercises

1. In the setting of Example 9.1.1, perform ordinary least squares regression to
calculate the effect estimate and its 95% confidence interval.
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9.4.3 Applied Readings

• Lingxin Hao and Daniel Q. Naiman (2008). Assessing Inequality. Sage Pub-
lishing (Quantitative Applications in the Social Sciences; 166).
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9.4.4 Theory Readings
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Chapter 10:

MaximizingtheLikelihood

Overview:

In the previous chapters, we defined “best” by how the
sum of the squared residuals were minimized. We made
bad things small. Another way of viewing the “best” line
is to maximize good things. That is the idea behind max-
imum likelihood estimation.

While the concepts seem a bit different from or-
dinary least squares, this method actually leads to the
same estimators of β0 and β1. It also leads to a biased
estimator of σ2. So, why do we look at it here? First, the
bias is relatively minor and disappears as the sample
size increases.

More importantly, the method is extremely flexi-
ble. OLS requires Normality in the residuals. MLE can be
used with any distribution.

Forsberg, Ole J. (10 DEC 2024). “Maximizing the Likelihood.” In
Linear Models and Řurità Kràlovstvı̀. Version 0.704442η(α).
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❧ ❧ ❧

In the previous chapters, we have progressed from our desire to minimize some
function of the residuals. This led to several related techniques:

• ordinary least squares

• weighted least squares

• generalized least squares

• ordinary least absolutes

All of these techniques sought to make the ‘bad’ things as small as possible, to pro-
duce a model that minimizes these residuals. However, our first definition of “best”
from page 18 was based on making good things as large as possible, where that
“good thing” is the likelihood of observing this particular data.1

The theory is that the estimate most likely to have produced the observed
data is the “best” estimate. Note that this differs from previous estimation methods
in both the objective function and the size we desire. Bigger is better. . . bigger in
terms of the “likelihood.”

The fundamental purpose of this chapter is to introduce you to the likelihood
and the methods to maximize it. In trying to accomplish this, we will start with the
simple and proceed to the less-simple.

1Technically, it is the “likelihood of the data given our parameter estimates.”
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10.1: The Likelihood

From a theoretical standpoint, the likelihood is just a generalization of probability.
Where probability is bounded by both 0 and 1, the likelihood is only bounded below
by 0. Values with higher probabilities are more likely to be observed. The same is
true of likelihood: Values with higher likelihoods are more likely to be observed.

In the discrete case, the likelihood and the probability (mass) are the same.
In the continuous case, the likelihood is the probability density. In other words, you
really have come across the likelihood before. In your previous statistics course, the
likelihood was called the “probability density” for continuous random variables and
the “probability mass” for discrete random variables.

The difference between the likelihood and the probability mass or density is
only one of emphasis. The probability mass (or density) is a function of observable
values given the parameters of the distribution.

The likelihood is a function of the parameters, given the observed values
(data). That difference is illustrated in the next two examples.

Example 1

Given that the success probability of a binomial random variable is π = 0.25,
what is the probability of observing exactly one success out of two trials?

Solution: The probability mass function of the binomial distribution is

f (x; π,n) =
(
n
x

)
πx (1−π)n−x (10.1)

In this particular instance, the probability mass function is

f (x; π = 0.25,n = 2) =
(
2
x

)
0.25x (1− 0.25)2−x (10.2)
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And now calculating the probability gives

f (1; π = 0.25,n = 2) =
(
2
1

)
0.251 (1− 0.25)2−1 (10.3)

= 2 0.251 (0.75)1 (10.4)

= 2 (0.25) (0.75) (10.5)

= 0.375 (10.6)

Thus, the probability I observe exactly one success in two trials, given the success
probability is 0.25 is just 0.375, which is a probability of 3 in 8. ♦

Example 2

Given that I observed exactly one success in two trials, what is the likelihood
that the success probability is π = 0.25?

Notice that this question is very similar to the previous. The difference is subtle.
The previous question asked about the probability of an observation. This one asks
about the likelihood of the parameter.

Solution: The likelihood for a binomial random variable is

f (π; x,n) =
(
n
x

)
πx (1−π)n−x (10.7)

In this particular instance, the likelihood is

f (π; x = 1,n = 2) =
(
2
1

)
π1 (1−π)2−1 (10.8)

Thus, the value of the likelihood for π = 0.25 is

f (0.25; x = 1,n = 2) =
(
2
1

)
0.251 (1− 0.25)2−1 (10.9)

= 2 (0.25)1 (0.75)1 (10.10)

= 2 (0.25) (0.75) (10.11)

= 0.375 (10.12)

Thus, we have calculated the likelihood that π = 0.25 is 0.375. Is this a lot? It
actually depends heavily on the number of data points. In general, the larger your
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sample size, the smaller the likelihood (of observing that particular data). Thus, the
likelihood can only meaningfully be interpreted when in relation to other likelihoods
based on the same data. ♦ same data

This last part deserves to be repeated.

Why? It is because we will come across statistics like the AIC and the BIC
that can be used for model selection. However, since both are dependent on the
likelihood, the values of the dependent variable need to be the same.

�Warning: The likelihood can only meaningfully be interpreted when in relation to other
likelihoods based on the same data.

The probability and the likelihood are numerically the same. The use and inter-
pretation, however, are different. With probability, we are looking at a function of
possible outcomes. With likelihood, we are looking at a function of possible values
of the parameters. Thus, in the first case, we could ask questions about which value
of x is most likely. In the second case, we would ask questions about which value of
π is most likely.

Likelihood cries out to be maximized. Is π = 0.25 the maximum likelihood
in the previous example? No. Calculate the likelihood of π = 0.40 to see that 0.25 is
not the maximum (the value of π that produces the largest likelihood value). If you
calculated f (0.40; x = 1,n = 2) = 0.48, then you did the calculations correctly.

Note that f (0.40; x = 1,n = 2) > f (0.25; x = 1,n = 2). Thus, π = 0.25 is not the
maximum likelihood estimate of π in this case. What is? Such optimization requires
using calculus. From the above, you should be able to see that the objective function
is

Q(π) =
(
2
1

)
π1 (1−π)2−1 = 2 π (1−π) (10.13)

This is a function of the parameter, since we are trying to determine the value of π
that is most likely, given the data. The optimization proceeds as expected:

d
dπ

Q(π) = 2(1− 2π) (10.14)

0 set= 2(1− 2π̂) (10.15)

0 = 1− 2π̂ (10.16)

1 = 2π̂ (10.17)
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Figure 10.1: A graphic showing how the likelihood varies as the parameter changes. Un-
surprisingly, the maximum likelihood occurs at π̂ = 0.500.

1
2

= π̂ (10.18)

Thus, given that we observed 1 success in 2 trials, the maximum likelihood estimator
of π is π̂ = 0.500. For some reason, I am not surprised at this outcome. Are you?

Figure 10.1 shows how the value of the likelihood changes as the parameter
value changes. It can be shown that the likelihood for this problem ranges from 0 to
0.5.

In general, one can show that the maximum likelihood estimator of π is π̂ =
x/n, where x is the number of successes and n is the number of trials. I will leave
that as an exercise.exercise

To prove this, you would perform the same steps, but leave the x and n in
the likelihood. If you do the calculations and the calculus correctly, you will end up
with

π̂ =
x
n

(10.19)

Example 3

Let Y be the number of Ruritanians walking through the door of the Valné
Shromážděnı́, the general assembly building of Ruritania. The King would
like to estimate the average number of people entering between noon and
1pm.
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Figure 10.2: A graphic showing how the likelihood varies as the parameter changes.

To do this, the King had his Secretary of the Interior count the num-
ber of people entering the building during that hour on Monday.

On Monday, the Secretary counted y = 17. With this information, let
us calculate the estimate of λ using maximum likelihood estimation.

A second distribution that you probably saw in your previous statistics class is the
Poisson distribution. It has just one parameter, λ, the average rate. In this example,
we will determine the maximum likelihood estimator of λ.

Solution: The likelihood for a discrete distribution, like the Poisson, is just the prob-
ability mass function:

L(λ; y) =
e−λ λy

y!
(10.20)

That is the likelihood of each observation. Here, we only took one measurement (on
Monday). Thus this is also the entire likelihood.

The next step is to maximize the likelihood with respect to the parameter, λ:

d
dλ
L(λ; y = 17) =

d
dλ

(
e−λ λ17

17!

)
(10.21)

=
−e−λ 17(λ17−1) + e−λλ17

17!
(10.22)
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Now, set this equal to zero and solve for the estimator, λ̂.

0 set= −e−λ̂ 17(λ̂16) + e−λ̂λ̂17 (10.23)

Since λ is constrained to the positive real numbers, we have the following simplifi-
cation

0 = −17(λ̂16) + λ̂17 (10.24)

0 = −17 + λ̂ (10.25)

Thus, the maximum likelihood estimate of λ is λ̂ = 17.

♦

And so, we report to His Majesty that our estimate of the average number of people
passing through the doors of the Valné Shromážděnı́ is 17 per hour.surprised?

By the way, a graphic of the likelihood function for varying values of λ is
given in Figure 10.2. Note that the function achieves its maximum when λ = 17.
Thus, the MLE for λ is λ̂ = 17.

Example 4

His Majesty liked the report, especially the font (he likes serifs). However,
he asked an excellent question: “Bylo by lepšı́ měřit vı́ce než jednou?”

To address his point, the Secretary of the Interior decided to take mul-
tiple measurements over several days. So, for the next week, he measured
the number of people entering the Valné Shromážděnı́ an hour at a time, ran-
domly selecting the time of day each time. Here is that data: 15,20,23,34,23.

With that new data what is the maximum likelihood estimator of λ,
given these n = 5 measurements?

Solution: From the previous example, we know that the likelihood of a single ob-
servation is

L(λ; y) =
e−λ λy

y!
(10.26)
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Thus, the likelihood of n independent observations is

L(λ; y,n) =
n∏
i=1

e−λ λyi

yi !
(10.27)

How do we know this? Remember from your introductory statistics class the prod-
uct rule for independent events.

Theorem 10.1.1

Let A and B be two independent events. The probability of both events hap-
pening is the product of the individual events. That is

P [A∩B] = P [A] ·P [B] (10.28)

Note: This theorem can easily be extended to any finite number of events.
The requirement is that the events are independent. The result is that the
probability of all occurring is the product of the probability of each occur-
ring.

Since there is a product involved, it will be easier to maximize the logarithm of the
likelihood,

l(λ; y,n) =
n∑
i=1

(−λ+ yi logλ− logyi !) (10.29)

And so, we maximize this function with respect to λ to obtain our estimator:

d
dλ
l(λ; y,n) =

d
dλ

n∑
i=1

(−λ+ yi logλ− logyi !) (10.30)

=
n∑
i=1

−1 +
n∑
i=1

yi
λ

(10.31)

= −n+
ny

λ
(10.32)
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Now, setting this equal to zero and solving for the estimator gives us

0 set= −n+
ny

λ̂
(10.33)

n =
ny

λ̂
(10.34)

Thus, with multiple measurement, the maximum likelihood estimator of λ is

λ̂ = y (10.35)

Before moving on, think about the result to ensure that it makes sense. This is always
an important step! ♦

� Warning: At the end of every result, you should think about its consequences. Make sure
the results make sense. If they do not, then double-check your work or see the world in a
more subtle light.

Another important distribution is the exponential distribution. It is used to model
the time until some event occurs. Actuaries may use it to model (estimate) the time
until a person dies or gets into an automobile accident or gets sued or some other
wonderful event.

It has a single parameter, λ, which is the rate.2 This means that the average
will be 1/λ. Double-check that this actually makes sense.

The following examples deals with this distribution.

2If you are having déjà vu again, do not worry. There is an intimate connection between the
Poisson and exponential distributions. If the time between arrivals follows an exponential
distribution, then the number of arrivals follows a Poisson distribution.
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Example 5

His Majesty has some additional work for us. He would like to estimate the
average lifetime of Ruritanians.

Let us use maximum likelihood estimation to provide an estimator
for λ, the average rate of a person dying (NOT the average time until death).

Solution: The probability density function for the exponential distribution, when
parameterized on its rate, is

f (x; λ) = λ e−λx (10.36)

Thus, the likelihood function for a single observation is

L(λ; x) = λ e−λx (10.37)

And, the likelihood function for n independent observations is

L(λ; x,n) =
n∏
i=1

λ e−λxi (10.38)

As this is a product, the log-likelihood will be easier to differentiate. It is

l(λ; x,n) =
n∑
i=1

(logλ−λxi) (10.39)

Now, we maximize it.

d
dλ
l(λ; x,n) =

d
dλ

n∑
i=1

(logλ−λxi) (10.40)

=
n∑
i=1

1
λ
−

n∑
i=1

xi (10.41)

=
n
λ
−nx (10.42)

0 set=
n

λ̂
−nx (10.43)

0 =
1

λ̂
− x (10.44)
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λ̂ =
1
x

(10.45)

♦

From this, it can be shown that the maximum likelihood estimator of the mean of an
exponential distribution is

µ̂ = x (10.46)

All it takes is knowing that the expected value of an exponential distribution is
µ = 1/λ.

❧ ❧ ❧

Since the original question dealt with the average age, we would want to calculate
µ̂, not λ̂. I leave it as an exercise to show that a maximum likelihood estimator of µ
for the following parameterization of the exponential distribution

f (x;µ) =
1
µ
e−x/µ (10.47)

is µ̂ = x .

Note: It should be noted that the maximum likelihood estimator is awesome
in that functions “pass through.” In other words, it can be shown that

f̂ (x)MLE = f (x̂MLE) (10.48)

In words, the maximum likelihood estimator of a function of a parameter is
that function of the maximum likelihood estimator of the parameter.

This is as good a time as any. There are two “drawbacks” to using maximum likeli-
hood to estimate parameters. The first is that there is no guarantee that the estimator
is unique. The second is that there is no guarantee that the estimator is unbiased.

While these seem bad, there is a nifty theorem that states the MLE is asymp-
totically unbiased; that is, as the sample size increases, its bias goes to zero.

Figure 10.3 shows the likelihood graph for λ of an Exponential distribution.
From this graphic, you should be able to estimate the value of µ, the average age of
death in Ruritania.

Note: In a future course, you may be dealing with maximum likelihood es-
timators frequently. Note that the graphic above tells a story beyond the es-
timate. It also gives insight into how precise the estimate is. The flatter a
graphic around the estimate, the greater the uncertainty.
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Figure 10.3: A graphic showing how the likelihood varies as the parameter changes.

To see this, note that you probably had more difficulty estimating the
maximum in Figure 10.3 because of the curve’s flatness. The likelihood in
Figure 10.2 is more sharp, thus it is much easier to determine the maximum
value. If you want to explore this, please check out Fisher Information,
which is defined as

I (θ) = E

( ∂∂θ logf (x;θ)
)2 ∣∣∣∣∣∣ θ

 (10.49)
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10.2: The MLE and the CLM

Recall that the classical linear model assumes

Y = XB + E, (10.50)

with E ∼ Nn
(
0; σ2I

)
. When we fit this model using ordinary least squares (OLS), we

obtained the following estimators:

b0 = y − b1 x (10.51)

b1 =
∑

(xi − x )(yi − y )∑
(xi − x )2 (10.52)

Let us see what we get when we fit this model using maximum likelihood methods.

Theorem 10.2.1

The maximum likelihood estimator of β0 is

β̂0 = y − β̂1 x (10.53)

This is equivalent to the OLS estimator of the y-intercept.

Proof. The first step is to determine the likelihood function. The second step is to
maximize that likelihood with respect to the parameter. As is usual, one maximizes
the logarithm of the likelihood instead of the likelihood itself. It is generally easier.

Remember the conditional distribution of y. With that in mind, here is the
likelihood for one observation:

L(µ,σ2; x,y) =
1

√
2πσ2

exp
[
−1

2
(y −µ)2

σ2

]
(10.54)

=
1

√
2πσ2

exp
[
−1

2
(y − ŷ)2

σ2

]
(10.55)

=
1

√
2πσ2

exp

−1
2

(
y − (β0 + β1x)

)2

σ2

 (10.56)
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Jeeee-willikers! That is just the probability density function for the normal distribu-
tion, where µ (as always) represents an expected value.

That was for a single observation. However, we rarely deal with just one
data point. We deal with n of them. We remember from our introductory statistics
course that if the data are independent, then P [A∩B] = P [A]P [B]. That means IF
that the likelihood of observing all of our data is just the product of the individual
likelihoods (also see Theorem 10.1.1).

With that, we have

L
(
β0,β1,σ

2; x,Y
)

=
n∏
i=1

1
√

2πσ2
exp

[
−1

2
(yi − (β0 + β1xi))

2

σ2

]
(10.57)

Since you may not have seen the notation before,
∏

is the product symbol just like∑
is the summation symbol.

The next step is to maximize this likelihood. From calculus, we recall the
product formula for derivatives. Just try applying the product formula here. You
will shortly go bald from pulling out your hair. There is no easy way to maximize
this likelihood function directly. ¡Què làstima!

However, if we apply an increasing bijection to this likelihood, then maxi- one-to-one
and ontomizing that function is equivalent to maximizing the original likelihood. . . equiva-

lent in terms of the value that produces the maximum (the “argmax”).

Because the likelihood has a lot of products, and because it is easier to maxi-
mize a sum, we use the logarithm function. The log-likelihood function of the above
function is just

l
(
β0,β1,σ

2; x,Y
)

=
n∑
i=1

(
−1

2
log

(
−2πσ2

)
− 1

2
(yi − (β0 + β1xi))

2

σ2

)
(10.58)

Taking the derivative of a summation is so much easier than taking the derivative of
a product. . . so much easier!

And, now that we have a practically differentiable function, we use calculus
to maximize it with respect to β0:

∂
∂β0

l(β0,β1,σ
2; x,Y) =

∂
∂β0

n∑
i=1

(
−1

2
log

(
−2πσ2

)
− 1

2
(yi − (β0 + β1xi))

2

σ2

)

=
n∑
i=1

−1
2

2(yi − (β0 + β1xi)) (−1)
σ2 (10.59)
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=
n∑
i=1

yi − β0 − β1xi
σ2 (10.60)

Now, set this to zero and solve for β̂0:

0 set=
n∑
i=1

yi − β̂0 − β̂1xi
σ2 (10.61)

0 =
n∑
i=1

yi −
n∑
i=1

β̂0 −
n∑
i=1

β̂1xi (10.62)

n∑
i=1

β̂0 =
n∑
i=1

yi −
n∑
i=1

β̂1xi (10.63)

nβ̂0 = ny −nβ̂1 x (10.64)

β̂0 = y − β̂1 x (10.65)

Thus, we have shown that β̂0 = y − β̂1 x , as we desired. Note that this is also the OLS
estimator of the y-intercept. Very interesting!
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Theorem 10.2.2

The maximum likelihood estimator of β1 is

β̂1 =
∑

(xi − x )(yi − y )∑
(xi − x )2 (10.66)

Proof. From our proof of the estimator of β0, we have the following as our log-
likelihood function:

l
(
β0,β1,σ

2; x,Y
)

=
n∑
i=1

(
−1

2
log

(
−2πσ2

)
− 1

2
(yi − (β0 + β1xi))

2

σ2

)
(10.67)

And so, the proof proceeds by taking the derivative with respect to β1 and solving
for β̂1.

∂
∂β1

l(β0,β1,σ
2; x,Y) =

∂
∂β1

n∑
i=1

(
−1

2
log

(
−2πσ2

)
− 1

2
(yi − (β0 + β1xi))

2

σ2

)

= −1
2

n∑
i=1

2(yi − (β0 + β1xi)) (−xi)
σ2 (10.68)

=
n∑
i=1

xiyi − β0xi − β1x
2
i

σ2 (10.69)

Setting this to zero and solving for the estimator, β̂1 gives

0 set=
n∑
i=1

xiyi − β̂0xi − β̂1x
2
i

σ2 (10.70)

=
n∑
i=1

xiyi −
n∑
i=1

β̂0xi −
n∑
i=1

β̂1x
2
i (10.71)

=
n∑
i=1

xiyi −nx β̂0 −
n∑
i=1

β̂1x
2
i (10.72)
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=
n∑
i=1

xiyi −nx
(
y − β̂1 x

)
−

n∑
i=1

β̂1x
2
i (10.73)

=
n∑
i=1

xiyi −nx y +nβ̂1 x
2 −

n∑
i=1

β̂1x
2
i (10.74)

Moving the β̂1 terms to the left side gives

n∑
i=1

β̂1x
2
i −nβ̂1 x

2 =
n∑
i=1

xiyi −nx y (10.75)

β̂1

 n∑
i=1

x2
i −nx

2

 =
n∑
i=1

xiyi −nx y (10.76)

And finally,

β̂1 =
∑n
i=1 xiyi −nx y∑n
i=1 x

2
i −nx

2 (10.77)

We have seen this before. It is the OLS estimator of the slope parameter. No surprise.
surprise!

To finish the proof, use algebra to show that the final equation above is equiv-
alent to β̂1 =

∑
(xi−x )(yi−y )∑

(xi−x )2 .
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Theorem 10.2.3

The maximum likelihood estimator of σ2 is

σ̂2 =
1
n

n∑
i=1

(
yi − β̂0 − β̂1xi

)2
(10.78)

Proof. It has been a while, so I will leave this as an exercise for you to prove this. I exercise
have already shown the log-likelihood function. All you have to do is differentiate
with respect to σ2, solve for σ̂2, and use algebra to move things into the right form.

Note that the above formula (Eqn 10.78) is equivalent to

σ̂2 =
1
n

n∑
i=1

e2
i (10.79)

This should raise a red (maybe only light yellow or a nice fuschia) flag, as this is a
biased estimator of σ2. Why?

Note, however, that asymptotically (as n→∞), the estimator becomes unbi-
ased. This can be proven — more easily than you may imagine.

10.2.1 Consequences I leave it as an exercise to prove the following conse-
quences:

1. β̂0 is unbiased for β0.

2. β̂1 is unbiased for β1.

3. σ̂2 is biased for σ2.

Because the maximum likelihood estimators are identical to the ordinary least square
estimators, and because we have not altered the Normality assumption of the classi-
cal linear model, everything from Chapters 2, 2, and 4 hold.

Well, that is not entirely true. Remember that the MLE estimator of σ2 is not
the same as the OLS estimator. Thus, the test statistic and confidence interval will
need to be altered a bit. However, the differences are minor for large samples.3

3And this is the problem that William Sealy Gosset had to deal with (see Section S.4.6). Things
easily work for large samples. He had to deal with small samples in his work.
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10.2.2 Multivariate Distributions* There is one prerequisite to this textbook
that would make things a little easier: an introduction to multivariate distribution.
Thus far, I have “hand-waved” over the topic. Here, I will briefly discuss the topic.
Feel free to treat this section only as a passing interest.

The following is a univariate distribution:

f (x; µ,σ2) =
1

√
2πσ2

exp
[
−1

2
(x −µ)2

σ2

]
(10.80)

This is the (in)famous probability density function for the normal distribution. It is
a function of just one variable (value), x. This is what makes it univariate. The prefix
uni stands for neither the University of Northern Iowa nor edible sea urchin gonads.
It is a Latin combining form for “one.” Thus, “univariate” indicates “one variable.”Ewww!

The following is one example of a bivariate distribution:

f (x,y) =
exp

{
− 1

2(1−ρ2)

[(
x−µx
σx

)2
− 2ρ

(
x−µx
σx

)( y−µy
σy

)
+
(
y−µy
σy

)2
]}

2πσxσy
√

1− ρ2
(10.81)

This is a distribution where X and Y are distributed jointly normal, and where they
have correlation ρ between them. There are a lot of symbols there because it is
written in scalar form. Were we to write it in matrix form, we could generalize all of
these “—variate” distributions into one form.
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If the random vector Y follows a multivariate normal distribution such that
Y ∼ Nn (µ; Σ/Σ/Σ/ ), then MVN

f (Y; µ,Σ/Σ/Σ/ ) = (2π)−n/2
∣∣∣ Σ/Σ/Σ/ ∣∣∣−1/2

exp
[
−1

2
(x−µ)′Σ/Σ/Σ/

−1(x−µ)
]

(10.82)

Here, n is the number of variables that are jointly normal. This means that each
random variable follows a normal distribution, given the values of the others. The
vector µ is a column vector of expected values for each Xi . Finally, Σ/Σ/Σ/ is the correla-
tion matrix between the n random variables. If the x values are independent, then
Σ/Σ/Σ/ ∈ Dn (diagonal). If the x values are independent and identically distributed, then
Σ/Σ/Σ/ = σ2In.

If n = 1, then the multivariate normal reduces to the univariate normal. If
n = 2, then it reduces to the bivariate normal, where the off-diagonal entries in Σ/Σ/Σ/ are
equal to ρσ1σ2 and the diagonal entries are σ2

1 and σ2
2 .

That is, if n = 2, then

Σ/Σ/Σ/ =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
(10.83)

Still, not much in this subsection is important — if the observations are independent.
If the observations are independent, then the n-variate normal is just the product of
the n univariate normals.

If the observations are not independent, however, then the joint distribution
— the actual distribution we care about — is not so simple. In many cases, it has not
been entirely formulated. For instance, what is the multivariate Binomial distribu-
tion? That is, what is the distribution of

{
y1, y2, y3, . . . , yn

}
, given correlation amongst

those n measurements?

Even better: How could we measure such correlation?4

4In such cases, Dai, Ding, and Wahba (2013) may give you some insight into the difficulty of
these questions — and their answers! This really makes you appreciate random sampling,
where both independence and identical distribution hold.
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10.3: Conclusion

From this chapter, we have discovered how to perform maximum likelihood estima-
tion (MLE). The steps are as usual: formulate the objective function, use calculus to
maximize it.

The maximum likelihood estimators for the two main parameters of the clas-
sical linear model are the same as the ordinary least squares estimators. Thus, they
are both unbiased. The maximum likelihood estimator of the error variance, how-
ever, is biased. We know this because it does not equal the MSE, which is unbiased.

Thus, it appears as though maximum likelihood gives us nothing helpful.
However, this is not true. First, there is a theorem (beyond the scope of this course)
that proves all maximum likelihood estimators are asymptotically unbiased. In
other words, if your estimator is a maximum likelihood estimator, you have nothing
to prove with respect to asymptotic bias (Panchenko 2006, Thode et al. 2002). All
other estimators (like OLS) require separate proofs. So, we gain there.

Second, ordinary least squares requires that the conditional distribution of
the dependent variable is normal. Maximum likelihood does not have that as a
requirement. This allows us to go beyond the classical linear model and the re-
quirement of Normality. In fact, the next part of this class examines this feature of
maximum likelihood estimation.
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10.4: End-of-Chapter Materials

10.4.1 R Functions This chapter had no R functions. It was all mathematics and
concepts. Yay!!

10.4.2 Exercises

1. Prove that the maximum likelihood estimator of π is x/n in a Binomial exper-
iment.

2. Prove Theorem 10.2.3.

3. Prove β̂0 is unbiased for β0.

4. Prove β̂1 is unbiased for β1.

5. Prove σ̂2 is biased for σ2 and that the bias is exactly n−1
n σ2.
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10.4.3 Theory Readings

• Bin Dai, Shilin Ding, and Grace Wahba (2012). “Multivariate Bernoulli Dis-
tribution.” Bernoulli 19(4): 1465–1483. doi: 10.3150/12-BEJSP10

• Dmitry Panchenko (2006). “Lecture 3: Properties of MLE: consistency, asymp-
totic normality. Fisher information.” Open Courseware/MIT. URL = https://ocw.mit.edu/courses/mathematics/18-
443-statistics-for-applications-fall-2006/lecture-notes/lecture3.pdf

• Aaron Thode, Michele Zanolin, Eran Naftali, Ian Ingram, Purnima Ratilal,
and Nicholas C. Makris (2002). “Necessary conditions for a maximum likeli-
hood estimate to become asymptotically unbiased and attain the Cramer–Rao
lower bound. II. Range and depth localization of a sound source in an ocean
waveguide.” The Journal of the Acoustical Society of America. 112(1890). doi:
10.1121/1.1496765
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Chapter 11:

GeneralizedLinearModels

Overview:

Until this point, we have been applying the classical lin-
ear model (CLM) to our problems of modeling a depen-
dent variable. It is the model Y = XB + E, with Normal
errors. While this model is quite prevalent in the litera-
ture, it does not always do a good job of approximating
reality.

In this chapter, we introduce the generalized lin-
ear model (GLM) and start to show its versatility. We
also repeat much of the previous chapter, but from a dif-
ferent perspective, one of paying attention to the data-
generating process.

Forsberg, Ole J. (10 DEC 2024). “Generalized Linear Models.”
In Linear Models and Řurità Kràlovstvı̀. Version 0.704442η(α).
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❧ ❧ ❧

In our regression examples thus far, we have been dealing with continuous depen-
dent variables. The classical linear model (CLM) requires this because the depen-
dent variable needs to be conditionally distributed according to the Normal (a.k.a.
Gaussian) distribution. Chapters 2, 3, and 4 discussed this in detail.

Chapter 7 examined how we can handle a couple of types of violations of
these assumptions, focusing on the case where the dependent variable is bounded.
When the dependent variable is bounded, it cannot be distributed Normal. (Why?
What is the support of the Normal distribution?) As such, if your dependent variable
is bounded, you will have to transform that variable into an unbounded analogue.
Once this is done, one might be able to use the methods of the usual CLM paradigm.

We have, however, encountered some difficulties with this transformation
method. In each of our examples from Chapter 7, the dependent variable was
bounded — but was never equal to its bound. This was necessary. If the depen-
dent variable ever is equal to its bound, then the transformation function you use
will return an infinite value (either −∞ or +∞).

In this part of the book, we will extend the classical linear model (CLM) to be
more general, and we will introduce a unifying framework allowing us to fit many
different types of dependent variables — both continuous and discrete.
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11.1: The CLM and the GLM

The Classical Linear Model (CLM) assumes that the relationship between the depen-
dent and the independent variables is linear and that the response variable can take
on all possible values; i.e., Y ∈ R. Furthermore, to come to statistical conclusions,
least squares methods assume that the errors are normally distributed.

However, not all relationships fit this model. Statisticians who realized this,
modified the CLM to handle many different types of relationships, much in the same
way we have (see, e.g., Chapters 5 through 7). Thus, if the dependent variable is
continuous and bounded, we modify the dependent variable. If there is heteroske-
dasticity in the model, we pre- and post-multiply the variance-covariance matrix to
better approximate the true standard errors.1 If you need to weight the data based
on some information (such as reliability), you multiply by the weight matrix. And
so forth.

However, there are certain types of dependent variables that cannot be fit
using this model (or fit optimally). These are the models with discrete dependent
variables. If we want to hold on to the CLM paradigm, we will have to pretend
such variables are continuous.2 Often, this assumption is not a good one. When
variables are binary, continuous approximations result in predictions that do not
reflect reality. When variables are counts, the variances are functions of the expected
value and are heteroskedastic. When the dependent variable is nominal, there is
little we can do using the classical linear model.

The Classical Linear Model can usually be altered to create good predictions.3

However, the further your variable is from being continuous and unbounded, the
more corrections you will have to make, and the more complex the process of esti-
mation and prediction becomes — if even possible.

This chapter serves to bridge the gap between the classical linear model
(CLM) and the generalized linear model (GLM). In this chapter, we will regen-
erate the results from the previous chapters, but use a different paradigm. This
new paradigm will help us understand the assumptions underlying ordinary least
squares regression. It will also serve as a basis for understanding the assumptions
of this new modeling paradigm.

11.2: The Requirements for GLMs

1These are called ‘sandwich estimators’ and were developed by Peter Huber (1967) and Halbert
White (1980).

2This assumption may not be a bad one. If we are modeling house value, then the discrete
variable is very close to its continuous approximation.

3While the predictions will frequently be fine, the confidence bounds will be based on assump-
tions not met by the data.
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The Generalized Linear Model (GLM) is a paradigm that extends the CLM and many
adjustments to it.4 To accomplish this feat, the model parts are named and exam-
ined. Those three parts are the linear predictor, the conditional distribution of the
dependent variable, and the link function. While we have already mentioned all
three of these concepts, let us explore them in greater detail before we derive the
mathematical results.

11.2.1 The Linear Predictor Of the three knowledge requirements for using
generalized linear models (GLMs), the linear predictor is the most familiar. It is
merely the weighted sum of your chosen explanatory variables that you used through-
out the classical linear model chapters:

η := β0 + β1X1 + β2X2 + · · ·+ βkXk (11.1)

= XB (11.2)

The only difference is that we are providing a name for the weighted sum (η, the
Greek letter eta) and we are calling it the “linear predictor.” It is a “linear” predictor
because the expression is linear in each of the coefficients (βi). It is a predictor
because it is used to predict the expected value of the dependent variable from the
independent variables.

Note that the values produced by the linear predictor are unbounded. That
is, note that η ∈ R. This is very important to realize, especially when we get to the
third requirement: the link function.

4There is a modeling paradigm termed General Linear Models, which merely allows for mul-
tiple independent variables to the CLM; technically, the CLM uses only one independent
variable. General Linear Models are rarely discussed separately from the CLM, as such there
is standardized no abbreviation for them. However, authors that do discuss General Linear
Models frequently abbreviate them by GLM. These same authors will abbreviate Generalized
Linear Models by GLZ. Upshot: When searching for information on GLMs, make sure you
are reading about Generalized Linear Models and not General Linear Models.
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Default Canonical Treated in
Dependent variable is . . . Distribution Link Chapter

Continuous, unbounded Gaussian Identity Chapter 11
Discrete, dichotomous Bernoulli Logit Chapter 12
Discrete, bounded count Binomial Logit Chapter 13
Discrete, unbounded count Poisson Log Chapter 14
Discrete, very limited Multinomial Logit Chapter 15

Table 11.1: A listing of several classes of dependent variables and appropriate distribu-
tions and links, and the chapter in which we discuss the variable class more closely.

11.2.2 The Conditional Distribution The first “new” addition is the condi-
tional distribution of the dependent variable (its distribution, conditional on the
values of the independent variable). Naming it is usually not as difficult as it may
seem — a few rules of thumb are very helpful. The distribution chosen reflects your
knowledge of the domain of the dependent variable. If the dependent variable can dependent variable
take on all Real values (as before), then an appropriate distribution is the Gaussian
distribution (as before).5 If the dependent variable can take on only values of 0 and
1, then an appropriate distribution is the Bernoulli distribution. And so forth. Ta-
ble 11.1 provides appropriate distributions for several different types of dependent
variables (and the chapter in which we discuss them). This is not an exhaustive list,
nor are the listed distributions always correct. They are just a good place to start.

Note: All of these distributions have something in common: They are mem-
bers of the exponential family of distributions (or exponential class of distribu-
tions). Section 11.2.4 discusses why this family of distributions was selected
and which distributions belong to it.

5The Gaussian distribution is the eponymous distribution named for Johann Carl Friedrich
Gauss (1777–1855). We already know it as the normal distribution. That we are using the
name Gaussian reflects standard terminology in GLMs and a desire to give credit where it is
due. Well, in Francophone areas, the distribution is known as the Gauss-Laplace distribu-
tion to give appropriate credit to Pierre-Simon, Marquis de Laplace (1749–1827). However,
Laplace also has his own distribution. Both the Gaussian and the Laplace distribution were
created to describe errors in measurement.
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The distribution is important in that its expected value automatically restricts the
outcome to appropriate values of the dependent variable. Note that we are explic-
itly modeling the expected value of the dependent variable (given the values of theexpected value
dependent variables). That we are modeling the expected value may sound odd,
but we did this previously with the linear models: Our prediction line was a line of
the expected value of the dependent variable, E [Y | x]. The same is true for GLMs:
The fitting routine predicts the expected value of the distribution, E [Y | x], not the
observed value.

11.2.3 The Link Function The third aspect you need to know in order to use
the GLM framework is the link function, which links the linear predictor and the
expected value of the distribution. If we symbolize the expected value of the dis-
tribution as µ and the linear predictor as η, then the link function is g(·), such that
g(µ) = η.

The most important requirement for the link function is that it maps the
bounded domain of the expected value of Y to the unbounded domain of the linear
predictor η. An additional requirement is that it is a bijection; that is, the link andmapping
its inverse are both functions. It is also usual to make the link a strictly increasing
function. This forces the direction of the effect of your variable to be in the same di-
rection as the sign of the estimated coefficient: if the coefficient estimate is positive,
then the variable has a positive effect on the dependent variable.

Table 11.1 lists the canonical link functions for each of the provided distri-canonical link
butions. One can use links that are not canonical — and often should — but the
canonical link is the default link function used. In subsequent chapters, when an
alternate link function is appropriate, we will discuss why.

11.2.4 The Mathematics* Nelder and Wedderburn (1972) formulated the GLM
paradigm to unify modeling techniques for several different classes of problems, in-
cluding logistic regression, count regression, and linear regression. Starting with
a member of the exponential family of distributions, Nelder and Wedderburn cre-
ated an estimation method called iteratively re-weighted least squares (IRLS). This
method uses maximum likelihood estimation (MLE) to estimate the parameter ef-
fects using an iterative procedure. MLE remains the primary method of fitting
GLMs, but other approaches are used, including maximum quasi-likelihood esti-
mation, Bayesian estimation, and several variance stabilization methods.

Their choice of MLE was simply one of computing ease. Remember that the
early 1970s were a time of loud polyester clothes, not of cheap computing power.
However, even though MLE was chosen for ease, these estimates have some helpfulPong
properties. As such, this is still the most widely used method for fitting GLMs, just
as OLS has been the preferred method for fitting CLMs for many decades.
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Exponential Class of Distributions: The one and only requirement on the distri-
bution is that it belongs to the exponential class of distributions (Nelder and Wed-
derburn 1974; Wood 2006). Many of the distributions we experience belong to this
class, so it is not an issue. Examples of distributions in this class are

• beta

• chi-squared

• exponential

• gamma

• geometric

• normal

• Poisson

• standard uniform

Specifically, to be a member of this family, the probability density function (or prob-
ability mass function, if discrete) must be expressible in the following form:

f (y) = exp
[
yθ − b(θ)
a(φ)

+ c(y,φ)
]

(11.3)

Let’s look at a few features of this form to better understand what each of the parts
indicates.

The Mean. The expected value of the distribution is just mean

E [Y ] = b′(θ) (11.4)

Recall that the expected value is important, as it is what we actually model in GLMs.
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Variance. The variance isvariance
V [Y ] = b′′(θ) · a(φ) (11.5)

The a(φ) is called the “dispersion parameter.” Infrequently, the chosen distributiondispersion
forces this to be a specific value. Usually, however, this variable is free to reflect
the data (be estimated from). For those distributions that force this to be a specific
number, we either need to use quasi-likelihood to fit the model or we need to test
this assumption.

Canonical Link. Next, the θ is the canonical link function, g−1(·). It is a functionMaka × Soul
of the parameters of the distribution selected. In the Gaussian case, the canonical
link is the identity function, µ = η. In the Bernoulli (and Binomial when n is known)
case, the canonical link is the logit function, logit(µ) = η, where the logit function is
definted as

logit(µ) := log
[
µ

1−µ

]
(11.6)

Nuisance Parameters. Finally, c(y,φ) is a term that allows some flexibility to theNuisance
exponential family of distributions. Without the c function, far fewer distributions
would belong to this family. Further, note that the c function affects neither the
expected value nor the variance.
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11.3: Assumptions of GLMs

When we were creating ordinary least squares (OLS) regression, we made one as-

sumption: ε iid∼ N (0,σ2). After learning the mathematics of fitting the models, we
went back and figured out how to test these assumptions. The same will be true
here.

When performing generalized linear modeling, you make at least three as-
sumptions: you assume the linear predictor is correct; you assume the conditional assumptions
distribution of the dependent variable is correct; and you assume the link function
is correct. If these assumptions are not met by the data and model, then there is
information in the data that you are ignoring. good news!

Testing these is usually not as easy as in the case of OLS regression. The lin-
ear predictor and the link function, together, determine the functional form. It can functional form
sometimes be tested using a runs test. That is the easy part. Testing the correctness
of the conditional distribution is much more involved. It requires that one under-
stands the hypothesized distribution, especially in terms of range, expected values,
and variances. Note that tests of heteroskedasticity may not be useful here; many
distributions are heteroskedastic.

The testing must be done, however.

Note: As you read through this part of the book, always keep in mind what
we are assuming. That will help you determine the requirements and how to
test them.
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11.4: The Gaussian Distribution

To illustrate what we did in the previous sections, let us apply what we know to the
Gaussian distribution, determining the canonical link, the expected value, and the
variance. Hopefully, the results will not surprise us.normal distribution

We start with the probability density function (pdf).

f (y) =
1

√
2πσ2

exp
[
−

(y −µ)2

2σ2

]
(11.7)

Now, to write this in standard form. This just takes algebra and some rules of loga-
rithms.

= exp
[
−

(y −µ)2

2σ2 + log
(

1
√

2πσ2

)]
(11.8)

= exp
[
−
y2 − 2yµ+µ2

2σ2 + log
(

1
√

2πσ2

)]
(11.9)

= exp
[
−
y2

2σ2 +
yµ

σ2 −
µ2

2σ2 + log
(

1
√

2πσ2

)]
(11.10)

= exp

yµ− 1
2µ

2

σ2 + log
(

1
√

2πσ2

)
−
y2

2σ2

 (11.11)

Recall from Section 11.2.4 that the standard form isstandard form

f (y) = exp
[
yθ − b(θ)
a(φ)

+ c(y,φ)
]

(11.12)

Thus, we can see the correspondences. Thus, we have the following:

• y = y

• θ = µ

• a(φ) = σ2

• b(θ) = 1
2µ

2 = 1
2θ

2

• c(y,φ) = log
(

1√
2πσ2

)
− y2

2σ2

Thus, the canonical link is g(µ) = µ, also known as the identity function. Note that
the dispersion parameter is the variance, a(φ) = σ2. Also note that the expected
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value is

E [Y ] = b′(θ) (11.13)

=
d
dθ

(1
2
θ2

)
(11.14)

= θ (11.15)

= µ (11.16)

Hopefully, this is as we expect. Finally, note that the variance is

V [Y ] = b′′(θ)a(φ) (11.17)

=
d2

dθ2

(1
2
θ2σ2

)
(11.18)

=
d
dθ

(
θσ2

)
(11.19)

= σ2 (11.20)

Also as we expect, hopefully.

Other Link Functions: While the canonical link is the identity function (η = µ), it
is not the only allowable link function. In Section 7.1.2, we transformed the contin- not canon
uous dependent variable because it was bounded below by (but never equaled) zero.
In such a case, the logarithm is an appropriate link function: The dependent vari-
able has a restricted range. The link function converts that range to an unbounded
range. The same is true under the GLM framework. Similarly, the logit function is
frequently an appropriate link function, as it was in Section 7.1.1.

With that, we start to see that for continuous dependent variables, what we
did under the CLM paradigm we can do under the GLM paradigm. This is always
true; the GLM paradigm extends the CLM paradigm to handle different classes of
dependent variables.
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11.5: Generalized Linear Models in R

In previous chapters, we performed linear modeling using the lm function. To per-
form generalized linear modeling, we use the glm function. When one uses the Gaus-
sian distribution and its canonical link, results between the two methods will be
identical. That is, we could have fit all of the lms with glms and not change a thing.

Note: If one uses the Gaussian distribution and a non-canonical link, the
predictions will be very close, but not identical. The reason is that the trans-
formation is performed on different quantities between the two methods. . .
as the following shows.

To see this, we can look at two things. The first is focusing on what the alteration
applies to (the residuals????). When transforming the dependent variable:

g−1(Y) = XB + E (11.21)

⇒ Y = g(XB + E) (11.22)

When using the link function:

g−1(E [Y | X]) = XB (11.23)

E [Y | X] = g(XB) (11.24)

Y = g(XB) + E (11.25)

(11.26)

So, the only difference is in whether the function applies to the residuals. In the
CLM, it does; in the GLM, it does not. This is why there will be (usually slight)
differences between the CLM transformed and the GLM with a link function.

Second, we can see this in an old example, use the GLM paradigm to find the
answers, and see that the results are slightly different from when the model fit when
transforming the dependent variable.
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Example 1

Let us return to the cows data file. The voters of Děčı́n are being sent to the
polls to vote on a constitutional referendum (ballot measure) that proposes
to limit the number of cows that can be housed within the city limits. This
was not the first time that Ruritanians were sent to the polls to vote on this
or a closely related issue. Given the information from previous votes, what
is the estimated proportion of voters who will vote in favor of the ballot
measure in Děčı́n?

Solution: The example asks us to estimate the proportion of voters who will vote in
favor of the ballot measure in Děčı́n. The dependent variable will be propWin and
the independent variables will be yearPassed, chickens, and religPct. For
now, let us assume a linear relationship between the independent variables and the
dependent variable; that is, the equation we will use to fit the data is

propWin = β0 + β1(yearPassed) + β2(chickens) + β3(religPct) + ε (11.27)

This is equivalent to

E [propWin] = β0 + β1(yearPassed) + β2(chickens) + β3(religPct) (11.28)

which is more clearly connected to the GLM paradigm than before.

Performing Generalized Linear Modeling in R is straight-forward (as it is in
all modern statistical packages). The function to use is glm (for ‘Generalized Linear
Modeling’):

glm(propWin ∼ yearPassed + chickens + religPct)

As glm returns a lot of information, we should store its results in a variable, which
I will call mod1. Once the computer computes the regression (and all associated
information), we can summarize the results in the standard results table (Table 11.2)
using the command

summary(model.1)

Notice that all three variables of interest are statistically significant at the α = 0.05
level. Additionally, the model has a residual deviance of 0.063072 (as compared to
the null deviance of 0.286802). This indicates that the model reduced the deviance
by a factor of pseudo-R2

1− 0.063072
0.286802

= 0.7801 (11.29)
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Estimate Std. Error t-value p-value

Constant Term 0.1512 0.0659 2.293 0.0295
Year Passed (post 2000) -0.0201 0.0036 -5.618 ≪ 0.0001
Banned Chickens -0.0373 0.0200 -1.868 0.0723
Percent Religious 0.0095 0.0011 8.801 ≪ 0.0001

Table 11.2: Results table for the regression of proportion support of a generic ballot limit-
ing cows in Děčı́n against the three included variables. The residual deviance is 0.063072,
on 28 degrees of freedom, and the AIC is -98.523. As the hypotheses were one-tailed hy-
potheses, all three explanatory variables are statistically significant at the standard level
of significance (α = 0.05).

And this agrees with the R2 from Section 6.3.

Thus, the equation for the line of best fit (also known as the prediction line)
is approximately

E [propWin] = 0.1512− 0.0201(yearPassed)− 0.0373(chickens) + 0.0095(religPct)
(11.30)

According to this model, what is the expected vote in Děčı́n? To answer this, we need
this information about the Děčı́n ballot measure: yearPassed = 9, chickens = 0,
religPct = 48. With this information, and under the assumption that the model
is correct, we have our prediction that 42% of the Děčı́n voters will vote in favor of
this ballot measure. ♦

There is nothing in the previous paragraphs that differs from the analysis results
from Section 6.3. This is because the Generalized Linear Model paradigm extends
the Classical Linear Model paradigm and is equivalent to it when the dependent
variable is Gaussian distributed and the link is the identity function. We can even
use something like the goodness-of-fit measure we developed in Section 2.4, the R2

measure. Here, however, we calculate it based on the null and residual deviances.
The null deviance is the deviance inherent in the data (akin to the variance of the
data, TSS). The residual deviance is the deviance in the data unexplained by the
model (akin to the SSE).

If we wish to predict the results of a Venkovský ballot measure from 1994,
which also restricted chickens, we would still get an impossible prediction — oneimpossible
that is outside logical limits. In Section 7.1.1, we corrected this error by transforming
the data, modeling, then back-transforming the results. Instead of transforming the
dependent variable, let us merely change the link function. Here is how that is done
in R and with glm:

The command to use is
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Estimate Std. Error t-value p-value

Constant Term -1.8909 0.2898 -6.53 ≪ 0.0001
Year Passed (post 2000) -0.0886 0.0157 -5.63 ≪ 0.0001
Banned Chickens -0.2318 0.0878 -2.64 0.0134
Percent Religious 0.0475 0.0047 10.06 ≪ 0.0001

Table 11.3: Results table of the results of ordinary least squares regression on the logit-
transformed dependent variable. The residual deviance is 0.064987, the null deviance is
0.286802, the R2 is 0.7734, and the AIC is −97.6.

Figure 11.1: A plot of the predictions across various values of religiosity comparing the
two models: CLM and GLM. Note that while the two results tables provided different
results, the prediction plots are quite close together. The curves would have been equal only
if we were to use the canonical link and the Gaussian distribution. For the predictions,
the year was 2010 and the ballot measure also banned chickens.

mod3 = glm(propWin ∼ yearPassed + chickens + religPct,
family=gaussian(link=make.link("logit")))

Now, summary(mod3) provides many results. Note that all three independent vari-
ables are more statistically significant than in the non-transformed model. Also note
that the effect directions are the same as before.

Finally, note that these parameter estimates are not the same as those where
we used the Classical Linear Model with a logit transformation to fit the data in
Chapter 7. However, if we make predictions, we see that the results are very close
(Figure 11.1). CLMs and GLMs give identical results only with the Gaussian distri- identical
bution and its canonical link. Here, we used the logit link.
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Estimate Std. Error t-value p-value

Constant Term 8.1595 0.1546 52.77 ≪ 0.0001
Level of Democracy -0.0452 0.0061 -7.44 ≪ 0.0001
Honesty in Government 0.3335 0.0219 15.20 ≪ 0.0001

Table 11.4: The results table from fitting the GDP data using Generalized Linear Models
(cf. Table 7.2). Note that both independent variables are significant at the α = 0.05 level
here (highly significant).

Let us now re-examine Example 7.1.2 from Chapter 7. Recall that in that
example, we were modeling a variable that was bounded below, but not above. This
led us to transform the dependent variable using the logarithm function. Here, we
fit the model with the Gaussian distribution and the non-canonical link.Maka × Kid

Example 2

The gross domestic product (GDP) per capita is one of many measures of
average wealth in countries. If extant theory is correct, then the wealth in
the country is directly affected by the level of honesty in the government —
countries with high levels of honesty (low levels of corruption) should be
wealthier than those with low levels of honesty (high levels of corruption).

Furthermore, if theory is correct, the level of democracy in a country
should also influence the country’s level of wealth — countries with higher
levels of democracy should be wealthier than countries with low levels of
democracy.

Let us determine if reality (using the data in the gdpcap data file)
supports the current theory or if current theory needs to explain the severe
discrepancies.

Solution: The process of fitting this model with a GLM should be getting rote by
now as it is so similar to fitting with a CLM. The R command is

m2 = glm(gdpcap ∼ democracy + hig,
family=gaussian(link = make.link("log")))

To see the results, we perform a summary call. The results of that call are provided
in Table 11.4. Note that both independent variables are highly significant at the
usual level of significance, α = 0.05. Furthermore, the effect directions are the same
as in the CLM model (Table 7.2 on page 201). ♦
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Note: For some link functions, R allows you to skip the “make.link” por-
tion. The log link is one of those for the Gaussian. Thus, the following
command would also work:

glm(gdpcap ∼ democracy + hig, family=gaussian(link="log"))

I recommend writing it out. That helps those who follow you to interpret
what you are doing.

To predict the GDP per capita for Papua New Guinea, we repeat the same steps
as when we were fitting CLMs: predict, then back-transform. Thus, a prediction
statement will be

PNG = data.frame(hig=2.1, democracy=10)
exp(predict(m2, newdata=PNG))

The predicted GDP per capita for Papua New Guinea was $2678 when fitted with the
CLM. For this model, the prediction is $4481. Thus, the prediction for Papua New
Guinea is higher using GLMs than when using CLMs. Looking at the prediction
graph (Figure 11.2), we see that GLM predictions are lower than CLM predictions
for certain values of the dependent variable (and larger for others).
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Figure 11.2: A plot of the two prediction curves, corresponding to the model fit using the
Classical Linear Model and the Generalized Linear Model. Note that the two prediction
curves are similar, but not really that close for large values of honesty in government.
Estimates for Papua New Guinea are shown with the two symbols.
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11.6: Conclusion

This chapter introduced the Generalized Linear Model paradigm, which is an exten-
sion of the Classical Linear Model paradigm from the previous two chapters. The
advantage of the GLM paradigm is that more classes of dependent variables can be
fit. The disadvantage (if we can call it that) is that we need to understand our data
and model better. The three things we need to know are the linear predictor, the dis-
tribution of the dependent variable, and the function that links the expected value
of the distribution with the linear predictor.

We tied this chapter to the previous chapters by showing that a GLM model
using the Gaussian distribution (and the identity link) is equivalent to using the
CLM. Three examples showed that the steps in modeling using the Generalized
Linear Model paradigm are very similar to the steps used in modeling using the
Classical Linear Model paradigm.

This chapter actually marked a major departure in how we see our data.
Before, whenever a datum was different from our prediction, we viewed it as an
error. Now, we realize that this variation is simply due to random fluctuations. We
know this because we realize that our dependent variable is a random variable.

In the next chapters in this part of the book, we will examine more classes
of dependent variables: binary, limited discrete (both nominal and ordinal), count,
and non-negative continuous. As we examine these classes, pay attention to the
selected distribution and the possible link functions. Table 11.1 provides several of
the distributions and their canonical link functions.

Before you move on to the next chapter, ask yourself one thing: What re-
quirements do we need to check four our models in this chapter? Make sure you can
explain why they are requirements, too.
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11.7: End-of-Chapter Materials

11.7.1 R Functions In this chapter, we were introduced to several R functions
that will be useful in the future. These are listed here.

Packages:

RFS This package does not yet exist. It is a package that adds much general func-
tionality to R. In lieu of using library(RFS) to access these functions, run
the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Statistics:

lm(formula) This function performs linear regression on the data, with the sup-
plied formula. As there is much information contained in this function, you
will want to save the results in a variable.

glm(formula) This function performs generalized linear model estimation on the
given formula. There are three additional parameters that can (and often
should) be specified.

The family parameter specifies the distributional family of the dependent
variable, options include gaussian, binomial (this chapter), poisson (next
chapter), quasibinomial, quasipoisson, and gamma. If this parameter is
not specified, R assumes gaussian.

The link parameter specifies the link function for the distribution. If none is
specified, the canonical link is assumed.

Finally, the data parameter specifies the data from which the formula vari-
ables come. This is the same parameter as in the lm function.

predict(model, newdata) As with almost all statistical packages, R has a predict
function. It takes two parameters, the model, and a dataframe of the inde-
pendent values from which you want to predict. If you omit newdata, then
it will predict based on the independent variables of the data itself, which can
be used to calculate residuals. The dataframe must list all independent vari-
ables with their associate new values. You can specify multiple new values for
a single independent variable.
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11.7.2 Exercises This section offers suggestions on things you can practice from
just the information in this chapter. As the purpose of this chapter was to introduce
Generalized Linear Models and emphasize that everything we have done thus far can
be done with GLMs, all of the extension questions are from previous chapters. For
each of these, use the Generalized Linear Model paradigm (and the glm function).

Summary:

1. What are the three aspects of your model that must be known before using
generalized linear models?

2. When doing ordinary least squares regression, what were these three aspects?

3. How does the canonical link function differ from a link function?

4. What is a(φ) for the Gaussian distribution?

Data:

5. Now, note that the value for Reka is 46% weekly church attendance. If, in
the year 2012, the voters of Reka were faced with a ballot measure limiting
the number of cows in the city limits, but not restricting chickens, what is the
probability that it will pass?

6. Calculate a 95% confidence interval, with the transformed Cow Vote model,
for predicting Děčı́n’s vote. Is the actual outcome within the 95% confidence
interval?

7. The logit transformation is not the only possible choice as a link for propor-
tion data, there is also the asymmetric complementary loglog transformation
(cloglog in the RFS package). Use this function as the link function to pre-
dict Děčı́n’s vote, its 95% confidence interval, and the probability of the SSM
ballot measure passing. The inverse of the complementary log-log transform
has no name, but the R function is cloglog.inv, also in the RFS package.

8. Estimate the GDP per capita for Papua New Guinea. For this problem, use
the untransformed model. Also, calculate a 95% confidence interval for this
estimate. How close is this estimate to the real answer, and it the real answer
within the predicted confidence interval?

9. Estimate the GDP per capita for Papua New Guinea. For this problem, use the
transformed model. Also, calculate a 95% confidence interval for this estimate.
How close is this estimate to the real answer, and it the real answer within the
predicted confidence interval?

10. Compare and contrast the results of your Papua New Guinea estimates (Prob-
lems 8 and 9). Which model works best for Papua New Guinea? Which model
works best overall?
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Chapter 12:

BinaryDependentVariables

Overview:

Thus far, we have examined linear regression where the
dependent variable is continuous — either unbounded
or bounded. These cases cover a wide variety of in-
stances — but not all. Examples of dependent variables
we can now use include heights, incomes, vote propor-
tions, distances, and so forth.

However, we do not yet have the ability to handle
dependent variables which are discrete. Such variables
include dichotomous variables (presence of a character-
istic), count variables (ages, deaths, numbers of fires),
ordinal variables (importance level), and nominal vari-
ables (different outcomes). These types of variables are
all limited in that there are adjacent outcomes. This
chapter deals with modeling dichotomous (binary) ran-
dom variables.

Forsberg, Ole J. (10 DEC 2024). “Binary Dependent Variables.”
In Linear Models and Řurità Kràlovstvı̀. Version 0.704442η(α).
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❧ ❧ ❧

The previous chapter introduced the generalized linear model paradigm (GLM).
Modeling with GLMs requires that we specify three things:

1. the conditional distribution of the dependent variable (thus a formula for the
expected value of the dependent variable), µ;

2. the linear predictor, η = XB; and

3. a (bijective) function linking the two, g(µ) = η.

In that chapter, we showed that the Classical Linear Model is just a special case of the
Generalized Linear Model. Specifically, the CLM is just a GLM using the Gaussian
(Normal) distribution and the identity link. In this chapter, we cover the case of
dichotomous (binary) dependent variables. In the following pages, we determine
the appropriate distribution and the canonical link function.
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12.1: Binary Dependent Variables

A dichotomous variable is one that can take one of two values: 1 or 0, True or False, dichotomous
Yes or No, success or failure. In research, these variables include the occurrence of
terrorism, the election of a specific party to power, the existence of a fire, and the
failure of a plane. In each of these cases, there are only two possible values, which
we will refer to as success and failure. This is the hallmark of dichotomous vari-
ables. Before Nelder and Wedderburn (1972) created the GLM framework, statisti-
cians created special models for binary dependent variable problems (with different
transformations).

They did so because the classical linear model invariably makes predictions
outside the logical range, demonstrates heteroskedasticity, and has residuals that
are not Normally distributed — all violations of the OLS assumptions. To illustrate
this, let us model the decision to purchase life insurance using age and income and
the classical linear model (fit using OLS). The next example illustrates these issues.

Example 1

In Ruritania, the decision to buy life insurance is related to several variables,
including age and income. Table 12.1 includes records of several individuals.
Fit this data with a linear model using OLS:

insurance = β0 + β1age+ β2income (12.1)

Next, predict whether Václav will buy life insurance, given that his age is 65
and his income is $125,000. Finally, determine if the assumptions of ordinary
least squares are violated with this model and data.

Solution: Using our statistical program, we get the following as our linear regression
equation

insurance = −0.4277 + 0.0130×age+ 0.0088×income (12.2)
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Figure 12.1: Scatter plot of the residuals against the values of the dependent variable.
Note the different variances for the two groups. As such, the linear model is not appropri-
ate in this case.

Using the provided information, we predict Václav will buy life insurance at (with?)

insurance =− 0.4277 + 0.0130×age+ 0.0088×income (12.3)

=− 0.4277 + 0.0130× 65 + 0.0088× 125 (12.4)

= + 1.5121 (12.5)

What does this value of 1.5121 actually mean?

I don’t know, either.

Individual Insurance Age Income ($000)

1 0 25 20
2 0 30 30
3 0 21 30
4 0 35 25
5 0 28 27
6 1 80 90
7 1 55 25
8 1 40 60
9 1 40 65

10 1 25 125

Table 12.1: Insurance pseudo data to accompany Example 12.1 in the text, in which we
predict a person purchasing life insurance based on the person’s age and income.
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Next, to check the assumptions of OLS, let us merely check the assumption of homo-
skedasticity (constant variance). To do this, we plot the residuals against the values
of the dependent variable. Figure 12.1 shows that the variation in the residuals sig-
nificantly differs across the two groups in this model — a violation of our assump-
tions. In fact, calculations show that the variance for those who bought insurance
is about 24 times higher than for those who did not (0.1325 vs. 0.0055). This is an
example of non-constant variance. Performing the usual F-test for comparing two
variances, we also see that this difference is statistically significant (F = 0.0416,νn =
4,νd = 4,p = 0.0093). Therefore, we conclude that our model is not appropriate for
this data. ♦
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There were two problems with this analysis. First, the model predicted an outcome
that did not make sense. Second, the model violated at least one assumption of
ordinary least squares (it actually violates all three). To solve the first problem, we
could create a decision rule that any predicted value above the threshold τ = 0.500
will be treated as a ‘Buy’ prediction, and any predicted value less than τ = 0.500 will
be treated as a ‘Not Buy’ prediction.

The second problem is more serious and not so easily solved, especially if
we care about our estimate’s uncertainty (i.e., create confidence intervals). One
may consider performing a transformation on the dependent variable to make it
unbounded. A logit transformation would be a natural transformation for this; how-
ever, all of the dependent variables are either 1 or 0, which means the transformed
values will be either +∞ or −∞. Furthermore, this transformation would not take
care of the relationship between the residuals and the (transformed) dependent vari-
ables.

Note: There is a tendency to feel disappointed when our model violates as-
sumptions, such as here. However, instead of seeing the existence of a re-
lationship between the residuals and the dependent variable as a problem,
let us realize such a relationship tells us that there is more information in the
data than we are modeling at this point. As an interested researcher, we want
to use that information to get more from our data. Thus, violations are not
steps backwards; they are a path towards a deeper understanding of the data
generating process.

12.2: Latent Variable Modeling

In Example 12.1, we discovered that Václav has a something of 1.5121 to buy life
insurance. What is the something? Our gut really wants us to say that it is the proba-
bility that he buys life insurance. In fact, it would be very helpful if we could predict
Václav’s probability of buying life insurance. Unfortunately, what we estimated can-
not be a probability, as the value is greater than 1.

Notice, however, that we have just made an unconscious step in our minds:
We are no longer thinking in terms of modeling the actual outcome (1 or 0); we are
thinking in terms of modeling the expected value of the outcome, E [Y | x]; here, that
is the probability of a success, π.

In other words, we are now modeling a variable we cannot measure — a
latent variable. Instead of modeling an actual outcome, we now think in terms oflatent
modeling the underlying probability that the person will purchase life insurance.
This has the dual advantage of being a continuous variable and of being bounded by
0 and 1 — exclusive.
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As such, we can model it using previous techniques. Remember that the
predicted value will be a probability, not an actual outcome we can measure. To
predict the outcome, there is an additional step: selecting a threshold value, τ , above
which we predict the individual bought insurance; below which, not. The traditional
threshold value is τ = 0.500; however, there is no reason we cannot alter it to better
fit the data (Section 12.5.3).

Thus, our research model in the life insurance example becomes

logit
(
P [insurance]

)
= β0 + β1age+ β2income (12.6)

We use the logit function for the same reason we used it before (Chapter 7): to
transform the bounded variable into an unbounded variable. The right hand side
of Equation 12.6 is η (eta), a linear function that can take on all real values — the
linear predictor. Figure 12.2 shows a schematic of what we are actually modeling.
The diagonal line in Figure 12.2, top, is the line of best fit for the linear predictor.
The horizontal line is the threshold value we chose to distinguish between ‘Success’
predictions and ‘Failure’ predictions, which corresponds to logit(τ) in this top graph,
τ in the bottom. The bottom figure is the linear predictor back-transformed into
‘probability’ units. The horizontal line is the actual τ chosen, here τ = 0.500.

If we need to actually calculate the probability that Václav will purchase life
insurance, we can calculate it from the linear predictor:

logit
(
P [insurance]

)
= η (12.7)

This is equivalent to

P [insurance] = logistic
(
η
)

(12.8)
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Figure 12.2: Plot of the linear predictor and a possible threshold for a typical latent binary
dependent variable model. The logit of the Linear Predictor is in level units (proportion
units).
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❧ ❧ ❧

This section examined the relationship between the line of best fit for the linear
predictor, η, and the predicted probability of a success. However, we did not discuss
how that line of best fit was determined. The next section does just that.

12.3: The Mathematics

When we model using the Classical Linear Model, we actually model/predict the
expected value of the dependent variable, the mean. In the above insurance example,
we modeled/predicted the probability of a person purchasing life insurance. What
is the connection? It is that E [Y | x] = π.

Remember from Chapter 11, performing GLM estimation requires that we
know three things about our data and our model: the linear predictor, the condi-
tional distribution of the dependent variable, and the function that links the two
domains. The previous section discussed the linear predictor (η = β0 + β1age +
β2income) and a link function, logit(µ), for our example. That only leaves the con-
ditional distribution of the dependent variable.

What are the possible values of the dependent variable? They are {0,1}. What
distribution has only these two outcomes? It is the Bernoulli distribution.1 For the
Bernoulli distribution, the probability of getting a ‘1’ (success) is π and the proba-
bility of getting a ‘0’ (failure) is 1−π. Mathematically, this means the full probability
mass function (pmf) is

f (y) =


πy (1−π)1−y y ∈

{
0, 1

}
0 otherwise

(12.9)

Strictly speaking, the probability mass function is not as important as the expected
value of this distribution. Why? Remember that the Generalized Linear Model
paradigm models the expected value, E [Y | x], of the distribution of the dependent
variable.

Calculating the expected value of the Bernoulli distribution is easy using the
definition of expected value:

E [Y ] :=
∑
i

yi f (yi) (12.10)

= 0 f (0) + 1 f (1) (12.11)

= 0 (1−π) + 1 (π) (12.12)

1The Bernoulli distribution is a special case of the Binomial. It is equivalent to the Binomial
distribution when n = 1; that is, if Y ∼ Bern(π), then Y ∼ Bin(1,π).
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= π (12.13)

Thus, the expected value of a Bernoulli random variable is π, the success probability.

This fact makes the results of modeling more apparent: As the GLM paradigm
models the expected value, when we use the Bernoulli distribution, we end up mod-
eling the probability of a success, which is what we want.

Note: Recall that one of the assumptions of Ordinary Least Squares is that the
variance is constant with respect to the independent variable. When the out-homoskedasticity
comes are Bernoulli random variables, we can easily prove that the variance is
not constant with respect to the expected values. If there is a relationship be-
tween the independent variable and the probabilities (which will be true if X
affects Y), then a relationship between variance and expected value indicates
heteroskedasticity.

To see this, let Y ∼ Bern(π). With this, and with the pmf above, we
use the definition of variance to calculate V [Y ]:

V [Y ] :=
∑
i

(yi −µ)2f (yi) (12.14)

= (0−µ)2f (0) + (1−µ)2f (1) (12.15)

= (0−π)2f (0) + (1−π)2f (1) (12.16)

= π2(1−π) + (1−π)2π (12.17)

= π(1−π)
[
π+ (1−π)

]
(12.18)

This last line simplifies to V [Y ] = π(1 − π), as π + (1 − π) = 1, which means
V [Y ] is a function of π, the expected value. It is not a constant with respect
to the expected value, π. Binary dependent variables violate the assumption
of homoskedasticity — by definition.

Note: The variance is a quadratic function of the success probability, V [Y ] =
π(1 − π). From this formula, we see that we are most unsure (the variance
is highest) when the probability of a success is π = 0.500. Check that this
makes sense: Which has a more uncertain outcome, a fair coin (π = 0.500) or
a two-headed coin (π = 1.000)?

Now that we understand our choice of distribution a bit better, and the resulting
expected value, let us examine the third facet: the link function. First, note that π is
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bounded: π ∈ (0,1). Thus we need a function that takes a doubly-bounded variable
and transforms it into an unbounded variable. We have already met a link function
that can handle this — the logit function (see Chapter 7).2

And so, we have the three necessary components to use generalized linear
models in this example:

• the linear predictor,
η = β0 + β1age+ β2income (12.19)

• the distribution of the dependent variable,

insurance ∼ Bern(π) (12.20)

with the formula for the expected value µ = π.

• and the link function,
logit(µ) = η (12.21)

2Here, I must mention that the logit is not the only appropriate link function. Any monotonic
function that maps (0,1) 7→ R is appropriate. This includes the entire class of quantile func-
tions, of which the probit is a member.

The choice of the link function often reduces to tradition within your field. How-
ever, social science theory is getting advanced enough to suggest link functions that are more
appropriate than others.

341



Note: Here is what you need to take away from this section: The distribution
must fit the possible outcomes. The link must translate the bounds on the pa-
rameter to the linear predictor. Both require you to know some distributions,
which is why they are briefly covered in Appendix S.

12.3.1 Deriving the Canonical Link* In Chapter 11, we mentioned that each
distribution has a canonical link. Let us derive the canonical link for the Bernoulli
distribution. As a side note, one does not have to understand this section to use
Generalized Linear Models.

The steps to determine the canonical link are the same for the Binomial as it
was for the Gaussian (Chapter 11):

1. Write the probability mass function (pmf).

2. Write the probability mass function in the required form.

3. Read off the canonical link.

For this distribution, this results in:

pmf : πy(1−π)1−y (12.22)

= exp
[
log

(
πy(1−π)1−y

) ]
(12.23)

= exp
[
log(πy) + log

(
(1−π)1−y

) ]
(12.24)

= exp
[
y log(π) + (1− y) log(1−π)

]
(12.25)

= exp
[
y log(π) + log(1−π)− y log(1−π)

]
(12.26)

= exp
[
y (log(π)− log(1−π)) + log(1−π)

]
(12.27)
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Link Inverse Link

Logit log(µ/(1−µ)) Logistic (1 + exp(−η))−1

Probit Φ−1(µ) Normal CDF Φ(η)

Cauchit tan
(
π
(
µ− 1

2

))
Cauchy CDF arctan(η)/π+ 1

2

log-log − log(− log(µ)) exp(−exp(−η))
Complementary log-log log(− log(1−µ)) 1− exp(−exp(η))

Table 12.2: A list of several possible link functions (not all) to use for binary dependent
variables. For the case of the Bernoulli distribution, remember that µ = p.

= exp
[
y log

( π
1−π

)
+ log(1−π)

]
(12.28)

= exp
[
y logit(π) + log(1−π)

]
(12.29)

= exp
[
y logit(π) + log(1−π)

1
+ 0

]
(12.30)

This is in the required form:

exp
[
y θ − b(θ)
a(φ)

+ c(y,φ)
]

(12.31)

Thus, reading off the standard form, we have the following:

• y = y

• θ = logit(π)

• a(φ) = 1

• b(θ) = log(1−π) = − log(1 + eθ)

• c(y,θ) = 0

As such, the canonical link is the logit function, g(π) = logit(π).
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12.3.2 Other Links As mentioned in Chapter 11, we do not have to use the
canonical link. Any monotonic, increasing function that maps the restricted domain
to the unrestricted domain works. Thus, there are several options for the link func-
tion. Table 12.2 gives some options.3

The logit link is the canonical link. The probit link is frequently used inprobit
biostatistics. Its advantage is that it is based on the Normal distribution, with which
we are intimately familiar. There is usually little difference between predictions
made with the logit link and those made by the probit link. The coefficient estimates
will usually differ by a factor of approximately 3.7, and the levels of significance will
usually be close. The cauchit link is a symmetric link with heavy tails, as compared
to the logit and the probit links (see Figure 12.3).

The log-log link and the complementary-log-log link are asymmetric links.
The log-log link has a heavy right tail; the complementary-log-log link, a heavy left
tail (see Figure 12.4). Most science theory is only now beginning to be able to state
which of the three types of link functions will be most appropriate for the given
model (symmetric, heavy left, heavy right).

Note: R has the built-in ability to model using the following link functions for
the binomial (Bernoulli) distribution: logit, probit, cauchit, log, and complementary-
log-log. The RFS package adds the log-log link function:

glm( y ∼ x, family=binomial(link=make.link("loglog")) )

❧ ❧ ❧

Again, the link choice is usually a matter of tradition, rarely of theory. Statisti-
cal significance of the variables should be similar across the several link functions.
So, from a theory-testing standpoint, the link functions are rather interchangeable.
With that said, predictions will vary depending on the link function chosen. Thus, if
prediction is important then you will want to investigate the effect of different link
functions on your predictions (and confidence bounds).

3Note that Table 12.2 is not an exhaustive list. Because we need an increasing function map-
ping (0,1) to the real numbers, any quantile function (inverse CDF) will work — any. How-
ever, the typical link functions for this type of problem are the logit and the probit.
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Figure 12.3: A graph of three symmetric links (logit, probit, and cauchit). Note that they
all cross when the linear predictor η = 0 and that they cross at µ = 0.5.
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Figure 12.4: A graph of two asymmetric links (complementary-log-log and log-log func-
tions) with the symmetric logit link for comparison.

� Warning: While the actual predictions will differ, they should only do so slightly. The
rule is that all models that are “appropriate” should provide similar conclusions and pre-
dictions. If they do not, then your model is too fragile. . . a bad thing. Build for model
robustness.
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12.4: Modeling with the Logit

For a binary response variable, the canonical link function is the logit link (Sec-
tion 12.3.1). This link is characterized by being symmetric and having relatively
thin tails (see Figure 12.3). This symmetry may be important when you are dealing
with events that are balanced — neither rare nor frequent. The tail thickness may
be important when you think there is a sharp transition between success and failure
in your data. In reality, current social science theory is rarely so clear as to give you
guidance in which link function you should use. As such, try several and see which
one gives the best fit.4

Of course, if there is a traditional link function used in your field, you should
use it as the default. Thus, social scientists should start with the logit, while the
health science researchers should start with the probit.

Example 2

Since binary dependent variable regression is so very important to under-
stand, let us look at it from a different direction:

Let us imagine an experiment where we have a series of 100 coins.
Were these coins all fair, then the probability of getting a Head on any throw
would be π = 1

2 . However, let us assume these coins are not necessarily fair,
and that they are weighted in a very specific manner: Coin i has a probability
of flipping a Head of πi , which increases as i increases. That is,

πi+1 > πi ,∀i (12.32)

Now, if we were allowed to flip each coin only once, how can we estimate π1
from the data?

4There is another reason to try several link functions. Since the “population” link function is
not known, the predictions of the model should be robust to the choice of link function: Test
several and see if the predictions are stable. If not, then the quality of your model depends
heavily on something you cannot measure.

347



Solution: As we have no evidence to the contrary, let us use the canonical link func-
tion, the logit. Our steps are quite similar to the steps we performed when we had
to transform the dependent variable:

1. Read in the data

2. Model the dependent variable using the GLM paradigm (specify the distribu-
tion, the linear estimator, and the link function)

3. Predict outcomes using your model

4. Back-transform the predictions using the inverse of your chosen link function

Note: There is a step missing from when we previously transformed our de-
pendent variable: We do not have to transform the dependent variable. Gen-
eralized linear modeling does that for us in R. We do, however, have to back-
transform the predictions. Be aware of this!

In R, the general form of the command is, showing the most important parameters,

glm(formula, family(link), data)

Only formula is required. If family is missing, the Gaussian (or Normal) distri-
bution will be assumed. If link is missing, the canonical link for that family will
be assumed. If data is missing, the current dataframe will be assumed.

For binary response variables, the family will need to be the Binomial distri-
bution.5 Thus, for the example using the coin data file, the command will be

m1 = glm(head ∼ trial,
family=binomial(link="logit"),
data=coin)

5Remember that the Bernoulli distribution is a special case of the Binomial. Bern(π) = Bin(n =
1;π).
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Estimate Std. Error z-value p-value

Constant Term -2.2929 0.5384 -4.26 ≪ 0.0001
Trial Number 0.0345 0.0087 3.97 0.0001

Table 12.3: Results of performing logistic regression on the coin flip data, coinflips.
Note that these coefficient estimates are in logit units. As such, any predictions done using
them will have to be transformed into level units using the inverse of the link function (the
logistic).

I used the data parameter, as I did not attach the data earlier. If you at-
tached, then you do not need to include this parameter. I also included link="logit"
even though this is the default setting for the Binomial family in order to remind
myself of the link function I used in this analysis.

The results from this command are summarized in Table 12.3. Again, note
that the parameter estimates (and predictions) will be in “logit units.” You will have
to use the logistic function (the inverse of the logit) to get the predictions in units of
probability.

Recall that the original question asked us to determine π1, the probability
of getting a Head on the first coin. There are a couple ways of doing that. The best
will depend on the numbers involved. Since we want π1, we know it is equal to the
logistic of the intercept plus one times the coefficient:

πx = logistic
(
− 2.2929 + 0.0345 x

)
(12.33)

π1 = logistic
(
− 2.2929 + 0.0345 (1)

)
(12.34)

= 0.0946 (12.35)

The other way is to use the predict function and take the logistic of that value. You
will get the same answer (within rounding error). The function call used is

predict(m1, newdata=data.frame(trial=1))

This gives an answer of −2.2584. The logistic of −2.2584 is our estimate of π1, which
is π1 = 0.0946.

If we so desire, we can also plot the probability curve on a graph of the out-
comes (see Figure 12.5). With such a graph, we could estimate which coin is most
fair. With the graph, we could also get a feel for how well the model represents the
data. ♦
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Figure 12.5: Overlayed plot of the outcome of the experiment with the estimated prob-
abilities superimposed. The horizontal line is the τ = 0.500 threshold. The vertical line
corresponds to a trial number corresponding to that threshold (τ = 66.4). Thus, this
model predicts that all coins above number 66.4 have a probability of greater than half of
coming up Heads. Red dots are misclassified, green dots are properly classified.

Note: The linear predictor is represented in the curve graphed in Figure 12.5.
Note, however, that the curve is not linear. This is because the curve in Fig-
ure 12.5 is actually the logistic of the linear predictor.

With that said, the curve is linear in the transform space. If you graph
the coin number against the logit of the head probability, the line of best fit
is, indeed, a line (see Figure 12.2.)
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12.5: Prediction Accuracy

Naturally, the next questions concern issues of goodness-of-fit: How good is the
model? This question can be answered in many ways using many related accuracy
measures.

Recall that in linear regression, we used R2 to help us determine how well
the model fit the data — an R2 value close to 1.00 indicated good fit, while an R2

value close to 0.00 indicated a poor fit. If we recall, the R2 value — a PRE measure —
was calculated using a ratio of the original variability in the data and the variability
explained by the model (Section 2.4). The R2 value was not the only PRE we have
covered. Many others exist. Similar processes can be used in this context to create a
pseudo-R2 measure. pseudo-R2

Note: This measure is a pseudo-R2 measure primarily because it shares some
of the characteristics of the true R2 measure, namely that it measures the
decrease in prediction variability due to the model. It is a PRE measure.

The reason it is not called the R2 measure is only because that name
is taken elsewhere.

12.5.1 Accuracy Rate Let us define the accuracy rate to be the number of cor-
rect predictions divided by the total number of predictions. This makes inherent
sense as a measure of goodness of fit since it reads as the proportion of correct pre-
dictions.

There is no native accuracy function in R (this should raise a red flag). How-
ever, the RFS package provides one. The accuracy function takes four parameters:
data (the data variable), y (the binary dependent variable), model (the model you
fit with the data), and t (the threshold). The optional parameter, rate, tells the
function to return the accuracy rate (default) or the number of accurate predictions
(rate=FALSE).
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Thus, to determine the accuracy of this model for this data using the usual
threshold value of τ = 0.500, we would use

accuracy(data=coin, y=coin$head, model=m1, t=0.500)

The result of this command is 0.710, which agrees with our by-hand calculations.
Thus, we conclude that this model correctly predicts 71% of the time for this data.

12.5.2 Relative Accuracy Of course, having an accuracy rate of 0.710 does not
tell us the entire story. Just as the R2 from Section 2.4 was based on a ratio of the
model variance to the data (null) variance, a better accuracy number would be the
accuracy of the model relative to the accuracy of the null model. The accuracy of the
null model refers to merely selecting the modal category as our prediction. In this
example, the modal category is Tails, as there were 61 Tails in the data. Thus, the
accuracy of merely selecting the modal category is 61÷ 100 = 0.610. So, the relative
accuracy is

AR =
0.710
0.610

= 1.164 (12.36)

Thus, the model does a 16.4% better job of prediction than does just predicting ‘Tail’
all of the time.

There actually is a proportional reduction in error (PRE) measurement as-
sociated with the relative accuracy. Recall that the R2 value was valuable because
it measured the proportion of error explained by the model. For binary dependent
variable regression, we can calculate something similar.

P RE = 1− error with model
error without model

(12.37)

Here, we can see that a pseudo-R2 measure for this data and this model (and this
threshold) is

1− 1− 0.710
1− 0.610

≈ 0.2564 (12.38)

Thus, we can state that this model (and this threshold) reduced the error by 25.64%.
Note that there is a bad quality of this measure: while it can never be greater than
1.0, it can be less than zero. However, it will only be less than zero when your model
is worse than no model at all.

Note: There are many different ways of calculating pseudo-R2 measures. Each
of the measures are based on different definitions of ‘error’ or of ‘variability,’
just as the R2 and the adjusted R2 are both based on different definitions
of variability. Researchers do not agree on much about pseudo-R2 measures
except that they are not useful in vacuo, and rarely useful in concert with
other measures.
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This is why I am offering it here, alongside many other measures of fit.
Getting to know your model results is just as important as getting to know
your data.

12.5.3 Maximum Accuracy In each of the above measures, we assumed our
threshold was τ = 0.500. In some cases, this is a logical threshold. In some cases,
it is chosen arbitrarily. If we treat τ as a parameter, we may be able to get a better
prediction model.

The plan is straight forward: Calculate the accuracy for various values of
the threshold. The threshold that gives us the best accuracy will be our optimal
threshold. Doing this by hand is prohibitive. Using a script to loop through all
threshold values is much easier:

a = numeric()
for(i in 1:100) {
t = i/100
a[i] = accuracy(coin, coin$head, m1, t=t)

}

Figure 12.6 is a plot of the calculated accuracy for various thresholds. Note that
the ‘optimal’ threshold is not τ = 0.50, but τ = 0.48, and the maximal accuracy is
0.73 for that threshold. Note, however, that there is little difference in accuracies
between this optimal threshold (τ = 0.48,A = 0.73) and the traditional threshold
(τ = 0.50,A = 0.72).

Note: Recall that the standard deviation for (variability of) a binomial ran-
dom variable is σx =

√
nπ(1−π). This takes on a maximum value at π =

0.500. . . the success probability for a fair coin. This means that we are least
sure of our answer nearest π = 0.500.

The blue envelope of Figure 12.6 contains 95% of the calculated accu-
racies based on the true population; that is, 95% of the accuracy curves are
contained in that envelope. It is very wide. It supports the contention that
accuracy (relative or otherwise) matters little in the estimation of an optimal
threshold τ .

By the way, since this is all based on generated data, we know the true
threshold for a fair coin: τ = 0.500. Binomial random variables contain small
amounts of information.
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Figure 12.6: A plot of the accuracy of the model against various thresholds. The horizon-
tal line corresponds to the accuracy of selecting the modal category (the base accuracy).
The vertical line corresponds to the threshold τ = 0.50. The circled point represents the
maximal threshold, τ = 0.48 and accuracy = 0.73. The light blue envelope consists of a
95% confidence interval for coin accuracy, based on Monte Carlo simulation.
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Finally, here is the script to estimate the confidence bounds above using Monte Carlo
simulation:

B = 1e4
acc = matrix(NA, ncol=100, nrow=B)

for( j in 1:B ) {
thisSample = sample(100, replace=TRUE)
mod = glm(H[thisSample] ∼ cnum[thisSample], family=binomial)
a = numeric()

for(tau in 1:100) {
a[tau] = accuracy( cnum, H, mod, t=tau/100 )

}
acc[j, ] = a

}

From reading through this script, you should be able to tell what the variables H and
cnum represent. You should also be able to explain the purpose of each line. In fact,
you should be able to use this code as the basis of future accuracy investigations.

12.5.4 The ROC Curve There are other types of errors, more-specific types, that
are useful in other fields. If we look back to Figure 12.5, we see that the threshold
line (horizontal) and the corresponding trial line (vertical) divide the dataset into
four parts. The lower-left quadrant are those Tails that are correctly predicted by
the model and the threshold value to be Tails. The upper-right quadrant are those
Heads that are correctly predicted to be Heads. The lower-right quadrant are Tails
incorrectly predicted to be Heads. The upper-left quadrant are Heads incorrectly
predicted to be Tails. These four types of errors are also referred to as True Nega-
tives, True Positives, False Positives, and False Negatives, respectively.

For our coin flipping example (and with τ = 0.500), we can write out a con-
fusion matrix to show all four of these, both in magnitude and in rates: confusion matrix


T P = 22 FP = 12

FN = 17 TN = 49

⇐⇒

T PR = 22

17+22 = 0.5641 FPR = 12
49+12 = 0.1967

FNR = 17
17+22 = 0.4359 TNR = 49

49+12 = 0.8033

 (12.39)

The true negative rate (TNR) is also called specificity, and the true positive rate (TPR)
is called the sensitivity. You will come across these two terms in the field of bio-
statistics and clinical trials because they mirror what physicians and biomedical re-
searchers want out of their diagnostic tests.

The receiver operating characteristic (ROC) curve is a graphical represen- ROC Curve
tation of the true positive rate against the false positive rate (sensitivity against
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Figure 12.7: A receiver operating characteristic curve for the coin flipping model. The
diagonal line represents a random model. The thicker line represents our model. The
farther the ROC curve is above the random line, the better the model is at distinguishing
between the two cases (Head and Tail, here). The area under the ROC curve is a measure
of the goodness of the model. Here, A′ = 0.7516.

1−specificity) as the threshold is changed. Thus, to plot a ROC curve, one would cal-
culate the true positive and the false positive rates for various values of the thresh-
old, then plot the first against the second. Figure 12.7 shows the ROC curve for our
coin model.

In general, a model whose ROC curve is closer to the left and upper axes is
the better model. As such, we can define a single number that tells us how good our
model is — the area under the ROC curve (AUC, A′).

The area under the ROC curve is a useful number in that it equals the prob-
ability that a model will classify a positive instance higher than a negative one. Inprobability
other words, A′ is the probability that the model scores a true Head (success) higher
than a true Tail (failure). Calculating the area is very straight forward, in a geome-
try/Riemann Sum manner.
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Figure 12.8: The receiver operating characteristic curve for the coin flipping model using
the ROC command from the Epi package.

Note: There is an entire R package dedicated to ROC curves, Epi. To create
ROC graphs and to calculate the area under the curve in that package, first
load it using library(Epi), then use the command

ROC(test, stat, plot="ROC")

Here, test is the predicted probability of success for each datum from model
(a continuous variable bounded by 0 and 1), stat is the binary dependent
variable, and plot="ROC" produces a ROC plot. This graph (Figure 12.8) is
a bit more useful than the simple graph in Figure 12.7, as it contains some
useful statistics, including the AUC and the optimal threshold, τ , which is
the threshold value closest to the upper-left corner.

Error Costs: Note that this optimal value is only optimal if the costs of making
each type of error is the same. If the cost of a Type I Error is greater than that of
a Type II Error (or vice-versa), then one should take those costs into consideration
when determining the ‘optimal’ threshold τ .
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Not all errors hurt the same.

For instance, if one is modeling fraudulent credit card transactions, then a false
positive would happen if the model flagged the transaction as being fraudulent (but
it isn’t). A false negative would occur if the model did not flag a transaction as
fraudulent (but it is).

A high false positive rate would inconvenience the credit card holder. It
would reduce their ability to use it. A high false negative rate would inconvenience
the credit card bank by forcing them to pay for fraudulent uses of the card.

Not all errors hurt the same (or even the same people).

For instance, given the following table, which of the two models should be used?

Error Type Error Cost Model 1 Model 2

FPR $50 0.10 0.15
FNR $10 0.15 0.10

The first model costs $6.50; the second, $8.50. Thus, we should select the first model
(or threshold).

358



Figure 12.9: Plot of the complementary log-log function (upper curve) on top of the logit.
Note the difference in shapes between the two curves. The asymmetric complementary log-
log function approaches its maximum value much faster than does the symmetric logit.

12.6: Modeling with Other Links

The logistic regression (or “logit” regression) we did above is quite sufficient if all
you want to do is fit the data using logistic regression. If, on the other hand, you
want to better understand the process that gave you the data, you will want to try
different link functions to determine if any of the alternative links do an appreciably
better job of fitting your data. The logit link is symmetric. You should also use
the probit link as a check on your model: If the results are comparable, then the
conclusions are strengthened; if not, there is something wrong with your model.

In addition to using a second symmetric link function, you should use the
two main asymmetric link functions: the complementary log-log and the log-log
link function.

12.6.1 The Complementary log-log Link As mentioned earlier, there are sev-
eral other available links functions beyond the logit link (see Table 12.2). Actually,
for binary response variables, all that is required of the link function is for it to be
increasing, to smoothly map g : (0,1) 7→ R, and to have an inverse that smoothly
maps g−1 : R 7→ (0,1). As mentioned earlier, the logit link is symmetric. If you are
dealing with rare-events data, you may not want to use a symmetric link function.
The complementary log-log link is asymmetric and is often useful (Figure 12.9).6

The formula for the complementary log-log is

6You may see the complementary log-log link function referred to by its abbreviation —
cloglog.
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g(π) := log
(
− log(1−π)

)
(12.40)

Its inverse is

g−1(η) = 1− exp
(
− exp(η)

)
(12.41)

The plot of the complementary log-log function is seen in Figure 12.9, overlaid with
the same plot for the logit link. Note the difference in shapes. Recall that the logit
link is symmetric. The complementary log-log is not; it approaches its maximum
value more steeply than the logit.
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Because of this asymmetry, it will fit models differently. Let us fit the coin
data with a complementary log-log link. The command is

glm(head ∼ trial, family=binomial(link="cloglog"), data=coin)

Note that the only change is in the link clause. The results of this new model are
provided in Table 12.4. Note that the direction of effect is the same in both models.
Unfortunately, as the first model is in logit units and the second model is in comple-
mentary log-log units, comparing the magnitude of the coefficients tells us nothing.
Comparing predictions tells us much more.

Using the logit model, the prediction for π1 was 0.095. Using the comple-
mentary log-log model, the prediction is π1 = 0.122, which is closer to the true value
of π1 = 0.150.

12.6.2 The log-log Link A second useful asymmetrical link function is the log-
log link (Figure 12.10). Note that the asymmetric log-log link rises to its maximum
much slower than either the symmetric logit link or the asymmetric complementary
log-log link. Because of this functional shape, it will be better at fitting certain data
sets better than the other link functions discussed.

In reality, there is a functional relationship between the complementary log-
log and the log-log link functions. They are 180◦ rotations of each other. Thus,
statistical programs either have no support for either or have support only one. Like
most statistics packages, R has native support for only one of the two. For R, it is the
complementary log-log link.7 However, with the RFS package, it is straight forward
to perform binary regression using the log-log link.

The command to perform the log-log regression on this data is the same as
before, except for the link parameter, which is now

link=make.link("loglog")

7This is actually a decision of history. From how I (and most) have presented the binary de-
pendent variable models, it seems as though we statisticians started with the logit. The first
use of this type of regression, however, used the complementary log-log function (Fisher). It
was not pretty, but it was a fantastic step in the right direction!

Estimate Std. Error z value Pr(> | z |)

Constant term -2.0651 0.4353 -4.74 ≪ 0.0001
Trial number 0.0244 0.0063 3.86 0.0001

Table 12.4: The results of fitting the coin flip data with a complementary log-log link
(cf. Table 12.3). As before, the magnitudes of the estimates cannot be compared across
different link functions; however, the direction of effect can.
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Figure 12.10: Plot of the log-log function (upper curve) on top of the logit. Note the
difference in shapes between the two curves. The asymmetric log-log function approaches
its maximum value much slower than does the symmetric logit.

With this, I leave it as an exercise for you to show that the effect of trials in the log-
log model is 0.0233 and that the predicted probability of a head for Coin 1 using
this model is 0.0498.

12.7: Model Selection

Which of the models is best? That is a model selection question. Model selection pro-
cedures (not tests) attempt to balance competing desires — accuracy and parsimony
— to create the ‘best’ model, by some standard. For linear models, we discussed the
R2 value as a measure of accuracy. However, we noted that adding variables to the
model can never decrease the R2 value, and will usually increase it. Thus, there is
a pressure to increase the number of variables. However, science is guided by the
philosophy of William of Occam and his Razor:shaving

Numquam ponenda est pluralitas sine necessitate.

Plurality must never be posited without necessity. That is, models should be as
simple as possible, but no simpler. In other words, as scientists, we should only
include variables if the theory warrants it.

Note: Make no mistake, all models are wrong. As scientists, we are merely
searching for the useful ones.
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In linear regression, we corrected for the pressure to keep adding variables by using
the adjusted R2 as a guide. This value penalizes the model for the number of vari- penalty
ables it has. Thus, unless the variable is statistically significant, there is no benefit
to adding it to the model. This is why many scientists use the adjusted R2 measure
to help them model select.

There is neither a true R2 nor a true R
2

value for discrete dependent vari-
able models. Thus, there has been much work in creating an appropriate measure to
use for model selection. Three different measures are frequently used in the litera-
ture: Akaike’s Information Criterion (Akaike 1974), Bayesian Information Criterion
(Schwarz 1978), and Likelihood Ratio Test (Wilks 1938). Each of these three penal-
izes additional variables in a different manner and to a different degree. The one
you select depends on the one available to you and the relationship between the two
models.
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12.7.1 Akaike Information Criterion One of the first attempts to explicitly
penalize for additional parameters (variables) was done by Hirotugu Akaike (1974).
In his paper, he developed (albeit without much mathematical rigor) a comparative
measure of ‘model goodness’ that can be used to select the better of two models
based on the log-likelihood measure. The Akaike Information Criterion (AIC) score
can be calculated whenever Maximum Likelihood Estimation is used to estimate the
model parameters. The formula for the AIC is

AIC := −2ln(L) + 2k

Here, k is the number of parameters being estimated in the model and L is the
likelihood of the data with the model.8

The procedure to determine if one model is better than the other is straight-
forward:

1. Calculate the AIC for Model A.

2. Calculate the AIC for Model B.

3. The model with the lower AIC score is the preferred model.

Its simplicity is its strength. Its weakness is that this measure, called the minimum
information theoretical criterion (MAICE) in the paper, has no known probability
distribution. As such, there is no way to determine whether the model with the
lower AIC is enough better to justify eliminating the other from the discussion: If
the AIC of Model 1 is 3 less than the AIC of Model 2, do we completely ignore
Model 2?

This question actually leads to several “rules of thumb” that determine whenRule of Thumb
that difference is “large enough.” The usual rules of thumb are to drop the model
with the higher AIC if the difference is at least 5 (or 8 or 10).

That there is no a priori statistical distribution to the AIC score only means
the test is not optimal. In his paper, Akaike concurs (1974: 722):

Although the present author has no proof of optimality of MAICE it
is at present the only procedure applicable to every situation where the
likelihood can be properly defined and it is actually producing very rea-
sonable results without very much amount of help of subjective judg-
ment.

The R function that calculates the Akaike Information Criterion is AIC. Using this
function, the AIC for each of the three coin models areAIClogit = 118.48,AICcloglog =
119.74, and AICloglog = 117.05. Thus, while the log-log is the ‘best’ model from
the AIC standpoint, it is not sufficiently better to completely ignore the other two

8The quantity −2ln(L) is often called the deviance of the model, which will be used in Sec-
tion 12.7.3.
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models (the AIC improvement is not greater than 5). As such, this procedure is
inconclusive with respect to the single model we should choose.

Note: Please keep in mind that for the AIC to be valid in comparing models,
the dependent variable values must be the exactly same across the models. If
not, then this process cannot be used (nor any of these methods). Thus, trans-
formations of the dependent variable mean the AIC cannot be used. Similarly,
if data points are removed between two models, the AIC cannot be used.

�Warning: Keeping multiple appropriate models is a good idea. Since sufficient science
theory does not exist to determine the “right” link, we should keep as many as possible.
This will allow us to better understand how much our conclusions depend on our choice
of the link function. robust analysis

12.7.2 Bayesian Information Criterion Akaike’s paper did not give a mathe-
matically solid reason why there should be a 2 point penalty for each additional
estimated parameter (the 2k factor). This created an opening for other researchers
to improve upon Akaike’s proof and to create different penalty factors. Schwarz
(1978) took Akaike’s idea and put it on a more solid foundation. He humbly called
his measure the Bayesian Information Criterion (BIC), others may refer to it as the
Schwartz Information Criterion (SIC) or the Schwarz Bayesian Criterion (SBC).

Its formula is quite similar to the AIC:

BIC := −2ln(L) + k log(n) (12.42)

Here, k is the number of parameters being estimated, n is the number of data points,
and L is the likelihood of the model. Thus, the difference between the AIC and the
BIC is the effect of the additional parameter. In the AIC, each additional parameter
penalizes the score by 2 points; in the BIC, log(n) points — usually a much greater
penalty.

The process to select the better of two models is the same as for the AIC:
Select the model with the lower BIC score (including the rules of thumb). Further-
more, the requirement that the dependent variable values are the same between the
models remains.

12.7.3 Likelihood Ratio Test Frequently, we wish to determine if a group of
variables are jointly significant in the model. To do this, we compare the two nested
models. We say that Model B is nested in Model A if Model A contains all the same
variables as does Model B, plus at least one other. For instance, let Model A contain
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the variables X1, X2, X3, X32, and X4. Let Model B contain variables X1, X2, and X3.
Here, Model B is nested within Model A. Now, if we want to determine if variables
X32 and X4 are jointly significant, then we merely compare Models A and B. To do
this, we can use the AIC or the BIC, but the Likelihood Ratio test is more statistically
clean.

The Likelihood Ratio test is superior to the AIC and BIC — when it can be
used — because there is a known asymptotic probability distribution for the test
statistic. As such, we can determine whether Model A is significantly better than
Model B — i.e., whether variables X4 and X5 are jointly significant.jointly

The procedure is also straight forward:

1. Calculate the deviance for Model A.

2. Calculate the deviance for Model B.

3. The difference between the two deviances is distributed as a chi-squared ran-
dom variable with degrees of freedom equal to the parameter (variable) dif-
ference in the two models.9

The deviance of a model is defined as

D := −2ln(L) (12.43)

9Technically, the distribution of the test statistic is only asymptotically chi-square. For small
sample sizes, you may want to use simulation to obtain a more accurate test.
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Thus, if Model B is nested in Model A, the test statistic is equal to

TS :=DB −DA ∼ χ2
vA−vB (12.44)

Here, vA is the number of parameters in Model A; vB, in Model B.

Example 3

Let us assume that Model A uses three variables, X1, X2, and X3, and has
a log-likelihood of -20, and Model B uses one variable, X1, and has a log-
likelihood of -22. Are variables X2 and X3 jointly significant?

Solution: This is an application of the Likelihood Ratio test. The test statistic is

TS :=DB −DA (12.45)

=
(
− 2ln(LB)

)
−
(
− 2ln(LA)

)
(12.46)

=
(
− 2(−22)

)
−
(
− 2(−20)

)
(12.47)

= 44− 40 = 4 (12.48)

This test statistic is approximately distributed as a chi-squared random variable
with 3− 1 = 2 degrees of freedom; that is, TS ·∼ χ2

2.

A chi-squared table gives us a p-value of approximately p = 0.15. This is
close to what R gives us:

pchisq(4,df=2,lower.tail=FALSE) = 0.135

Thus, we conclude at the α = 0.05 level that we cannot reject the null hypothesis
and we conclude that the restricted model is not significantly different from the full
model.

That is, we conclude that the two variables are not jointly significant and we
can use Model B in lieu of Model A with little loss of precision. ♦
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12.8: Conclusion

This chapter covered a lot of material. First, we examined how to fit binary depen-
dent variable models. The GLM paradigm allows us to easily fit such models. As in
all uses of the GLM paradigm, we need to know three things: the conditional dis-
tribution of the dependent variable, the linear predictor, and the link function that
connects the two.

For binary dependent variables, the dependent variable is distributed Bernoulli.
The linear predictor is the usual combination of our independent variables. The
canonical link is the logit link. Additional link functions include the probit, log-log,
and complementary log-log functions.

The chapter proceeded to examine issues of determining how well a model
fits the data. Accuracy, relative accuracy, and maximum accuracy measures were
examined. Additionally, we examined the ROC curve and how it gives us additional
information about our model.

Finally, we examined general techniques to select between two models. Three
methods were examined. The first two did not require that the two models be nested.
Both the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) only required that the dependent variables be the same. Also in both cases,
the model with the lower score was the preferred model, although when that differ-
ence was less than 8 there was no reason to jettison the higher-scoring model.

The Likelihood Ratio Test was superior to the two Information Criterion tests
as the test statistic has a known asymptotic distribution (χ2). Thus, we could test
the statistical significance of multiple variables at once. The drawback to using the
Likelihood Ratio test is that the compared models needed to be nested.

The next chapter continues our examination of discrete dependent variables.
Frequently, our outcome variable is a count of events. In such a case, we cannot use
the techniques discussed in this chapter as the dependent variable takes on more
than just two values. We also cannot apply the techniques of Chapter 11, as the
dependent variable is not continuous.

Staying in the realm of GLMs allows us to fit such variables easily. All we
need to do is determine the appropriate distribution, the linear predictor, and the
link function.
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12.9: End-of-Chapter Materials

12.9.1 R Functions In this chapter, we were introduced to several R functions
that will be useful in the future. These are listed here.

Packages:

RFS This package does not yet exist. It is a package that adds much general func-
tionality to R. In lieu of using library(RFS) to access these functions, run
the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Epi This package adds several functions and procedures related to epidemiology.
As it is not a part of the base installation for R, you will need to install it
before you can load it with library(Epi).

Statistics:

lm(formula) This function performs linear regression on the data, with the sup-
plied formula. As there is much information contained in this function, you
will want to save the results in a variable.

glm(formula) This function performs generalized linear model estimation on the
given formula. There are three additional parameters that can (and often
should) be specified.
The family parameter specifies the distributional family of the dependent
variable, options include gaussian, binomial, poisson, gamma, quasibinomial,
and quasipoisson. If this parameter is not specified, R assumes gaussian.
The link parameter specifies the link function for the distribution. If none is
specified, the canonical link is assumed.
Finally, the data parameter specifies the data from which the formula vari-
ables come. This is the same parameter as in the lm() function.

predict(model, newdata) As with almost all statistical packages, R has a predict
function. It takes two parameters, the model, and a dataframe of the inde-
pendent values from which you want to predict. If you omit newdata, then
it will predict based on the independent variables of the data itself, which can
be used to calculate residuals. The dataframe must list all independent vari-
ables with their associate new values. You can specify multiple new values for
a single independent variable.

accuracy(model) This function in the RFS package determines the predictive accu-
racy of a provided model. It takes three necessary parameters: data, truth,
model, and threshold. It has the optional parameter of returning the num-
ber of correct classifications (rate=FALSE).
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AIC(model) This function calculates the Akaike Informations Criterion score for
the provided model. The model needs to have been fit using Maximum Like-
lihood Estimation.

BIC(model) This function in the RFS package calculates Schwarz’s Bayesian Infor-
mation Criterion (BIC) for the provided model.

deviance(model) This function returns the deviance in the model. This value is
useful in the Likelihood Ratio Test.

pchisq(x) This gives the value of the cumulative distribution function (CDF) un-
der the Chi-squared distribution. The necessary parameter is the number
of degrees of freedom, df=. By default, it returns the lower-tail probability.
Usually, we will want to have the upper-tail probability, thus we will use the
lower.tail=FALSE parameter.

var.test(x,y) This function performs an F test, which compares the variances of two
samples (x and y) from Normal populations. It can only compare two sam-
ples. If you need to compare more than two samples for equality of variance,
you will need to perform either a Bartlett test or a Fligner-Killeen test.

Graphics:

ROC(formula) This function in the Epi package performs ROC analysis on the
data. It provides a ROC graph as well as some statistical values.
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Programming:

for This command is one of the basic control-constructs in the R language (as in
most programming languages). The usual use is for(var in seq) expr,
where var is the looping variable (the variable that equals the current loop
number). The parameter seq is a vector of values. Usually, seq = something
like 1:100, which is a vector of values from 1 to 100. Finally, expr is the
expression (or series of expressions) that are performed for each value in the
seq vector.
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12.9.2 Exercises This section offers suggestions on things you can practice from
this chapter. Save the scripts in your Chapter 12 folder. For each of the follow-
ing problems, please save the associated R script in the chapter folder as ext0x.R,
where x is the problem number.

1. In Example 12.1, we suggested that you fit the provided pseudo data with
linear regression and the OLS method. Please do so now.

2. From Section 12.6.2, please fit the coin data with the formula head∼trial
and the log-log link. What is the predicted probability of getting a Head on
Coin 15?

3. Use the coinflip data (coinflips.csv ) to estimate the coin that is closest to being
fair (a probability of producing a head is closest to 0.500). Use multiple link
functions and select which you think is the best.

4. Let us revisit the cows data. One of the variables is passed, which is a binary
variable indicating whether the ballot measure passed. Your job is to predict
the proportion of voters in Děčı́n who will vote in favor of the bill to limit
cows. Do not use the pctFavor variable. Decide which model you are sup-
posed to use. Prove that your model is the best model available. Make your
prediction of the vote share. Include graphs if you would like, but only if the
graph helps to illustrate your point.
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Chapter 13:

BinomialDependentVariables

Overview:

In the previous chapter, we examined what we can do
if the dependent variable is dichotomous, has only two
possible outcomes. The response variable followed a
Bernoulli distribution. In this chapter, we extend this
idea to where the outcome variable follows a Binomial
distribution — conditional on the values of the indepen-
dent variable(s).

In this chapter, we first define a Binomial random
variable, we then show that the Binomial distribution is
a member of the Exponential Class of distributions (EC).
With that, we can look at the assumptions and a couple
extended examples.

Forsberg, Ole J. (10 DEC 2024). “Binomial Dependent Vari-
ables.” In Linear Models and Řurità Kràlovstvı̀. Version
0.704442η(α).
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❧ ❧ ❧

In the previous chapter, we explored a situation where the classical linear model
utterly failed. That failure has been known since the early parts of the 20th century.
As a result, statisticians created several specialized fitting techniques for binary de-
pendent variables.

The importance of the generalized linear model is not that it can fit models
with a binary dependent variable, but that it is a technique that can fit those models
and many others. This allows the researcher to pay closer attention to the dependent
variable and use more information.

In this chapter, we cover the case where the dependent variable represents a
count of successes out of a known number of attempts, n.

While least squares can be used in such cases, even without clearly violating
its assumptions, it is inefficient. You will be throwing out important information,
namely the distribution of the dependent variable. Statisticians hate to throw out
information.

This chapter starts with exploring the most common type of variable rep-
resenting a count of successes out of a known number of attempts. After working
with the Binomial, it looks into what happens when the data show the wrong level
of variability. . . and what to do about it.
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13.1: Binomial Distribution

The Binomial distribution is defined as the sum of independent and identically dis-
tributed Bernoulli random variables. Subsequently, this results in five requirements
for a random variable to follow a Binomial distribution:

1. the number of trials, n, is known;

2. each trial has two possible outcomes: success and failure;

3. the success probability for each trial, π, is constant;

4. each trial is independent from the others; and

5. the random variable is the number of successes in those n trials.

One can also think of the Binomial distribution as a generalization of the Bernoulli
distribution to n > 1. Similarly, one can think of the Bernoulli distribution as a
special case of the Binomial, where n = 1. Whichever way you look at it, there are a
number of similarities between the two distributions.

The sample space for the Binomial distribution is key to understanding when
it can be used, S = {0,1,2, . . . ,n}. Thus, the Binomial distribution can be used to
model counts of successes when the number of attempts (trials) is known. The fol-
lowing are variables that could follow a Binomial distribution:

• number of students passing a class

• number of Euchre games a person wins in a tournament finals

• number of college students in a class who can locate Ruritania on a map

• number of football games the SUR Hawks win in a year

• number of pages in a book that have a typographical error

• number of fireworks in a shipment of 144 that are duds

• number of cast ballots declared invalid in an electoral division

Note that each of these examples start with “number of.” This is because the Bino-
mial distribution models the “number of” successes. Second, note that the sample
space has both a lower (no successes) and an upper bound (no failures). The upper
bound for the first example is the number of students taking that statistics class. The
upper bound for the second is the number of hands played by a person in a poker
game; for the third, the number of students in that class; for the fourth, the number
of games the SUR Hawks play in a year; etc.

The following variables cannot follow a Binomial distribution:

• number of crimes in Dêcı́n this year
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• number of injuries experienced by the SUR Hawks

• number of errors in a book

• number of dents on a car

While each of these also starts with “the number of,” none of these can follow a
Binomial distribution. In each case, there is no upper bound. The first example mea-
sures the number of successes over a time period. There can be multiple crimes on a
given day, so there is no upper bound. To make this a Binomial random variable, one
could measure instead the number of Dêcı́n residents who are the target of a crime
in a given year. In that case, there is an upper bound — the population of Dêcı́n.

The second example also has no upper bound. Each player can have multiple
injuries. To make this a possible Binomial random variable, one could measure the
number of players injured. Note that the upper bound would then be set at the
number of players on the Hawks.

It is interesting that these four random variables could be examples of Pois-
son random variables. We will be covering how to analyze such count data later (see
Chapter 14).

Note: One thing that may help you determine whether a variable follows a
Binomial or a Poisson distribution could be this: If you can represent a similar
variable as a proportion, then it is Binomial; if as a rate, then Poisson.
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13.2: The Mathematics

Remember from Chapter 11 that performing generalized linear modeling requires
that we specify three things about our model:

• the linear predictor;

• the conditional distribution of the dependent variable; and

• the function that links the two.

13.2.1 Linear Predictor As usual, the linear predictor is the function that re-
lates the independent variable(s) with the dependent variable. For k predictor (in-
dependent) variables, the linear predictor is

η = β0 + β1x1 + · · ·+ βkxk (13.1)

Frequently, this is what the researcher cares most about. This is the start of where
we can test if certain variables can help in better understanding the data-generating
process.

13.2.2 Conditional Distribution The second need is the conditional distri-
bution of the dependent variable, the distribution of Y given the values of the x-
variables. For the Binomial distribution, the probability mass function (pmf) is

f (y, π) =
(
n
y

)
πy (1−π)n−y y ∈

{
0,1,2, . . . ,n

}
(13.2)

I leave it as an exercise to show that the Binomial distribution is a member of the exercise
Exponential Class of distributions. In other words, you will need to show that the
above probability mass function can be written as

f (y, π) = exp
[
y logit(π) + n log(1−π)

1
+ log

(
n
y

) ]
(13.3)

With this, we can calculate E [Y ] and V [Y ]. exercise
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Note that Equation 13.3 shows us that the canonical link is the logit function,
g(π) := logit(π). As always, the canonical link offers some mathematical cleanness
but little else. If the situation calls for a different link function, you should use it.

13.2.3 Link Function From the previous section, we know that the canonical
link function is the logit function. However, as discussed in Section 12.3.1, many
alternative link functions are available. If the model is sound, then predictions based
on those alternatives will tend to be similar. Let me emphasize that here:

� Warning: It is extremely rare that the link function can be determined from the scientific
theory — extremely rare. Thus, if the model significantly depends on the choice of link,
then the model is weak. You should improve the model.

This also suggests another model test. Fit the model using several link functions.
That the results are substantively the same across the link functions supports the goodness
of your model.

13.2.4 Assumptions/Requirements As you have read through this chapter, what
assumptions were made? Those are the requirements you need to check. Allow me
to repeat this extremely important point:

Note: As you have read through this chapter, what assumptions were made?
Those are the requirements you need to check.
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13.3: Full Example: O Canada!

Let our first full example concern finding Canada on a world map. The research
question is

Question

What is the relationship between the type of course being taken, the average
age of the students in the class, and the proportion of students who can locate
Canada on a map?

According to the wording, the measurement unit is the classroom; that is, each
record represents a classroom. For each classroom, four measurements are taken:
number of students in the class (trials), number of students who could locate Canada
on the map (successes), type of class (independent variable), and average age of stu-
dents in the class (independent variable).

The pseudodata are located at

http://rur.kvasaheim.com/data/ocanada.csv

The first step is to determine the linear predictor. The two independent variables
are the course type taught to the class, course, and the average age of the students
in the class, averageAge.

Figure 13.1: A map of the world, as of 2007. See if you can locate Canada on it.
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Thus, the linear predictor is

η = β0 + β1course+ β2averageAge (13.4)

The second thing is to determine the conditional distribution of the dependent
variable. Here, note that the dependent variable is the number of students in the
class who can locate Canada on the map. This random variable is the number of
successes out of a total number of trials (number of students in the course). Because
of this, the dependent variable may follow a Binomial distribution.1

Y | x ∼ Bin (n, π) (13.5)

The third, and final, aspect of a generalized linear model that needs to be specified
is the link function. This is the function that links the ranges of the distribution’s
expected value and the unbounded linear predictor, η.

Before we can move ahead, we need to think about this expected value. From
elementary statistics, we know E [Y | x] = nπ for a Binomial distribution. However,
because n varies from classroom to classroom, and because we really care about the
proportion of students who can find Canada on the map, it is always preferable to
“divide out by n” and focus on modeling π, our parameter of interest. This is what
actually happens in the estimation procedure.

Back in Section 13.2.2, we decided that the canonical link was the logit func-
tion. In fact, any function that maps (0,1) 7→ R would be appropriate. Using the
logit function, we now have

logit(π) = β0 + β1course+ β2averageAge+ ε (13.6)

Furthermore, to increase the evidence that our basic model is appropriate, we should
fit with multiple link functions (see Sections 12.3.2 and 13.2.3). Perhaps we should
also fit with the probit and cauchit link functions.

1Note that it is likely that the observations are not independent: those in a class will be more
similar in terms of geographic knowledge. Thus, while the Binomial distribution is likely, we
may find need to use a different estimation method than maximum likelihood to take into
consideration the dependence (a.k.a. clumping).
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13.3.1 Putting it Together Note that the three parts combine to make the fol-
lowing distribution statement:

Yi ∼ Bin
(
ni , logistic (β0 + β1coursei + β2averageAgei + εi)︸                                                           ︷︷                                                           ︸

πi

)
(13.7)

The importance of Equation 13.7 is that is shows how the three parts fit together
into a coherent whole.

13.3.2 The Models Here is how to fit the model in R using these three link
functions

depVar = cbind(correct, classSize-correct)

modL = glm( depVar ∼ course + averageAge,
family=binomial(link=make.link("logit")) )

modP = glm( depVar ∼ course + averageAge,
family=binomial(link=make.link("probit")) )

modC = glm( depVar ∼ course + averageAge,
family=binomial(link=make.link("cauchit")) )

Note that the first thing we need to do is specify both the number of successes
and the number of failures. This is the variable depVar, the successes (correct)
stacked against the failures (classSize-correct) as a single dependent variable.

Closely study the three modeling statements. In them you will find the linear
predictor, the conditional distribution, and the link function.

13.3.3 The Assumptions Before reading this section, read back through Sec-
tion 13.2 and determine the assumptions. Once you have them, compare your list to
the following:

The first assumption is that the conditional distribution of the dependent
variable is the Binomial distribution. Section 13.1 provides the five requirements
for a Binomial distribution. Usually, it will be quite easy to meet requirements 1, 2,
and 5. The other two requirements may, or may not, be met by the data.
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Figure 13.2: The distribution of the dispersions for the O Canada example. Note that the
shaded regions are the rejection region. That the observed dispersion (“Obs”) is not in the
rejection region tells us that there is no sufficient evidence that the population dispersion
is anything other than 1.

Variance (Dispersion): At this point, the usual result of violating Assumptions 3
and/or 4 is to have the variance of the variable not be what is expected. Recall the
value of a(φ) in Equation 13.3 is 1. That means that if the random variable exactly
follows a Binomial distribution, then the data’s dispersion is approximately 1. Toexactly
calculate the observed dispersion parameter, divide the residual deviance by the
residual degrees of freedom.

It can be shown2 that the deviance asymptotically follows a Chi-square dis-
tribution with n− p degrees of freedom:

−2lnL ∼ χ2
n−p (13.8)

As such, we can create a test for overdispersion. . . or for “non-unit dispersion.”

Running summary(modL) gives the residual dispersion as 197.56 and the
degrees of freedom as ν = 15. The ratio for this sample is 13.17067. Do we have
sufficient evidence that the ratio differs from 1 for the population?

2. . . meaning that this proof is beyond the scope of this course. . .
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Well, the usual 95% confidence interval for the sample dispersion, given that
the population dispersion is 1, is from 6.26 to 27.49:

qchisq(c(0.025,0.975), df=15)

Since the observed value of 197.56 is above this interval, we can conclude that there
is significant evidence of overdispersion (see Figure 13.2).3

What do we do when there is evidence of overdispersion? That depends on
the effects of overdispersion. At this level, the usual effect of overdispersion is that
the variance estimate is not correct. In maximum likelihood estimation, the usual
method for estimating all parameters in generalized linear models, the dispersion is
required to be 1 in the Binomial case because the value of a(φ) = 1.

The maximum quasi-likelihood method includes an additional variable in
the denominator, thus changing it from a(φ) to za(φ). In the case where a(φ) is not
a constant, such as the Gaussian, this addition offers absolutely nothing. Estimating
a(φ) from the data gives no information above estimating za(φ) from the data.

However, when a(φ) is a constant, such as with the Binomial (or the Poisson),
including z allows more flexibility in the model. Make no mistake, if z , 1 then the
actual distribution is not Binomial. The inclusion of z allows for distributions that
are “the same” as the Binomial with the exception of the variance.4

Fitting the model using maximum quasi-likelihood is almost as easy as fit-
ting it using maximum likelihood estimation. The only difference is adding quasi
to the family name:

QmodL = glm( depVar ∼ course + averageAge,
family=quasibinomial(link=make.link("logit")) )

Compare the summary of this model, summary(QmodL), with the summary from
the MLE model, summary(modL). Notice that the effect estimates are identical. The
difference is in the estimate of the standard errors, . . . which affects the estimates of
the test statistics, . . . which affects the estimates of the p-values.

Note: When the dispersion is greater than one, the p-values estimated us-
ing maximum likelihood are too low because they assume a(φ) = 1. When
the dispersion is less than one (a rare event), the p-values estimated using
maximum likelihood are bigger than reality.

3Note that we are working with both ratios and totals in this discussion. Knowing the difference
in terminology is important in understanding. The statement “the population dispersion is
1” means that the ratio is 1; that is, the dispersion is 1 for each degree of freedom. That is why
the number of degrees of freedom, n− p, is within the interval while 1 is not.

4Such distributions are termed “overdispersed Binomial” distributions.
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The abbreviated output from the summary(QmodL) function is

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.9030 6.2123 -1.594 0.1318
courseHumanities -0.1049 1.0654 -0.098 0.9229
coursePhysical Science 1.2328 1.2901 0.956 0.3544
courseSocial Science -0.9069 1.0270 -0.883 0.3911
averageAge 0.5342 0.3002 1.780 0.0954
---

(Dispersion parameter for quasibinomial family taken to be
11.95446)

Null deviance: 276.86 on 19 degrees of freedom
Residual deviance: 197.56 on 15 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

Most of the output table should be familiar by now. Note that the “Number of Fisher
Scoring iterations” is not important at this point. This is the number of “loops”
through the estimating procedure needed until the computer determined the esti-
mates converged.

Since we are fitting this generalized linear model using maximum quasi-
likelihood estimation, there is little useful information contained in the deviances.
You could use them to calculate a measure similar to the infamous R2 value. Recall
that the R2 value is a PRE (proportional reduction in error) measure (see Section
12.5.2). Understanding what a PRE measure is supposed to measure allows us to
create a formula for one:

pseudo-R2 = 1− residual deviance
null deviance

(13.9)

Does Equation 13.9 makes sense to you? The better you understand the meaningspay attention
of the terms, the better your understanding of Equation 13.9. Make sure you realize
that these equations are not unique. There are other ways of measuring both “be-
fore uncertainty” and “after uncertainty.” Different measures of each will lead to
different equations for the PRE.5

From the regression table, we can tell that there is no relationship detected
between the average age in the class and the proportion of students correctly finding
Canada on a map (p = 0.3911). Thus, should we be in the model selection phase, we
should drop this variable and fit the new model.

5This is why there are so many PRE measures. Typically, specific measures are traditional/ex-
pected for specific models. Usually, the only thing special about those PRE measures is that
they came first. Regardless, including them in a report is expected.
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Is the course-type variable statistically significant? From this table, we can-
not tell. Each of the three lines in the regression table devoted to that variable are
actually specifying the level’s effect with respect to some base category (“Arts” here). Aretha Franklin
That means the table can only tell us if one level is statistically different than the
effect of the Arts level. We cannot tell whether the variable is significant as a whole.

Think through that last paragraph. It gives you a hint on how to determine contemplate
if a categorical variable significantly affects the dependent variable.

If the variable is significant in modeling the dependent variable, then remov-
ing it from the model will produce a significantly worse model. So. . . how do we
measure “significantly worse”? There are many ways. One is to compare the AIC worse
or BIC values between the two models (Section 12.7.1). Note that both AIC and
BIC depend on the value of the likelihood. When using maximum quasi-likelihood
estimation, there is no likelihood (there is only quasi-likelihood). only Xul

We could also use the likelihood ratio test. This test relies on the asymptotic
LRTdistribution of the difference in deviances. Thus, it is great for large-sample cases.

How large? It depends on how closely the deviances follow the Chi-square distribu-
tion. . . which means (at its core) this test relies on the Central Limit Theorem.6

6From experience, as long as no one will die from you being wrong, a sample size in excess of 50
will suffice in most cases. For a Binomial random variable, if nπ and n(1−π) are both at least
15, things will tend to be acceptable. When in doubt, make sure you check this assumption
for your specific case.
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Performing a likelihood ratio test is as easy as fitting the full model, fitting
the reduced (constrained) model, and testing if the dispersions are significantly dif-
ferent:

QmodLreduced = glm( depVar ∼ averageAge,
family=quasibinomial(link=make.link("logit")))

anova(QmodLreduced, QmodL, test="LRT")

After running these lines, we have the following output

Analysis of Deviance Table

Model 1: depVar ∼ averageAge
Model 2: depVar ∼ course + averageAge
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 18 246.20
2 15 197.56 3 48.635 0.2542

Since the p-value is greater than our α = 0.05, there is no significant difference be-
tween the two models. This means that including course does not significantly im-
prove our model (p = 0.2542). If we are trying to create our final model, we would
drop course from consideration and deal with this reduced model (exploratory
analysis). If we are testing whether the course matters in being able to locate
Canada on the map, we would have to conclude that there is no significant evidence
that it does (confirmatory analysis).7

Model Fit: The second assumption is that the “curve of best fit” consistently fits
the data. This is the same assumption we met back in Section 5.2. Its tests are the
same as always. . . no change, whatsoever. Thus, the code I would run to check that
the link function is appropriate is

eL = residuals(modL)
runs.test(eL, order=averageAge)
summary(aov(eL ∼ course))

The first line calculates the residuals. The second tests the residuals against the
numeric variable; the third, against the categorical variable. In neither case is the
p-value less than our α = 0.05. In fact, neither are even close to 0.05. Thus, there is
no evidence that the link we used, the logit link, is incorrect.

7There are other testing options in the anova function. There are also other ways of perform-
ing the likelihood ratio test. In very large sample sizes, the tests will return the same substan-
tive conclusions. In smaller sample sizes, the conclusions may differ. The anova function
uses an unbiased estimator of the variance, while others may used biased estimators. Thus, it
may be better to use the anova function. . . in general.
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Since the p-value for the tests of model fit are greater than α = 0.05 and since
we adjusted for overdispersion, this is an acceptable model. The results of fitting this
model using the logit link are given by summary(QmodL). From that model and the
above analysis, we can make the following conclusions:

1. There is no significant evidence that the average age in the class has an impact
on the class’s ability to identify Canada on the map.

2. There is also no significant evidence that the class type affects the ability to
identify Canada.

In other words, we have no new information on what influences a class’s ability to
find Canada on the map.

13.3.4 Ethicality Were we unethical, we could create a graphic to illustrate our
non-results (Figure 13.3). This graphic strongly indicates that those in physical sci-
ence classes are much more adept at geography than those in social science classes.
Note how much higher the blue curve is than the red curve.

However, Figure 13.3 is misleading — it is very misleading. The statistics tell
us that there is no evidence that the abilities differ between those in those two types
of classes. The graphic lies by suggesting such a difference exists.

As an ethical statistician, be aware that your graphics must illustrate what
the statistics actually tell us. They should not suggest that which does not exist.
Similarly, they should not minimize an effect that does exist. A statistician needs to
use graphics to tell the story of the data — and nothing else.

This is not as easy as it seems. Violations of ethics happen when you violate
these precepts by design. Violations of these tenets may still happen by accident. To
avoid claims that you are being unethical, make sure you are clear on your conclu-
sions and why you are making those specific conclusions.

It is possible that two ethical researchers come to different conclusions. It
is unlikely that those conclusions are substantively different. If this happens, then
ethical researchers will find the results interesting and seek to understand why the
models produced such different results.

I would argue that this is the hallmark of scientists. When proven wrong,
an ethical scientist will try to better understand the phenomenon to explain the
differences in the conclusions.

Remember this: The choice is always between humility and humiliation.
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Figure 13.3: A plot of the ‘O Canada’ data with prediction curves for each class type. The
blue is for the Physical Sciences; red, Social Sciences; gold, Humanities; and grey, Arts.
The curves are regression curves; the dots, observations. Note that the actual model was
unable to detect a difference in effects among the four course types. Thus, this graphic is
unethical.
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Note: We could actually obtain stronger results if we had data at the student
level. This would allow us to forego aggregation and measure the relationship
of interest (what allows students to find Canada on the map) directly.

The vast majority of the time, this is a true statement: We are inter-
ested in relationships at the individual level, but our data only exists at some
level of aggregation.

If we are careful with our wording, this aggregation results in no more
than a loss of power. If we are not careful, then we are drawing conclusions
not warranted by the model. Strictly speaking, we can only draw clear con-
clusions on our measurement unit (classes in this example). However, we
can say that our conclusions are consistent with hypotheses about the unit of consistent
interest (students in this example).

[For the following interpretation, let us pretend our variables were significant. I am pretend
doing this to illustrate how to write out a conclusion.]

We can conclude:

Physical Science classes with older students tend to do better at lo-
cating Canada on the map.

How boring and unconnected with a really interesting question about the students
themselves.

We could also conclude:

The results are consistent with the hypothesis that Physical Science
majors who are older tend to be better able to locate Canada on the
map.

Much better, but less decisive. To be “consistent with” is logically quite weak. There
are many results “consistent with” any hypothesis. If relying on consistency, your
theory needs to be very strong. . . or your results very interesting.

The best of both worlds is having data at the individual level. Unfortunately,
that is not always available. As such, we do need to understand the limitations on
our conclusions due to the limitations of our data.

Again, know what you can conclude and conclude no farther.
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13.4: Full Example: Sri Lanka in 2010

For our second full example, let us examine the official returns from the 2010 pres-
idential election in Sri Lanka. In fact, let us check to see if there is evidence of
differential invalidation. The term “differential invalidation” refers to certain typesdifferential

invalidation of ballots having a higher probability of being invalidated. If this invalidation is a
function of the ballot recipient, then the election is unfair.

If ballots cast for Candidate X have a higher probability of being invalidated,
then the election is unfair against Candidate X. Since we only have ballot counts ata very deep

paragraph the electoral division level, such an unfair election would show itself by having a
significant relationship between the invalidation rate at the division level and the
support level for the candidate.

Thus, the dependent variable is the proportion of ballots declared invalid by
the official counters. The independent variable is the level of support for Candidate
X. Both are measured at the electoral division level. If the relationship betweenmeasurement unit
these two variables is statistically significant, then we have evidence of differential
invalidation. If the slope is also negative, then this helps Candidate X.why?

Figure 13.4: A map of the world, as of 2007. Now, see if you can locate Sri Lanka.
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Note: These previous paragraphs illustrate limitations of using aggregate
data (measurement unit) when we want to draw conclusions about the indi-
vidual (experimental unit). We must say that the results are “consistent with”
our hypothesis about the individual. We can conclude there is “evidence of”
our hypothesis. That is about all. ecological fallacy

The ecological fallacy is a logical error that arises when characteristics observed at
the group level are attributed to individuals within that group. Essentially, it involves
assuming that what’s true for a population is automatically true for every individual
within it. In statistics, this means that findings on aggregated data are not necessary
true for the individuals being aggregated.

For example, we know that states with higher percentages of college gradu-
ates also tend to have lower rates of obesity. It would be fallacious to conclude that
college graduates are less likely to be obese.

An example in US elections: We know that states with higher proportion of
their residents being African-American tend to be more Republican. It would be
wrong to conclude that African-Americans tend to be Republican.

13.4.1 Theory Application An applied statistician needs to be able to translate
between the theory of the scientist and the theory of the statistician. This frequently
takes a lot of time and practice. Remember to be able to ask questions and to present
results from different standpoints.

To illustrate this symbiosis between science and statistics, let’s apply this the-
ory to the 2010 Sri Lankan election. In 2010, Sri Lanka held a presidential election
between incumbent Mahinda Rajapaksa and challenger General Sarath Fonseka.
Both were instrumental in ending the Sri Lankan civil war between the Sinhalese
and the Tamils.8

As was expected for Sri Lanka at this time, there was violence on election
day, intimidation throughout the campaign, and claims of fraud by both parties. To
secure his victory, Rajapaksa had Fonseka arrested and imprisoned. The entire scene
is explored by Ratnayake in That Blue Thing: An Engineer’s Travel.

With that brief background, the data are located at

http://rur.kvasaheim.com/data/sri2010pres.csv

Load the data as usual, but do not attach it. . . yet. Examine the data. Look at the
relationships in the data. Think of the meanings of the data. Become one with the
data. zen

8Arguably, the two were not as effective as nature. The 2004 Boxing Day Indian Ocean earth-
quake caused a tsunami that swamped the Tamil navy — a blow from which the rebel Tamils
did not recover.
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Note: Always do this if you are exploring the data; you need to be as aware ofalways
the data as possible.

Arguably, this is the most under-appreciated part of statistical anal-
ysis. It is also the most tricky. As always, know the difference between ex-
ploratory and confirmatory analysis. If you are exploring the data and re-
lationships in the data, then make sure you explore all of their nooks and
crannies.

If, on the other hand, you are testing hypotheses about the data (con-
firmatory analysis), then you will not be doing any explorations. You will
simply be testing for statistically significant relationships in your model. Al-
ways be aware of your purpose.

Doing this here, you will see several records identified as “postal” and several as
“displaced.” The former refer to votes sent in the mail. The latter refer to votes by
people outside their division. At this point in Sri Lankan history, the country was
still suffering the after-effects of a decades-long civil war. A large proportion of the
population was displaced from their homelands. . . especially from the north and
east of the country. The “displaced” ballots are the votes of these people.

Note that the number of displaced and postal votes is rather low. We prob-
ably should consider dropping these records for a couple of reasons. The most im-
portant reason is that the number of invalidated ballots in many of these records is
0, and zeroes tend to cause problems in analyses.9

A second reason is that it is unclear where these votes were counted and
who counted them. If we are interested in checking how the government in each
division affected the vote counting, then the Postal and Displaced votes muddy the
argument.

Of course, it is best to create two models (as I do here), one with the displacedbest
and postal votes and one without, and fit both models. Remember the goal of science
it to better understand relationships.10 Creating and interpretation multiple models
allows us to have a greater insight into the relationships.insight

For the record, there is not much of a difference between the two models.
Figure 13.5 is a graphic for the models fit on the data with the Postal and Displaced
ballots removed; Figure 13.6, for the models fit on the entire data set. Since the two
graphics are very similar, we have more evidence that the underlying model does
describe reality well. That is, we are much more confident in our conclusion that
there is differential invalidation and that it benefited Mahinda Rajapaksa.

9As an illustration, calculate a 95% confidence interval for a proportion when x=0 and n=10.
The standard Wald confidence interval gives a confidence interval from 0 to 0. This is one
reason Agresti and Coull (1998) created a new confidence interval for proportion data.

10It just so happens, that the substantive conclusions remain the same, regardless of whether or
not the displaced and postal votes are dropped.

394



Figure 13.5: An invalidation plot of the Sri Lankan presidential election in 2010 with the
postal and displaced ballots removed. The curves are prediction curves for the five main
link functions. Only the cauchit link (gold) produces estimates that practically differ from
the others. Regardless, all models tell the same substantive story: there is evidence of
differential invalidation in favor of Mahinda Rajapaksa.

13.4.2 Interpretation From the graphics (Figures 13.5 and/or 13.6) and the
results of the statistical analysis, we can conclude that there is a statistically signif-
icant relationship between the invalidation rate and the support level for Mahinda
Rajapaksa (p ≪ 0.0001). Furthermore, that relationship is negative. This means
that those divisions that supported Rajapaksa more had a higher proportion of their
votes counted.11

Since the relationship is significant negative, electoral theory lets us conclude
that there is strong evidence of differential invalidation in the 2010 election, and that
it helped Rajapaksa retain the presidency.

11Did you remember to check if these models violate the assumptions? Checking for overdisper-
sion leads us to use maximum quasi-likelihood as our estimation method. Checking model
fit (runs test) tells us that these models are appropriate. Always check your models.
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Figure 13.6: An invalidation plot of the Sri Lankan presidential election in 2010 with the
entire data set. The curves are prediction curves for the five main link functions. Only the
cauchit link (gold) produces estimates that practically differ from the others. Regardless,
all models tell the same substantive story: there is evidence of differential invalidation in
favor of Mahinda Rajapaksa.
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13.5: Beta-Binomial Regression*

There is yet another option for modeling dependent variables that are a count with
an upper bound. The Binomial distribution is rather restrictive in that the dispersion
parameter must be 1. We were able to relax this requirement by including a new
variable to be estimated from the data. All this did, however, was admit that the
Binomial distribution is not the correct distribution. Using MQLE allowed us to
estimate the standard errors better, but we still clung to the Binomial distribution
as the “true” distribution of the data.

It is better to select an entirely new distribution than continue to twist the
Binomial into something that it is not. This new distribution must be known, and it
must allow for non-unit dispersion.

Thankfully, we have such a distribution — the Beta-Binomial distribution.
Here is its probability mass function:

f (y; n,α,β) =
(
n
y

)
B(y +α,n− y + β)

B(α,β)
(13.10)

Here B(x,y) is the “beta function” defined as

B(x,y) =
Γ (x) Γ (y)
Γ (x+ y)

(13.11)

Unsuprisingly, the expected value is

E [Y ] = n
α

α + β
(13.12)

Thankfully, the variance is

V [Y ] = n
αβ(α + β +n)

(α + β)2(α + β + 1)
(13.13)

= E [Y ]
β(α + β +n)

(α + β)(α + β + 1)
(13.14)

Why “thankfully”? Quite simply because dispersion is not an issue. Like the Gaus-
sian, there are enough variables in the probability mass function to estimate it from
the data without forcing it to have a specific value (as in the Binomial and Poisson
cases).

With all of that good news being said, it is unfortunate that the Beta-Binomial
is not EC. Thus, one cannot use the techniques defined by Nelder and Wedderburn
(1972). However, one can still estimate the parameters of interest using maximum
likelihood estimation.
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While it is clear that the mathematics of the problem will be more compli-
cated, the coding will be about the same as when we used OLS and GLMs. Compare
and contrast the following three lines of code. Determine what each does.

lm(y ∼ x)
glm(y ∼ x, family=binomial)
vglm(y ∼ x, family=betabinomial)

So, what are the differences? How nice is it that the researcher who created Vector
Generalized Linear Models (VGLMs) believed in following good programming prac-
tice (Yee 2010 and 2015). Note that the coding is very similar. However, the function
requires the VGAM package.

After running the vglm function line, perform the usual summary of the
estimated model. Note that this will take awhile. The function is performing many
estimation steps in that summary call. As a result, there are a few things that are
included in the regression output.

To see this, here is the output from the Binomial regression using MQLE.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.6636 6.7370 -0.989 0.336
averageAge 0.3766 0.3469 1.086 0.292

Here is the output from the Bet-Binomial regression (using MLE).

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept):1 -5.8076 5.7313 -1.013 0.311
(Intercept):2 -0.3309 0.3335 -0.992 0.321
averageAge 0.3233 0.2944 1.098 0.272

The effect of the average age is interpreted in the same manner (note that the logit
link was used in both cases). The difference in the estimated effects in the two mod-
els is slight.

Th big difference is that the intercept is estimated using two values in the
VGLM. This is because the Beta-Binomial distribution has two parameters to esti-
mate, α and β.

Compare Figure 13.7, which was fit using the Beta-Binomial model, to Fig-
ure 13.3, which was fit using the Binomial distribution. Note that the story told by
the Beta-Binomial is approximately the same. The only difference I can see is that
the Humanities and Social Sciences are not as close together in this model as they
were in the Binomial model.
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Figure 13.7: The estimated results of modeling the “O Canada” data using the Beta-
Binomial distribution. Compare to Figure 13.3, which used the Binomial distribution.

Note: The key reason to choose the Beta-Binomial over the Binomial is that
the overdispersion guarantees that the Binomial is not the right distribution.
Thus, logically, the Beta-Binomial is the better distribution.
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13.6: Conclusion

In the previous chapter we examined how to model dichotomous dependent vari-
ables. Such variables follow a Bernoulli distribution and should be modeled as such.
In this chapter, we looked at modeling random variables that are sums of Bernoulli
random variables. As a first approximation, these follow a Binomial distribution.

As a second approximation, we need to recognize that there may be evidence
of dependence in the data. Evidence of such is frequently seen in overdispersion.
The adjustment is to fit the model using a different estimation procedure: maximum
quasi-likelihood estimation.

Once these topics were covered, this chapter provided a (far too-) brief dis-
cussion of ethics, a refocus on the measurement unit and what we are allowed to say
about the experimental unit, and two extended examples.
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13.7: End-of-Chapter Materials

13.7.1 R Functions In this chapter, we were introduced to several R functions
that will be useful in the future. These are listed here.

Packages:

RFS This package does not (yet) exist. It is a package that adds much general func-
tionality to R. In lieu of using library(RFS) to access these functions, run
the following line in R:
source("http://rfs.kvasaheim.com/rfs.R")

Epi This package adds several functions and procedures related to epidemiology.
As it is not a part of the base installation for R, you will need to install it before
you can load it with library(Epi).

VGAM This package allows one to model dependent variables that are conditionally
Beta-Binomial distributed. As it is not a part of the base installation for R, you
will need to install it before you can load it with library(VGAM).

Statistics:

lm(formula) This function performs linear regression on the data, with the sup-
plied formula. As there is much information contained in this function, you
will want to save the results in a variable.

glm(formula) This function performs generalized linear model estimation on the
given formula. There are three additional parameters that can (and often
should) be specified.

The family parameter specifies the distributional family of the dependent
variable, options include gaussian, binomial, poisson, gamma, quasibinomial,
and quasipoisson. If this parameter is not specified, R assumes gaussian.

The link parameter specifies the link function for the distribution. If none is
specified, the canonical link is assumed.

Finally, the data parameter specifies the data from which the formula vari-
ables come. This is the same parameter as in the lm() function.

vglm(formula) This function performs vector generalized linear model estimation
on the given formula. As with the glm function, there are additional parame-
ters that can (and often should) be specified. Note that the link option is not
allowed in vglm models at this point.

predict(mod, newdata) As with almost all statistical packages, R has a predict func-
tion. It takes two parameters, the model, and a dataframe of the independent
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values from which you want to predict. If you omit newdata, then it will pre-
dict based on the independent variables of the data itself, which can be used
to calculate residuals. The dataframe must list all independent variables with
their associate new values. You can specify multiple new values for a single
independent variable.

accuracy(mod) This function in the RFS package determines the predictive accu-
racy of a provided model. It takes three necessary parameters: data, truth,
model, and threshold. It has the optional parameter of returning the num-
ber of correct classifications (rate=FALSE).

AIC(mod) This function calculates the Akaike Informations Criterion score for the
provided model. The model needs to have been fit using Maximum Likelihood
Estimation.

BIC(mod) This function in the RFS package calculates Schwarz’s Bayesian Infor-
mation Criterion (BIC) for the provided model.

deviance(mod) This function returns the deviance in the model. This value is use-
ful in the Likelihood Ratio Test.

deviance.test(mod) This function performs a chi-square test for whether the de-
viance differs from unity. It is a part of the RFS package.

pchisq(x) This gives the value of the cumulative distribution function (CDF) un-
der the Chi-squared distribution. The necessary parameter is the number
of degrees of freedom, df=. By default, it returns the lower-tail probability.
Usually, we will want to have the upper-tail probability, thus we will use the
lower.tail=FALSE parameter.

var.test(x,y) This function performs an F test, which compares the variances of two
samples (x and y) from Normal populations. It can only compare two sam-
ples. If you need to compare more than two samples for equality of variance,
you will need to perform either a Bartlett test or a Fligner-Killeen test.
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Programming:

for This command is one of the basic control-constructs in the R language (as in
most programming languages). The usual use is

for(var in seq) expr,

where var is the looping variable (the variable that equals the current loop
number). The parameter seq is a vector of values. Usually, seq = something
like 1:100, which is a vector of values from 1 to 100. Finally, expr is the
expression (or series of expressions) that are performed for each value in the
seq vector.
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13.7.2 Exercises This section offers suggestions on things you can practice from
this chapter. I suggest that you save the scripts in your Chapter 13 folder.

1. Show that the Binomial distribution is a member of the Exponential Class of
distributions.

2. Let Y ∼ Bin(n,π). Calculate E [Y ] and V [Y ] using the method of Section
11.2.4.

3. Explain why a negative (and statistically significant) slope indicates that the
differential invalidation was in favor of that candidate (page 392).

4. Refit the Sri Lanka election data using the Beta-Binomial distribution. Com-
ment on any differences.
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Chapter 14:

CountDependentVariables

Overview:

Using generalized linear models allows one to fit depen-
dent variables that follow specified distributions. This
allows us to focus more clearly on the variable we are
modeling. It also allows us to avoid many of the “fixes”
we used in ordinary least squares that tried to “handle”
issues instead of using them to better understand.

In this chapter, we examine another type of depen-
dent variable and how we can use GLMs to fit such vari-
ables. The variable is the count variable with no upper
limit. This support separates it from the Binomial depen-
dent variable from the previous chapter.

Forsberg, Ole J. (10 DEC 2024). “Count Dependent Variables.”
In Linear Models and Řurità Kràlovstvı̀. Version 0.704442η(α).
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❧ ❧ ❧

Remember that we are examining these many different types of regressions for one
primary reason:

The requirements of Ordinary Least Squares are violated by dis-
crete dependent variables.

Rather than seeing this as a problem, we can use it as an indicator that we can model
the data better and extract more information from the data.

This marks the next chapter of discrete dependent variables. In Chapter 12,
we discussed binary dependent variables — dependent variables that can only take
on two values. In the previous chapter, we examined dependent variables that were
counts of successes over a known number of trials (or attempts). In this chapter, we
examine count dependent variables that have no upper limit. Some examples of such
count variables include the number of fires in Galesburg in a year, the number of
deaths due to terrorist attacks in the world in a month, and the number sorties per
day in a battle.

❧ ❧ ❧

Let us set the stage with an example that we will return to throughout this chapter:
The Troubles of Ruritania, a lengthy period of terrorist and counter-terrorist activity
in the country, lasted approximately from 1969 until 2002. In that time, over 1800
people died as a result of terrorist actions — by both republican and loyalist groups.
Six prime ministers of the Ruritania — on both the political left and right — had to
deal with this terrorism. If we assume that the terrorist groups are rational actors,
then they will act to maximize their chances of achieving their goals. Because of its
hierarchical structure and large size, the Ruritanian Republican Army (RAvŘ) was
best able to organize its actions to affect the elections.

The question is whether they did.
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Question

Did the RAvŘ adjust its tactics in reaction to the political ideology of the
prime minister?

Unfortunately, the extant literature is divided on the direction of the effect. Some
research suggests that the RAvŘ became more violent and killed more people when
the Conservatives (a.k.a. the Tories) held power. Other research suggests that the
RAvŘ became more violent under the Left party. Which is it?

❧ ❧ ❧

For the unbounded count variables in this chapter, there are three identifying char-
acteristics:

1. the variable can never be negative,

2. it has no theoretic upper bound, and

3. it is discrete.

If Y is this type of count variable, then

Y ∈
{
0,1,2,3, . . .

}
If we just do usual linear modeling without taking these three items into consider-
ation, we lose information inherent in the data; we are making assumptions about
the data that are incorrect. Performing count data analysis extracts more informa-
tion from the data you worked so hard to collect. It gives better predictions and
explanations of the phenomena under study. It also (usually) means not having to
“fix” violations of homoskedasticity or fit.
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14.1: Linear or Poisson Regression?

To illustrate some of these observations, let us create a count dataset, fit it with a
simple linear model, fit it with a Poisson model, and then compare the results. The
data that we will use for this example, fakepoisson, was fabricated so that we
know the parameters. As such, we can compare the estimates we get from the three
modeling techniques to the true parameters. Here is the code I used to create the
fakepoisson data set:

set.seed(370)

n=75
x = sort( runif(n, min=0, max=2) )
beta0 = 0
beta1 = 2
lambda = exp( beta0 + beta1*x )

y = rpois(n, lambda)

By this point, you should be able to determine what each line of code does. You
should also take note of how the parameter lambda is defined and keep this in
mind as you read forward.

For this example, the true parameters are β̃0 = 0 and β̃1 = 2. Both of these
are in log units (the tildes to serve as reminders of this). Except for those provided
for the linear model, it is difficult to compare the estimates of the true value. It is
much easier to compare the prediction curves.

OLS Model (Untransformed): The OLS (untransformed) model can easily be per-
formed. However, it does not fit the data well at all (Figure 14.1). If you decide to
perform the three usual numeric tests, you will find all three violated. Yikes!

OLS Model (Log-Transformed): The transformed OLS model has its own problem.
Logically, a log transform would be appropriate (only bounded below). However,
the dependent variable takes on a 0 value. This means you should either perform an
additional transformation (add 1 to each dependent value) or drop the records with
y = 0.

If we add 1 to each dependent variable before performing the log transform
(that is, we perform the transformation y∗ = log[y + 1].) We see that there is a lin-
gering issue with heteroskedasticity. Is it ignorable? Perhaps, but let us try Poisson
regression.

Poisson Model: Here, we easily perform Poisson regression and check the require-
ments. No requirement is violated. As such, we are good to go with this model.
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Figure 14.1: Plot of the pseudo data with three regression equations overlaying. The
linear regression is in red, the linear regression on the log-transformed data is in green,
and the Poisson regression is in blue. The black curve is the “correct” curve.

What was the code?

model.c <- glm(y ∼ x, family=poisson)
summary(model.c)

That’s all.

At this point, you should be able to guess what the lines do and what infor-
mation in the first line is missing because it is the default link. . . as we see shortly.
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Which is the best model of the three?: It may not be clear that these three cannot
be directly compared. The linear model makes no adjustments, the log-transformed
model does, as does the Poisson regression model. None of the transformations
are the same. This means that we cannot use information criteria to compare the
models.1

So, how can we determine which of these models is best? A first step is to de-
termine which is appropriate by checking the assumptions. The untransformed OLS
model violates all three requirements. The transformed OLS model is heteroskedas-
tic. The Poisson model, however, violates none of the requirements. Thus, on the
basis of meeting assumptions, the third model is the best of these three.

If all we care about is estimates (and not confidence intervals), we could look
at the graphic comparing the data and the estimations from the model (Figure 14.1).
Numerically, we could also check how much the uncertainty in y has changed. The
uncertainty using the null model (predicting y = y ) is 184.96. The uncertainty with
the linear model is 43.6 — a reduction of 76%. The log-transformed linear model
has an uncertainty of 8.1, which is a reduction of 96%. This is quite much different
from the pure linear model. The Poisson model also has an uncertainty of 8.1 and a
total reduction of 96%.

Thus, if all you care about is the estimate (which scientists should not), find-
ing some adjustment so that the curve fits the data works. If you are a true scien-
tist, then the confidence interval (and p-values) are important. This means assump-
tions about homoskedasticity are important — if they exist. Some modeling requires
homoskedasticity others do not. Poisson regression does not (at least, not really).

1Remember that we can use AIC, BIC, etc. only when the y-values are the same. This is not true
here, as the y-values are all transformed differently.
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14.2: The Mathematics

Count models have dependent variables that can take on only non-negative integers.
Back in the time of OLS, we handled the non-negative aspect by taking the logarithm
of the dependent variable (perhaps by adding 1 before taking the logarithm if there
are values of 0). However, OLS does not allow for discrete dependent variables. The
discrete aspect must be handled through Generalized Linear Models (GLMs).

Recall that using GLMs requires that we explicitly specify three things.

1. First, we need to know the linear predictor, η.

2. Second, we need to know the distribution of the dependent variable, condi-
tioned on the independent variables.

3. Finally, we need to know the link function that appropriately connects the
two of them.

The linear predictor is the same as always: the weighted sum of our independent
variables. The canonical link function is the logarithm function. Finally, the distri-
bution we will use is the Poisson distribution.

The Poisson is not the only option for such count dependent variables. The
Negative Binomial distribution can also be used, but as the Negative Binomial dis-
tribution is a bit more complicated than the Poisson, we will motivate this chapter
with the Poisson and save the Negative Binomial for later (Section 14.3.3).

14.2.1 The Poisson Distribution The Poisson distribution has the following
probability mass function (pmf):

f (y; λ) =
e−λλy

y!
y ∈

{
0,1,2,3, . . .

}
(14.1)

Again, the probability mass function (pmf) is not as important as the expected value
of this distribution. Why? Remember that the Generalized Linear Model paradigm
models the expected value, E [Y | X], not the actual outcomes.

Calculating the expected value of the Poisson distribution is not as easy as it
was for the Binomial; it requires a trick:

E [Y ] :=
∞∑
y=0

y f (y) (14.2)

=
∞∑
y=0

y
e−λ λy

y!
(14.3)
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=
∞∑
y=1

y
e−λ λy

y!
(14.4)

=
∞∑
y=1

e−λ λy

(y − 1)!
(14.5)

= λ
∞∑
y=1

e−λ λ(y−1)

(y − 1)!
(14.6)

Let us define z := y − 1:

= λ
∞∑
z=0

e−λ λz

z!
(14.7)

and so, we have

E [Y ] = λ (14.8)

This last step is correct as e−λλz/z! is the probability mass function for the Poisson,
therefore

∞∑
z=0

e−λ λz

z!
= 1 (14.9)

Thus, the expected value of a Poisson random variable is E [Y ] = λ.

Note: Recall that one of the assumptions of Ordinary Least Squares is that
the variance is constant with respect to the (expected value of the) dependent
variable. When the outcomes are distributed as Poisson random variables, we
can actually prove that the variance is not constant with respect to the pre-
dicted outcomes. To see this, let Y ∼ P (λ). With this, and with the probability
mass function above, we can use the definition to calculate the variance of Y .
Without proof, the variance of Y is V [Y ] = λ. Yes, the variance is the same as
the expected value.

Thus, the variance is a function of the expected value, and the homoskedasticity
requirement of OLS is violated.

Note: That the variance is a function of the expected value also creates a
problem. Quite often, we will be dealing with data in which the variance
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is not equal to, but is greater than, the expected value. Such data is termed
overdispersed. When we encounter it (Section 14.3), we will discuss what it
means and what we should do.

By the way, this is the same overdispersion as we discussed in Sec-
tion 13.3.3. It is caused by the same structures and is tested in the same
manner. I encourage you to revisit that section (page 384).

Now that we understand our choice of distribution a bit better, and the resulting
expected value, let us examine the third facet: the link function. First, note that λ
is bounded; λ ∈ (0,∞). Thus, we need a function that takes a bounded variable and
transforms it into an unbounded variable. We have already met a link function that
can handle this — the logarithm function (see Chapter 7).

Note: Again, note that we are modeling λ = E [Y ], not the observed count. As
λ is continuous and bounded below by zero (but never equal to zero), we can
use the logarithm function as our transformation link.

415



And so, we have the three necessary components to use Generalized Linear Models
for count data:

• the linear predictor,

η = β0 + β1x1 + β2x2 + · · ·+ βkxk (14.10)

• the conditional distribution of the dependent variable,

Y | x ∼ P (λ) (14.11)

with the formula for the expected value,

µ = λ (14.12)

• and the link function,
log(µ) = η (14.13)

Note: Here is what you need to take away from this section: The distribution
must fit the possible outcomes. The link must translate the bounds on the
parameter to the lack of bounds on the linear predictor. Both require you to
know some distributions.

14.2.2 Deriving the Canonical Link In Chapter 11, we mentioned that each
distribution has a canonical link. Let us derive the canonical link for the Poisson
distribution. The steps to determine the canonical link are the same for the Pois-
son as it was for the Gaussian (Chapter 11), Bernoulli (Chapter 12), and Binomial
(Chapter 13):

1. Write the probability mass function (pmf).

2. Write the probability mass function in the required form.

3. Read off the canonical link.
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For this distribution, this results in:

pmf : f (y | λ) =
e−λ λy

y!
(14.14)

= exp
[
log

(
e−λ

)
+ log(λy)− log(y!)

]
(14.15)

= exp[−λ+ y log(λ)− log(y!)] (14.16)

= exp
[
y log(λ)−λ

1
+− log(y!)

]
(14.17)

This is in the required form:

(14.18)

exp
[
y θ − b(θ)
a(φ)

+ c(y,θ)
]

(14.19)

(14.20)

Thus, reading off the standard form, we have the following:

• y = y

• θ = log(λ)

• a(φ) = 1

• b(θ) = λ = exp(θ)

• c(y,θ) = − log(y!)

As such, the canonical link is the log function. I leave it as an exercise to show that
E [Y ] = λ and V [Y ] = λ using the methods of Section 11.2.4.
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Example 1

The people in many US states have the ability to formulate binding laws by
placing them before the people for a vote. This process is called the Citizens’
Initiative. Extant theory suggests that states with a higher population will
also use the initiative process more often than states with a lower population.
Let us test this hypothesis with data (crime datafile).

Solution: As we are performing GLM modeling, we need to determine the three
needed components. First, since the dependent variable is a count of the number of
initiatives placed before the voters, we will assume that the dependent variable has
a Poisson distribution:

inituse | λ ∼ P (λ) (14.21)

The linear predictor will use our explanatory variable:

η = β0 + β1pop90 (14.22)

The link function will be the logarithm function:

log(λ) = η (14.23)

With this, we use these commands to load and analyze the data

vcr = read.csv("http://rur.kvasaheim.com/data/crime.csv")

m2 = glm( inituse ∼ pop90, family=poisson(link=log),
data=vcr, subset=(ccode!=93) )

Now, summary(m2) tells us that there is a statistically significant relationship be-
tween the state’s population in 1990 and its use of initiatives in the 1990s. Un-
fortunately, the relationship is negative (β̂1 = −7.433 × 10−8), which is definitely
inconsistent with the original hypothesis. We have shown that the original hypoth-
esis does not agree with this reality.

Let us now predict the number of initiatives that Utah would have had dur-
ing the 1990s using the fact that the population of Utah is 1,722,850. We can do this
by hand or we can use the predict function. In either case, we must remember to
back-transform using the inverse of the logarithm function, the exponential func-
tion. Using the latter method gives me an un-transformed prediction of 2.0, which
means the model predicts 7.44 initiatives for Utah in the 1990s. The real value is 3.

UTAH = data.frame(pop90=1722850)
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Figure 14.2: A plot of initiative use against the population of the state in 1990, with the
Poisson regression curve superimposed.

prL = predict(m2, newdata=UTAH)
exp(prL)

Note: The glm function used here includes an additional parameter that we
have not discussed: subset. This parameter allows us to explicitly specify
which data to include in the analysis. Here, I removed the state with ccode
equal to 93 (California) from the analysis. The reason I did this is that a plot
of the entire data suggested that California was an influential point.

Figure 14.2 is a plot of the data, with the regression curve superimposed. The in-
teresting thing is that the graph visually calls into question the results of the GLM
regression above. While the effect direction does definitely appear to be negative, it
is hard to believe that this effect has such a high level of significance (p≪ 0.0001).
There is a lot of variance in the data What is happening? ♦

The problem is that the model/data are overdispersed.
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14.3: Overdispersion

Recall that one result of using the Poisson as our distribution of choice is that the
residual variance and the expected value are assumed equal, because the probability
mass function has a(φ) = 1. As in the case of the Binomial models, overdispersion
means that a(φ) > 1.

In essence, this means V [Y | X] > E [Y | X]. For a Poisson model (and for a Bi-
nomial model), the overdispersion measure equals the ratio of the residual deviance
to the residual degrees of freedom. We use the ‘residual,’ since overdispersion is
a function of the model, as well as the data. For the Initiative Use model (Exam-
ple 14.2.2), the overdispersion factor is 681.68/48 = 14.2. In other words, the level
of unexplained variance is 14.2 times too high for this model.

Note: Please revisit Section 13.3.3 for one way of testing whether 681.68 re-
ally is evidence of significant overdispersion. If you create the right test,2

you will get a critical value of just 69. Since 681.86 ≫ 69, there is a lot of
overdispersion in this data.

Since overdispersion is a function of the model you are fitting to your data, the
first solution is to determine if you are missing some important variables (or powers
of variables). Frequently, modifying your linear predictor by adding appropriate
variables will reduce the overdispersion.

Even though this is the most appropriate method in many ways, there is an
extreme danger to using this method: you may need to include too many variables
and combinations of variables to eliminate the overdispersion. This results in over-
fitting the data; that is, you are fitting the data and not the data-generating process
in which we are actually interested (see Section 14.5).

Thus, if you end up including too many variables before the overdispersion
is treated, you may want to consider other options.

The first is to adjust the standard errors by hand. This frequently works
acceptably, as the primary effect of overdispersion is to underestimate the standard
errors. The second option is to fit the model using a different fitting technique, one
that allows you to use the Poisson but also allows you to have a different relationship
between the mean and variance. Maximum quasi-likelihood estimation (MQLE) is a
common alternative to the usual maximum likelihood methods. Finally, you can fit
the model using a different distribution, one that does not require the mean to equal
the variance. The Negative Binomial is a common alternative to the Poisson.

2The code I used was qchisq( c(0.025,0.975), df=48 ).
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Parameter Original Adjusted

Estimate Std. Error Std. Error z-value p-value

Intercept 2.136 0.0814 0.307 6.960 ≪ 0.0001
1990 Population -7.433 ×10−8 1.743 ×10−8 6.568 ×10−8 -1.131 0.2578

Table 14.1: The results from the Poisson model, with standard errors adjusted for overdis-
persion. In the original Poisson model, the residual deviance was 681.68 and the residual
degrees of freedom was 48. Thus, the dispersion factor was 14.202. Thus, we adjust the
standard errors by multiplying the original estimates by

√
14.202 = 3.769. The calcula-

tion for the z value is the same: coefficient divided by standard error, with the new p-value
based on the adjusted z value.

14.3.1 Adjusting the Standard Errors This first option adjusts the estimated
standard errors to try to compensate for the overdispersion. Recall that the dis-
persion factor is the ratio of the residual variance to the expected variance. As the
standard error is the square root of a variance, it would make sense that we could
‘fix’ the overdispersion by multiplying the standard errors by the square root of the
dispersion factor.

Table 14.1 presents the original standard error estimate along with the ad-
justed standard errors, z-values, and p-values. Note that the 1990 population was
highly significant in the unadjusted model, but is not significant in the adjusted
model (p = 0.2578).

The strength of this method is that it is easily performed. The drawback is
that the correction is only an approximate estimate. In the era of expensive compu-
tational times, this method was commonly used; in the modern era of cheap comput-
ing, not-so-much. The next two methods are more appropriate in that their results
are more statistically sound than this approximation.
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Parameter Original Adjusted

Estimate Std. Error Std. Error z-value p-value

Intercept 2.136 0.0814 0.345 6.103 ≪ 0.0001
1990 Population -7.433 ×10−8 1.743 ×10−8 7.492 ×10−8 -0.992 0.3261

Table 14.2: The results from the Poisson model, with standard errors estimated using
Quasi-Likelihood Estimation. Note that the coefficient estimates are the same between the
two methods. The differences are due to the re-estimated standard errors. Note, again,
that the 1990 population is no longer a statistically significant variable as it was in the
original Poisson model.

14.3.2 Maximum Quasi-Likelihood Estimation The maximum likelihood esti-
mation method makes assumptions about the relationship between the mean and
variance of the underlying distribution. For the Poisson distribution, that relation-
ship is the identity function; that is, E [Y | X] = V [Y | X]. The presence of overdis-
persion indicates that this relationship — or this value of a(φ) — is incorrect.

A different way of estimating the parameters is to use Maximum Quasi-
Likelihood Estimation (Section 13.3.3, page 385). This method allows for modeling
different relationships between the expected value and variance for the distribution.
It effectively includes an additional parameter for a(φ).

The strength of using MQLE is that you can use the same distributions with
which we are familiar, and the interpretation is identical. The weakness is that some
statistical programs are not able to model using this method. Thankfully, R can. To
model using MQLE in R, we prefix the distribution with the world quasi. Thus, we
would use

glm(y ∼ x, family=quasipoisson(link=log))

to fit this model. This command produces the results in Table 14.2. Note that the
coefficient estimates are the same as for the Poisson model. The difference is in the
standard errors — they are increased. This reduction causes our z-values to decrease,
resulting in increased p-values.
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Note: The only two distributions that have the MQLE option in R are the
Poisson (quasipoisson) and the Binomial (quasiBinomial). These are
the only two popular distributions that have a specific numeric value for
a(φ) = 1. The rest have a value for a(φ) that can be estimated from the data;
for instance, the Gaussian has a(φ) = σ2.

14.3.3 The Negative Binomial Family In the Generalized Linear Model frame-
work, you need to select an appropriate distribution that matches your dependent
variables. If that variable is a count, then the sole requirements for that distribu-
tion are that the outcomes can only be discrete and non-negative. The Poisson is
the usual distribution, but it is not the only one. An alternative distribution is the an
Negative Binomial. The Negative Binomial family allows for both over- and under-
dispersion in the model. It does this by assuming the rate parameter λ in the Poisson
is distributed as a Gamma random variable (Venables and Ripley 2004). Specifically,
it assumes

Y | µ,θ ∼ NegBin(µ,θ) (14.24)

where

Y |W ∼ P (µW ) (14.25)

with

W ∼ 1
θ

GAM(θ) (14.26)

where E [W ] = 1 and V [W ] = 1/θ.
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Estimate Std. Error z-value p-value

Constant Term 2.2376 0.4835 4.63 ≪ 0.0001
Population in 1990 -1.0091× 10−7 8.1903× 10−8 -1.23 0.2179

Table 14.3: The results table for modeling the initiative use using the Negative Binomial
distribution. Note that the population is no longer statistically significant.

With this formulation, it can be shown that E [Y ] = µ, V [Y ] = µ+ µ2/θ, andexercise
that the probability mass function for Y is

f (y;θ) =
Γ (θ + y)
Γ (θ) y!

µyθθ

(µ+θ)θ+y
(14.27)

The strength of this formulation is that a greater number of variations are able to be
fit.

The drawback is that interpreting the results is a bit more difficult. However,
since we make the computer do all the heavy lifting, this drawback is minor. It does,
however, introduce a new set of possible error messages and parameters that you
may have to interpret.

The other drawback is that the Negative Binomial distribution is not a mem-
ber of the exponential family (unless θ is known, which it is not). As such, it cannot
be used within the GLM paradigm (strictly speaking). With that said, fitting a model
using the Negative Binomial distribution is just as easy as it is for any of the previous
distributions.

In R, you will have to load the MASS package to use the Negative Binomial
family, since it has its own regression function: glm.nb. The options for glm.nb
are similar to those for glm— Venables and Ripley designed it that way (or had their
grad students design it that way). Thus, the command

m2n = glm.nb(inituse ∼ pop90, data=vcr, subset=(ccode!=93))

will perform Negative Binomial regression similar to the regression performed in
Section 14.3.2. The first thing to notice is that the overdispersion is no longer rele-
vant. With this, we can have more confidence in the parameter estimates (provided
in Table 14.3). The second thing to notice is that the effect of population is still no
longer statistically significant. This agrees with our observation in Sections 14.3.1
and 14.3.2. Finally, we notice that there are additional parameters estimated (at the
bottom). The Theta is the estimated value of θ in the Gamma distribution above.

Note: The direction of the coefficient estimate is still directly comparable to
the other coefficients estimates we have examined. The magnitudes are also
comparable, but only to the other log-linked models. Thus, this model tells
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us that there is a negative relationship between the state’s population and the
level of initiative use (although it is not statistically significant).3

This model estimates that Utah will have had approximately 7.9 initiatives during
the 1990s. I leave it as an exercise to determine this. exercise

3That the direction is comparable is due to choosing a link function that is strictly increasing.
That the estimates are comparable is due to having the same link function or same transform
function.
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14.4: Full Example: Body Counts

Using the above information, let us examine the problem of understanding terror-
ism. This extended example will also allow us to discuss a few things that are be-
coming important to our analyses, namely the bias-variance trade-off.

Example 2

The Troubles in Ruritania lasted from 1969 until 2002. In that time, over
1800 people died as a result of terrorist actions — both republican and loy-
alist groups. Six prime ministers — both left- and right-leaning — had to
deal with the terrorism. If we assume that the terrorist groups are rational
actors, then they will act to maximize their chances of achieving their goals.
Because of its hierarchical structure and large size, the Ruritanian Republi-
can Army (RAvŘ) was best able to organize its actions to affect the elections.

The question is whether they did —

Did the RAvŘ react to the political ideology of the prime
minister?

Unfortunately, the extant literature is divided on the direction of the effect.
Some research suggests that the RAvŘ became more violent and killed more
people when the Conservatives held power. Other research suggests that the
RAvŘ became more violent under the Left party. Which is it?

The dataset, terrorism, contains just three variables of import: total (the total
number of deaths under that prime minister for the year, or part of the year), days
(the number of days during the year that the prime minister was in power), and
riteleft (the level of conservatism of the prime minister). The second variable is
necessary to control for the fact that some prime ministers only ruled for a part of
the year. The third variable is the research variable. The first variable is the response
variable (dependent variable). The basic research model is

deaths ∼ riteleft (14.28)

However, we need to deal with days, the number of days the premier is in power. If
we include days as a simple independent variable, we allow the effects of the days
variable to freely vary to fit the data.

It is almost always better to treat days as the divisor for terrorist killings,
thus ostensibly creating a variable of killings per day. But, this is no longer a
count model (non-integer values), nor is it a proportion model (values can be greater
than one). What should we do?
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Fear not! Through the magic of mathematics, we can handle it. mathemagic

Recall in Section 14.2 that the link function we used was the logarithm: log[λ] =
β0 +β1x1 +β2x2 + · · ·+βkxk . If, instead of the expected count, λ, we wanted to model
the expected ratio, λ/days, we would have:

log
[ λ
days

]
= β0 + β1x1 + β2x2 + · · ·+ βkxk (14.29)

Using one of the properties of logarithms, this is equal to

log[λ]− log[days] = β0 + β1x1 + β2x2 + · · ·+ βkxk (14.30)

This, in turn, is mathematically equivalent to

log[λ] = β0 + β1x1 + β2x2 + · · ·+ βkxk + log[days] (14.31)

As such, we now have a count model (the log[λ] is alone on the left and is a random
variable) with an additional factor (log[days] on the right as a non-random variable).
Note that there is no parameter to estimate for log[days]. This is important in how we
set up the model, as days is not a typical variable. Let us call it an offset variable. offset

Offset variables do not have parameters to estimate. They are direct effects
with no multipliers. One can think of them as being subsumed in the constant term
(which would be true if the offset variable were constant). Most statistical programs
have an offset option available when you specify the model to be fit. In R, the offset
is specified in the model call by the keyword ‘offset’.
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Poisson Quasi-Poisson Negative Binomial

Constant Term 2.2622 2.2622 2.0363
(0.1190) (0.7071) (0.6004)

Conservatism -0.0115 -0.0115 -0.0142
(0.0011) (0.0065) (0.0093)

Days Served 0.0050 0.0050 0.0058
(0.0004) (0.0021) (0.0019)

AIC 1482.8 —— 369.5

Table 14.4: Results of three different “families:” Poisson, quasi-Poisson, and Negative
Binomial. The numbers in parentheses, below the coefficient estimates, are the standard
errors.

For the glm function,

glm(pira ∼ riteleft, offset=log(days), data=terror)

For glm.nb,

glm.nb(pira ∼ riteleft, offset(log(days)), data=terror)

Option 1: Days as an independent variable: The first option is to treat the days
variable as just another independent variable. This is not the best answer, as days
has a specific meaning with respect to the number of terrorist deaths. The betterspecific
option is to use Option 2 (below). However, for pedagogical purposes, let us first
enter days as an independent variable. Performing regressions for each of the three
count data families, we get the summarized results in Table 14.4.

Note that the direction of each of the effects is the same. This is not al-
ways true, especially when the variable has little effect or has no statistical signifi-
cance. However, if the variable is significant and changes effect direction, then there
is something severely wrong with your research model. Also note that the effects are
the same between the Poisson and the quasi-Poisson families. The only difference is
the size of the standard errors. The quasi-Poisson will always give a better estimate
of the standard errors (and of the statistical significance) than the Poisson.

Note that the Poisson model is severely overdispersed — the residual de-
viance is much larger than the residual degrees of freedom (the residual deviance is
1298, the residual degrees of freedom is 36, the overdispersion factor is 36.06). As
such, the Poisson family would be (very) inappropriate for this model. Thus, either
the quasi-Poisson or the Negative Binomial model would be preferable.

If we had just used the Poisson family, we would have concluded that the
level of conservatism of the prime minister is highly significant. However, looking
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Poisson Quasi-Poisson Negative Binomial

Constant Term -1.8280 -1.8280 3.8744
(0.0254) (0.1495) (0.0969)

Conservatism -0.0106 -0.0106 -0.0069
(0.0011) (0.0063) (0.0041)

AIC 1479.6 —— 2080.2

Table 14.5: Results of three different families: Poisson, quasi-Poisson, and Negative Bi-
nomial. The numbers represent the estimated coefficients. The numbers in parentheses
are the estimated standard errors.

at the more-appropriate results of fitting using Maximum Quasi-Likelihood Estima-
tion (or using the Negative Binomial family), we see that the effect of conservatism
is non-existent. Since the effect of conservatism on deaths was the purpose of this
research question, it is extremely important to reach good conclusions about the
effects of this variable.

As our research variable is not statistically significant at the usual level of
significance, we will not even bother to predict and graph our predictions here.

Option 2: Days as an offset variable: The second (and preferred) option uses
days as an offset (or “exposure”) variable. This makes more sense than allowing exposure
it to freely enter the model as a typical independent variable. The results from fit-
ting the data with the three model families are found in Table 14.5.

According to the results, the Poisson family is not appropriate; the level of
overdispersion is very high — on the order of 35. As such, using the MQLE method
or the Negative Binomial family would make good substitutes. In the quasipoisson
model, the parameter estimates remain the same, but the estimates of the standard
errors change to reflect the overdispersion. Thus, while the effect of conservatism
was statistically significant in the Poisson model, it was not in the quasipoisson
model (p = 0.1013).

The Negative Binomial model echoes the qualitative conclusions of the quasipois-
son: The level of conservatism has no statistically discernible effect on the level of
deaths resulting from RAvŘ terrorism in Ruritanis during the Troubles (p = 0.0905).

14.4.1 Bettering the Fit* Using the results from both the quasi-Poisson and
the Negative Binomial model does offer you the ability to strengthen your conclu-
sions. If one result gave statistical significance and the other did not, then you would
realize that your conclusions depended on the assumptions you made about the un-
derlying mechanism that produced the data, and not on the variables you chose to
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include (or exclude). It is never a good place to find yourself when your substantive
results depend on the choice between two acceptable models.4

Maybe, one should not stop here. Our formula is rather simplistic: it states
that one independent variable is all we need to explain the dependent variable. It
also assumes that the effect is linear between the independent and the dependent
variable. If we believe that extremist prime ministers suffer from higher (or lower)extreme
levels of terrorist killings, then the research formula we have cannot capture that
effect. To capture that effect, we will have to use the square (and/or higher powers)
of the riteleft variable.

In fact, let us examine the effects of conservatism (up to the fourth power),
plus the effects of having Labour in power, plus an interaction between having Labour
in power and the level of conservatism in the Labour government. Thus, the research
model we wish to fit will be

pira = β0 + β1 riteleft+ β2 riteleft
2 + β3 riteleft

3 (14.32)

+ β4 riteleft
4 + β5 labour (14.33)

+ β6 labour × riteleft (14.34)

Of course, we would need to have good theory to provide this model, but let’s justtheory!!
have fun with this.

In most statistical programs, one would have to create new variables for each
of the powers (three new variables) and a new variable for the interaction term
(labour × riteleft). In R, however, we can just write the formula to reflect
what we want without having to worry about the additional step of creating new
variables. As such, in R, the formula will be

pira ∼ riteleft + labour + I(riteleft∧2) +

I(riteleft∧3) + I(riteleft∧4) +

I(labour*riteleft) (14.35)

The use of I() indicates that R should evaluate what is in the parentheses as a new
variable. Fitting this model using Maximum Quasi-likelihood Estimation indicates
that none of the terms have a statistically significant effect. This should not really
surprise us, since there is a lot of correlation among the independent variables in
that model. In the presence of high correlation, the standard errors tend to be larger
than they should be.

Since nothing was statistically significant, let us pare the model to reduce the
effect of correlation and get at some more basic effects. The best first thing to remove

4With this said, there is some research into combining estimates from separate models. These
estimates require that you are able to specify your personal beliefs in the correctness of the
models.
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Quasi-Poisson Negative Binomial

Intercept −12.51 −6.980
(4.478) (2.396)

Labour −4.742 −4.8430
(1.553) (0.2856)

Conservatism 1.847 1.8660
(0.07101) (0.3778)

Conservatism2 −0.03830 −0.03833
(0.01425) (0.00750)

Conservatism3 −0.002585 −0.0026070
(0.0009421) (0.0005005)

Conservatism4 −0.00007314 −0.00007361
(0.00002642) (0.00001398)

Table 14.6: Results of two different models: fitting with MQLE and using the Negative
Binomial family. The numbers are the parameter estimates; in parentheses, the estimated
standard errors.

from the model is the interaction term. Doing this gives us the research model:

pira = β0 + β1 riteleft+ β2 riteleft
2 + β3 riteleft

3

+ β4 riteleft
4 + β5 labour+ ε (14.36)

Fitting this model using both the quasi-Poisson family and the Negative Binomial
family gives us the results in Table 14.6.

Notice that all of our variables are now statistically significant at the α = 0.05
level. It turns out that the interaction term was so highly correlated with the other
variables that it made it impossible to correctly estimate the effects of the individual
research variables.

Now that we have two models that tell us, substantively, the same story, we
should show the effect of the variables of interest. There are really only two indepen-
dent variables involved here, with one being dichotomous. As such, we can show the
effects on the same graph (one graph for each family), with two prediction curves
per graph. Figure 14.3 shows the predictions from both the quasi-Poisson model
(Left Panel) and the Negative Binomial model (Right Panel). The upper curve in
both cases (red) corresponds to predictions when the Conservatives are in power.
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Figure 14.3: Plot of the number of deaths due to terrorism, caused by the Ruritanian
Republican Army (RAvŘ), in Ruritania during the Troubles. The points are overlaid with
the quasi-Poisson model (Left Panel) and the Negative Binomial model (Right Panel). In
both cases, the upper curve (red) corresponds to the prediction when the Conservative
Party is in power.
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14.5: The Bias-Variance Trade-Off

Note that these two models are completely worthless in explaining the effects of the
variables on the population (or the “data generating process”).5 Because we used
so many parameters, the model fits the data — noise and all — as opposed to the
underlying reality (signal). This is a common problem. Since the goodness of our
fit increases as we increase the number of variables in our models (see the effect of
the number of covariates on the R2 value), there is a pressure for us to increase
the number of variables. However, as in this case, using too many variables (or
interactions, or powers) usually tells us too little about the underlying process that
gave rise to the data, which is the entire purpose of performing a statistical analysis.

Note: Remember that we are only using the data (a sample) to help us better
understand the process (model) that gave us the data (population). Fitting the
data perfectly actually tells us little about the process we are trying to model.
However, not using enough variables may not get at the process, either. This
trade-off between increasing the number of variables (which increases the re-
liance of the parameter estimates on the actual data) and reducing the num-
ber of variables (which increases the errors in our model) is termed the Bias-
Variance trade-off, and it is a problem we must keep in our minds at all times.
On the one hand, we want a good model that fits the population, on the other
hand, we only know the sample (the data collected).

In the terrorism example (v.s., Section 14.4), we can see that we used too many ex-
planatory variables in our model. A glance at the graphs in Figure 14.3 suggests that
we should have gone with a quadratic model (second power) at most, even though
the quartic model (fourth power) fit the data better. Avoiding over-fitting the data is
as simple as being aware of the dataset and the model predictions (of course, a good
graph helps).

5Explanation of the relationships is very important. Our job as scientists is to use numerical
relationships to better understand the data-generating model (how the dependent variable
came to being).
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14.6: Conclusion

In this chapter, we examined what we can do when our dependent variable is an
unbounded count variable. As such variables are non-negative and discrete, nothing
we have done thus far can properly handle them. While performing a log transform
of the dependent variable as we did in Chapter 7 would allow us to actually make
predictions that made sense (provided that there were no zero counts), the resultant
model would probably violate one or more of the assumptions of the Classical Linear
Model.

Two model families were introduced to handle count data. The Poisson fam-
ily requires that the mean and the variance be equal (which translates to the resid-
ual deviance and the residual degrees of freedom be equal). This is rarely the case.
When the residual variance is much larger than the mean, the data are overdis-
persed. The Negative Binomial family models overdispersed (and underdispersed)
data, but it is a bit more difficult to fit with data.

As with Generalized Linear Models in general, the methods in this section
model the expected value and not the actual outcome. As the parameters must be
non-negative, we use a log link to ensure this condition holds. Note that we are not
transforming the dependent variable, we are transforming the family parameter (or
parameters) — λ, in the case of the Poisson and the quasi-Poisson; λ and θ for the
Negative Binomial.

The last point of this chapter was a warning about the Bias-Variance trade-
off: Including more variables fits the data better, not necessarily the process that gave
rise to the data. Fewer variables may miss both the data and the underlying process.
There is a happy medium — unfortunately, we cannot know what it is.
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14.7: End of Chapter Materials

14.7.1 R Functions In this chapter, we were introduced to several R functions
that will be useful in the future. These are listed here.

Packages:

MASS This package is another “book” package — a package created for a specific
book. Here, that book is “Modern Applied Statistics with S,” by William N.
Venables and Brian D. Ripley (2004).

Statistics:

glm(formula) This function performs generalized linear model estimation on the
given formula. There are three additional parameters that can (and often
should) be specified.

The family parameter specifies the distributional family of the dependent
variable, options include gaussian, binomial, poisson, gamma, quasiBinomial,
and quasipoisson. If this parameter is not specified, R assumes gaussian.

The link parameter specifies the link function for the distribution. If none is
specified, the canonical link is assumed.

Finally, the data parameter specifies the data from which the formula vari-
ables come. This is the same parameter as in the lm function.

glm.nb(formula) As Negative Binomial regression is fit using different methods, it
cannot be included in the base glm command. To use the glm.nb command,
you must include the (very helpful) MASS package in your script, library(MASS).
The output of the glm.nb function is similar to that of the normal glm com-
mand, with the inclusion of an estimate for θ and its standard error. If θ = 1,
then the Poisson model may be appropriate.

offset The offset function (or function parameter) allows us to include known vary-
ing values in our regression. The variable included as an offset will not have
an effect parameter estimated for it.

predict(model, newdata) As with almost all statistical packages, R has a predict
function. It takes two parameters, the model, and a dataframe of the inde-
pendent values from which you want to predict. If you omit newdata, then
it will predict based on the independent variables of the data itself, which can
be used to calculate residuals. The dataframe must list all independent vari-
ables with their associate new values. You can specify multiple new values for
a single independent variable.
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14.7.2 Exercises

1. Show that E [Y ] = λ and V [Y ] = λ using the methods of Section 11.2.4.

2. Example 14.2.2 mentioned that California was an outlier in this model. First,
plot the initiative data with California included. Second, appropriately
fit the model with California included and interpret the coefficients. Finally,
predict the number of initiatives Utah would have (a population of 1,722,850).
Save the script as ext01.R.

3. In Section 14.3.3, we fit the initiative data using the Negative Binomial
distribution. I made the statement that this model predicted 7.9 initiatives
for Utah in the 1990s. Please graph the data, plot the prediction curve, and
predict the number of initiatives Utah will have in the 1990s. Finally com-
pare the results between the model with California and the model without
California. Save the script as ext02.R

4. Go back to the last model we fit (Eqn 14.36). Consider the comments about
the model made in Section 14.5. Create a better model. Fit it with both the
quasipoisson and the Negative Binomial. Plot graphs like those in Figure 14.3.
Comment on the differences in the predictions between the two models. Save
the script as ext03.R

5. Estimate the number of initiatives that Utah had during the 1990s.

6. Prove Equation 14.27 (the formula for the probability mass function) on Page
424 is true.

7. Given the probability mass function in Equation 14.27, prove E [Y ] = µ and
V [Y ] = µ+µ2/θ.

8. Given the definition of the Negative Binomial distribution (Equations 14.25
and 14.26), prove that an overdispersion of θ =∞ reduces the Negative Bino-
mial to a Poisson.
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Chapter 15:

NominalandOrdinalDependentVariables

Overview:

This chapter finishes our time examining various types
of dependent variables. In this chapter, we examine de-
pendent variables that are categorical — both nominal
and ordinal response variables are covered in this chap-
ter.

This could be variables with an ordering (like a Lik-
ert scale) or without (pet type). The type of regression
used needs to take into consideration the characteris-
tics of the dependent variable. Thus, this chapter starts
with modeling nominal variables (no ordering) and pro-
ceeds to ordinal variables an ordering).

Forsberg, Ole J. (10 DEC 2024). “Nominal and Ordinal Depen-
dent Variables.” In Linear Models and Řurità Kràlovstvı̀. Ver-
sion 0.704442η(α).
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❧ ❧ ❧

One of the most pervasive research questions in Political Science is to predict a per-
son’s vote based on demographic information. In other words, if you know a person’s
age, gender, income, education, and religion, how well can you predict how that in-
dividual will vote in the upcoming parliamentary election?

At first glance, this question appears to be a binary dependent variable prob-
lem. After all, there are only two parties, right? Well, even if you ignore third par-
ties, there is a third option: abstention. In each Ruritanian parliamentary election, a
sizable number of registered voters decide not to vote. For instance, in the 2016 elec-
tion, while Kuzněcov (of the royalist Král a Země party) received 48% of the vote cast
and Ivanović (of the republican Republikánská Strana) received 46%, a full 45.3%
of the eligible voters did not vote. Thus, the distribution of votes in this election
is 26.3% Kuzněcov, 25.2% Ivanović, 3.2% other, and 45.3% none of the above. As
such, conclusions based on those models that assume a binary outcome have definite
issues with generalization to the voting public at large. They are ignoring important
information.

A better alternative is to specifically add in ‘abstention’ and model the three
possible outcomes at once (or ‘abstention’ and ‘other’ and model the four). Such a
regression model is called a nominal regression model or a multinomial regression
model, because there is no inherent ordering among the levels of the dependent
variable.

There is a second type of dependent variable that is closely related to the
nominal case — the ordinal dependent variable. The difference between the nominal
and the ordinal is that the ordinal has more information contained in it. There is no
ordering in the nominal case, whereas there is an implicit ordering in the ordinal
case.1 Examples of ordinal variables include ratings and indices.

If we just use our logistic regression methods (Chapter 12), we come up with
some odd results. If we force a nominal variable into just two categories, we lose
information in the data. If we treat ordinal dependent variables simply as nominal,

1Ordinal is actually a portmanteau for “ordered nominal.”
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information is also lost. If we treat them as continuous, our conclusions may not
match reality.

Thus, both nominal and ordinal dependent variables need their own mod-
eling methods. This chapter examines how to model both the nominal dependent
variable and the ordinal dependent variable more properly.2

Note: This chapter sits uneasily here. From the standpoint of the dependent
variable type, this is its proper place. However, these are not generalized lin-
ear models (GLMs). They are particular expansions to the GLM paradigm. As paradigm
such, if you are looking at the GLM modeling method as being the unifying
theme to this part of the book, this chapter should not exist.

But, it does.

2The study of statistics emphasizes both estimating the value (expected value) and the variance
of that estimate (confidence interval).
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15.1: Nominal Dependent Variable

A nominal variable is a categorical variable where there does not exist a meaningful
ordering in the categories. Examples may include job type, presidential vote (and
non-vote), and beer brand choice. These variables are categorical — not numeric
— and the categories have no inherent ordering. White Collar is not ‘greater than’
Professional. Voting monarčista is not ‘more than’ voting republikán. Widmer is not
‘more than’ Coors.3 How do we model such dependent variables?

There are a couple of ways of doing this. The first, easiest, and most un-
derstandable is to model the variable as a series of binary dependent variables. We
already understand how this works, the testing of the model is already conceptually
understood, and it works (not really, but close?).4 There are just a couple things to
clarify.

15.1.1 Mathematical model As with the simply binary dependent variable
case, let us layout the mathematical background to the nominal dependent vari-
able case. As in the binary dependent variables case, we are actually modeling the
underlying probabilities of each of the outcomes. Also, as in the binary case, there
are five requirements for the random variable to follow a Multinomial distribution
(cf, Section 13.1):

1. the number of trials, n, is known;

2. each trial has J possible outcomes;

3. the success probability for each trial,
{
π1,π2, . . . ,πJ

}
, is constant;

4. each trial is independent from the others; and

5. the random variable is the number of each type of outcome in those n trials.

Thus, if we let πj be the probability that category j is selected, then the fol-
lowing two conditions must hold:

0 < πj < 1 for all j ∈
{
1,2, . . . , J

}
(15.1)

J∑
j=1

πj = 1 (15.2)

3Of course, there may be a time when you are predicting republikán vote by examining an
underlying level of conservatism. In such a case, monarčista–republikán would be ordered.
Thus, it really depends on what you are predicting (as always).

4Usually. Nothing in statistics always is best. As you have seen by now, there are always
methods that work better, but with trade-offs. The science here is to be aware of the strengths
with the weaknesses and balance them to get closer to the true process you are trying to
model.
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Condition (15.1) must hold because we are dealing with probabilities bounded by
0 and 1, and Condition (15.2) holds because one of the J possible outcomes must
happen. In the binary case, our two probabilities were π and 1 −π, which satisfies
the second condition by default and the first because it makes no sense to study
phenomena that always or never occurs.

When we generalize the binary case, we need to select an appropriate proba-
bility distribution — one that can model J possible outcomes with J different prob-
abilities. That distribution is called the multinomial distribution.5 The probability
density function for the multinomial distribution in the general case is

fX(X) =
n!

x1!x2! · · ·xJ !
πx1

1 πx2
2 · · · π

xJ
J (15.3)

Here, xi are non-negative integers and
∑
xj = n. The expected value of this distribu-

tion for a specified outcome is
E

[
Xj

]
= nπj (15.4)

and the covariance between two outcomes is

Cov
[
Xi ,Xj

]
= −nπiπj (15.5)

Be aware that X is a vector. So, if n = 1 and J = 4, the following could be outcomes
from the Multinomial distribution:

x =


0
1
0
0

 ; x =


1
0
0
0

 ; x =


0
0
1
0


In the first example, a 2 came up; in the second, a 1; in the third, a 3. Note that in
each case, the sum of the entries is n and the number of entries is J .

Now, if n = 4 and J = 3, the following could be outcomes from a Multinomial
distribution:

x =

 0
3
1

 ; x =

 2
1
1

 ; x =

 0
0
4


In the first example, three 2s and a 3 came up; in the second, two 1s, a 2, and a 3
came up; in the last, four 3s came up.

Note: Be aware that the sum of the entries in each outcome vector is n and
that the number of entries is J .

5Recall that the distribution in the binary case was the binomial distribution.
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If the random variable X follows a Multinomial distribution with n = 3 and π =
[0.1,0.5,0.4]′ , then we could write it as

X ∼ Multi

n = 3, π =

 0.1
0.5
0.4


 (15.6)

and the expected value of X would be

E [X] =

 0.3
1.5
1.2

 (15.7)

The expected value of X3 would be E [X3] = 1.2.

Note: Make sure you see that this is just an extension of the binomial distri-
bution, where

fX(x) =
n!

x!(n− x)!
πx(1−π)n−x (15.8)

with

X =
[

x
n− x

]
and π =

[
π

1−π

]
(15.9)
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Example 1

Let us illustrate the multinomial distribution with a typical “rolling a die
example.” Assuming that the die is fair, then the probability of rolling each
of the six outcomes is 1

6 . If we roll a fair die 3 times, what is the probability
the outcome is [1,0,1,0,0,1]′ (that is, a 1, a 3, and a 6 come up)? What is the
expected value of X?

Solution: This is a multinomial experiment. There are a fixed number of possible
outcomes (six), the probabilities of each outcome are constant (they do not change as
we roll the die), and the probabilities sum to one. As such, we know the probability
mass function is

fX(x) =
3!

x1! x2! x3! x4! x5! x6!

(1
6

)x1 (1
6

)x2 (1
6

)x3 (1
6

)x4 (1
6

)x5 (1
6

)x6

(15.10)

Thus,

P


X =



1
0
1
0
0
1




=

3!
1! 0! 1! 0! 0! 1!

(1
6

)1 (1
6

)0 (1
6

)1 (1
6

)0 (1
6

)0 (1
6

)1
(15.11)

= 6
(1

6

)3
(15.12)

=
1

36
(15.13)

Thinking through the problem should get us to the same point.
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Finally, we know the expected value is

E [X] = nπ = 3



1/6
1/6
1/6
1/6
1/6
1/6


=



0.5
0.5
0.5
0.5
0.5
0.5


(15.14)

♦

As we have a formula for our expected value, we have our mechanism for estimating
the several πj : in an experiment (or set of data), count the number of times outcome
j occurred and divide by the total number of trials (or records). This is actually the
maximum likelihood estimator for πj . Thus, our linear predictor is

logit(πj ) = βj,0 + βj,1x1 + βj,2x2 + · · ·+ βj,kxk (15.15)

Notice that this linear predictor has k + 1 parameters to estimate for each of the j
categories. Thus, you will need more than j(k + 1) pieces of data to fit it. There are
ways to reduce the dimensionality of the problem (reduce the number of parameters
in need of estimation); however, these are beyond the scope of this book.

We need the logit link (or something just like it) to force our linear predic-
tions to be in the range πj ∈ (0,1). As any link that maps g : R→ (0,1) is acceptable,
we could use the log-log link, the complementary log-log link, the probit link, or
any of an infinite number of others. . . in theory. As before, the choice of the link
function is largely a matter of tradition. If you deviate from tradition, the burden
of proof is on you to justify the selection. Furthermore, the differences are usually
slight. If the differences are large, then there is something wrong with your research
model. Because of this, it would behoove you to fit your research model using a cou-
ple different (appropriate) link functions to help determine the stability (robustness)
of your results.robustness

446



Note: Thus, there are two things that you need to take away from this dis- two things
cussion: First, we are able to fit the entire model at once because we have
a distribution that can produce the necessary nominal results. Second, we
model the underlying probabilities (like in the binary case), not the actual
outcomes, as usual.

To see this in action, let us look at an extended example.

Example 2

The General Social Survey (GSS) at the University of Chicago conducts an
extensive survey of adult Americans every year. The data is freely available
from NORC. In this small subset of the data, gssocc, I would like to pre-
dict a person’s occupation category (occ) based on race (white), years of
education (ed), and years of experience (exper).

Before getting started, let us examine the variables involved.6 The race variable is
binary, with a ‘1’ representing the person identifying as ‘white’ and a ‘0’ otherwise.
As a side note, this is a race variable, not an ethnicity variable. Thus, Hispanics may
self-identify as either white or non-white. Also note that this is a self-identification
variable; that is, the individual being surveyed decided his or her reported race.
Looking at a frequency count, a full 91.69% of the respondents stated they were
white. This is significantly higher than the population at large, where approximately
80% of Americans were white when the survey was conducted. When we do the final
analysis, we need to keep this in mind, as it is not necessarily representative of the
nation as a whole.

The median number of years of education in the sample is 12 years, which
corresponds to graduating from high school. The mean number of years is 13.09,
which indicates the sample is right skewed (the Hildebrand ratio is +0.37). Further-
more, it is interesting to note that 51.0% of the sample only graduated from high
school. Additionally, 23.4% of the sample received a bachelor’s degree or more,
which is close to the population (27% have received a bachelor’s degree or higher).
Finally, 18.7% of the sample did not graduate from high school, which is close to
the 15% estimate of the population. From this, it appears as though the sample is
representative of the population in terms of educational attainment.

The third independent variable is the years of experience in the job. There
are no general statistics for the population, so we will have to make a large assump-

6The raw — and current — data can be accessed from http://www.norc.uchicago.edu/
GSS+Website/.
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White Education Experience

White 1.0000 0.0243 -0.0794
Education 0.0243 1.0000 -0.2740
Experience -0.0794 -0.2740 1.0000

Table 15.1: Correlation matrix for the three independent variables in the example, from
gssocc data.

tion that the sample represents the population.7 In the sample, the years of experi-
ence varies widely, from 2 to 66 years. The median is 17 years and the mean is 20.5
years. Thus, the sample is also right skewed. This makes sense as this is a count
variable. Count variables tend to be right skewed as they cannot take on negative
values. In fact, there is nothing in the distribution of the experience variable that
looks wrong. With that said, however, one still needs to mention the caveat.

Looking at the correlations amongst the independent variables can help us
avoid any unpleasantness and surprises due to collinearity and multicollinearity.
The correlation matrix (Table 15.1) does not show any hint of multicollinearity. In
fact, this correlation matrix suggests that these three variables are effectively inde-
pendent of each other.8

Finally, let us note that there may be an inherent ordering in some of the jobs
(White Collar greater than Blue Collar), but not for all five of the categories. As
such, this is definitely a candidate for nominal regression.

7This was a safe assumption with respect to the education variable, but not with respect to the
white variable. As such, it needs to be mentioned that you are unable to check the represen-
tativeness of the experience variable.

8Pearson’s product-moment correlation test indicates that the correlation between education
and experience is statistically significant at the α = 0.05 level (t = −5.2152,df = 335,p ≪
0.0001). However, the coefficient of -0.2740 is a low level of correlation.
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Estimate Std. Error z-value p-value

Intercept 3.1036 1.0110 3.07 0.0021
White 0.7090 0.6213 1.14 0.2538
Years of education -0.3721 0.0640 -5.81 0.0000
Years of experience -0.0259 0.0113 -2.30 0.0215

Table 15.2: Results from the GLM (using the binomial family and the logit link) predict-
ing whether or not a person is a blue collar worker. The AIC for this model is 304.75.

Nominal regression: Now, let us model the outcome variable with the three inde-
pendent variables. Actually, we need to step back and really think about what we
mean by ‘model the outcome’. Do I want to predict the probability that a person
will be Blue Collar given the input variables? Or: Do I want to predict the job cate-
gory given the input variables? These are different questions. They require slightly
different methods.

The first question actually asks a binary question: What is the probability
that a person will be Blue Collar (compared to all of the other job categories)? This
is very much like the questions asked in Chapter 12. Here, the dependent variable
takes on values 1 (Blue Collar) and 0 (not Blue Collar).

To answer this question, we need to create a variable called bluecol as an
indicator variable for Blue Collared-ness. Thus, the model we fit will be

bluecol ∼ white+ed+exper

We would fit it using a generalized linear model, a binomial family, and a logit link.
The results of the regression are in Table 15.2. From this model, we can perform all
of the goodness of fit measures from Chapter 12.

Looking at the results from running the model, we see that greater levels of
education and greater levels of experience are associated with a lower probability
of being a blue collar worker. For Bob, an individual who responded that he was
white, had 20 years of education, and 10 years of experience in their current job, the
probability of being a blue collar worker is approximately 2% (as compared to not
being a blue collar worker).

Note: This last part is subtle, but extremely important. Here is why: What important
is the probability that Bob is a white collar worker? If we do the same steps
above, we get that the probability that Bob is a white collar worker (as com-
pared to not being a white collar worker) is 13.1%. Similarly, if we continue
performing separate logistic regressions, the probability that Bob is a profes-
sional is 96.9%; menial, 2.3%; and craft, 7.9%.

Note that all of these probabilities add up to more than 100%. There
is something wrong here, since the probability that Bob holds one of these
five job types cannot be greater than 100%.
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The problem is that we kept changing the base category. In Chap-moral of the story
ter 12, we never mentioned the need to specify the base category since it
always defaulted to the opposite of what we were modeling. In other words,
we were actually measuring the probability of an event as compared to the
probability of ‘not the event’ (a.k.a. the odds of the event). This ensured that
the probabilities always added up to 100%. Within each of the above five re-
gressions, if we added the probability of the event that Bob holds job type X
with the probability that Bob holds job type not X, we always get 100%.

The lesson: Comparing probabilities of events is not as easy as when we were onlythe lesson
working in the binary realm. It is doable — easily so, with one small change. We
need to select a base category that does not change throughout our analysis. The
choice is up to you, as all choices are equally acceptable from a statistics standpoint.

Since we can select any job type as our base, let us select Blue Collar, since it
is the first level according to the alphabet. (We will see again shortly how to switch
between the bases.)

To perform this modeling, you will have to load the nnet package. Since this
comes with your base distribution of R, there is no need to install it. Once loaded
with the library(nnet) command, to fit the better model, use the R command

multinom(occ ∼ white + ed + exper)

Because of the large amount of output, the regression table is structured slightly
different. The coefficients (in logit units) and the standard errors are still presented.
The statistical significance is not. However, a quick rule of thumb is that the variable
is statistically significant (at the α = 0.05 level) if the parameter estimate is more
than twice the standard error. Table 15.3 presents the output from modeling the
data in the form given in the output.

Note that one of the five job types is missing: Blue Collar. This is because all
of the probabilities are measured with respect to Blue Collar. Thus, these percentages
are directly comparable (after transforming from logit units).

R is nice in that if you predict on a multinomial model, it will give you the
category with the highest probability, by default. Thus, according to this model,
Bob will most likely be a Professional (which was our conclusion above). If we
want the probabilities for each of the possible job types for Bob, we need to add
a type="probs" parameter to our function call:

predict(model.mn1, newdata=BOB, type="probs")

Such a call gives us the following probabilities (which sum to one, as they should):
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Coefficients:
Constant Term White Education Level Experience

Craft -1.8328 -0.7642 0.1933 0.0230
Menial -0.7412 -1.2365 0.0994 -0.0074
Prof -12.2595 0.5376 0.8783 0.0309
WhiteCol -6.9800 0.3349 0.4526 0.0299

Std. Errors:
Constant Term White Education Level Experience

Craft 1.1861 0.6324 0.0775 0.0126
Menial 1.5195 0.1996 0.1023 0.0174
Prof 1.6681 0.7996 0.1005 0.0144
WhiteCol 1.7144 0.9340 0.1023 0.0153

Table 15.3: Results of the multinomial regression. Note that the p-values are not pro-
vided. To determine which independent variables are statistically significant for predict-
ing the dependent variable levels, divide the coefficient estimate by the standard error. If
that ratio is greater than 2, then the variable is statistically significant at the α = 0.05
level.

BlueCol Craft Menial Prof WhiteCol

0.0020 0.0091 0.0020 0.9565 0.0304
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Base switching: If you wish to switch your base category, there are two options.
First, you can subtract the parameter estimates of the new base from all the other
bases. Thus, if we want to change the base from Blue Collar to Professional, we
would subtract the Professional parameter estimates from the other parameter esti-
mates. So, for example, the White Color estimates with Professional as the base will
be −6.9800− -12.2595 = 5.2795. Unfortunately, the standard errors are not so easily
calculated — or at all reasonably calculable by hand.

Also unfortunately, most statistical programs require you to physically re-
order the data to select a different base; most programs use the level of the first
data point as the base category. R does allow you to switch among the bases without
having to physically alter the data. Unfortunately, the method is rather arcane. For-
tunately, the RFS package has a function, set.base that allows you to change the
bases much more easily.

Thus, to set craft as the base, we would use the command

occ = set.base(occ, base="craft", data=gssocc)

I leave it as an exercise to rerun the analysis with craft as the base. Check that the
parameter estimates follow the above observation.

Interpretation: The interpretation of the coefficients (parameter estimates) is the
same as for the binary dependent variable case. Just remember that the coefficients
are in logit units. In R, however, this library does not require you to back-transform
your predictions. To remember this, just look at the output — it is in proportions
already (a quick check is that they sum to one).

Goodness of fit: The first check of the goodness of the model is the relative ac-
curacy (see also Section 12.5). The accuracy is the number of correct predictions
divided by the number of cases. The relative accuracy divides this number by the
accuracy of always selecting the modal category (the null model). For this dataset,
the modal category is Professional, with 140 out of 337 cases belonging to Profes-
sionals. Thus, the relative accuracy is 169

337 /
140
337 = 1.207. Thus, this model improves

accuracy by 21% over the null model. Is this good? It depends on your other models.

As Maximum Likelihood Estimation is used, the Akaike Information Criteria
score is also reported. For this model, AIC = 885. Is this good? Again, it depends on
your other models. In other words, model comparison needs another model. I leave
it as an exercise to see that the null model has AIC = 1027. Thus, our model is much
better than the null model.

Now that we have looked at our model, let us look at the parameter estimates.
According to our model, Whites have a higher probability of being Professionals and
White Collar workers than they are to be Craft or Menial laborers. As for education,
higher levels of education are associated with higher odds of being a Professional or
a White Collar worker (both of these are statistically significant) than being a Blue
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Collar worker. Finally, years of experience are not a statistically significant predic-
tor of job type, as none of the coefficients are statistically significant (coefficient /
standard error > 2).9

So, we have a picture of Professionals and White Collar workers, when com-
pared to Blue Collar workers: they are White and well educated. Not an earth-
shattering conclusion, but it is encouraging to see that our conclusions do seem to
reflect reality.

9This rule of thumb comes from the fact that in a Normal distribution, the ratio needs to
exceed 1.96 to be statistically significant at the α = 0.05 level. These parameter estimates
are not guaranteed to be Normally distributed. As such, the rule of thumb is to be more
conservative. Even with the rule of thumb, do not bet the farm.
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15.2: Ordinal Dependent Variable

Another variety of categorical dependent variables is ordinal. A variable is ordinal
if it is categorical and the categories have an underlying order to them. Examples
include movie ratings (number of stars), hurricane intensity, and so forth.

There are actually at least four ways of handling ordinal dependent vari-
ables:

1. Treat them as nominal. This allows us to fit ordinal data using previous tech-
niques. Unfortunately, it is inefficient as it ignores important aspects of the
data itself.

2. Treat their cumulative level as nominal. If the ordinal variable takes on values
1 – 5, then create nominal variables corresponding to Level 1, Levels 1 and 2,
Levels 1–3, Levels 1–4, and Levels 1–5. This preserves much of the underlying
information and allows us to fit it using a previous method.

3. Assume that there is an underlying continuous process that you wish to fit.
The ordinal nature is just several threshold values along the possible values.
This reduces to a pseudo-OLS, where you also need to fit the threshold values,
not just the slopes and intercepts. Using Maximum Likelihood methods, this
is trivial to solve.

4. Pretend that the ordinal values are continuous and fit it using ordinary least
squares or one of its offsprings. This has the advantage of being easily fit.

Three of these ways have already been discussed, and you are quite adept at using
them (Options 1, 2, and 4). Only the third option is completely new to you. This
chapter focuses on how to fit Option Three.
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15.2.1 Option Three Let us assume that there is an underlying continuous pro-
cess. We only experience (observe) this process through the ordinal variable. This
is very similar to how we first looked at binary variables: underlying process exhib-
ited only in the 0/1 outcomes (see Figure 12.2). Here, there is more than just the
one threshold (which traditionally defaulted to 0.500). Thus, we have two sets of
parameters to fit. The first is the parameters which describe the process (the βs).
The second is the position of those threshold values (the τs).

Without going into the details, we will use Maximum Likelihood Estimation
as our fitting method because it has many nice properties. Thus, our underlying
process is

η = β0 + β1x1 + β2x2 + · · ·+ βkxk (15.16)

Our thresholding process is illustrated in Figure 15.1. The line represents the under-
lying continuous process that you are trying to model. The A, B, C, and D represent
the observed ordinal values. The threshold values, τ1, τ2, and τ3 are the values of η
that separate the observed ordinal values.

This model is very straight forward and understandable. Using R to obtain
the fitting is also straight forward. The results presented are also relatively straight
forward.

Figure 15.1: Schematic diagram of the thresholding process. The line represents the linear
continuous process. The τs represent the threshold values. A, B, C, and D represent the
ordinal outcomes.
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Variables: Value Std. Error t-value
Woman 0.743 0.078 9.50
White -0.400 0.118 -3.39
Age -0.020 0.0024 -8.17
Years of Education 0.098 0.013 7.52

Thresholds:
SD — D -1.700 0.237 -7.18

D — A 0.111 0.233 0.48
A — SA 1.979 0.236 8.37

Table 15.4: Result of ordinal regression in R. Note that the women tend to view President
Obama in a more favorable light; whites, less; older, less; and higher educated, more. All
of these agree with multiple surveys throughout his tenure as President.

Example 3

Let us use some more data from the GSS. This data explores the ‘warmth
of feeling’ the respondent has for President Obama. The demographic in-
formation is the gender (male), the race (white), the age, and the number
of years of education (ed). The response variable has four ordered levels:
Strongly Disagree (SD), Disagree (D), Agree (A), and Strongly Agree (SA).
Our goal is to explain a person’s feelings toward the president based solely
on demographic information.

Solution: Let us fit this data with ordinal regression. The function in R is polr,
which stands for “proportional odds logistic regression” (although the probit is an
option as a link function). This function requires the MASS package. Thankfully,
since MASS also comes with the base distribution of R, there is no need to install it,
only to load it via the library(MASS) command.

The actual command to fit this model using ordinal regression is

polr( warm ∼ male + white + age + ed )

This command will give the coefficients of the underlying linear regression and the
threshold values separating the four categories. From Table 15.4, we see that the
equation for the underlying linear process is

η = 0.743×Woman+−0.400×white+−0.020×age+ 0.098×ed
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The thresholds are also listed. The threshold between Strongly Disagree and Dis-
agree is at τ1 = −1.700. The threshold between Disagree and Agree is τ2 = 0.111.
The threshold between Agree and Strongly Agree is τ3 = 1.979. Thus, to calculate
our prediction, we calculate the prediction based on the linear model, η, and com-
pare that value to the intervals described by the thresholds. Thus, for Bob, who is
Male, White, 40 years old and has 20 years of education, we have

η = 0.740× 0 +−0.400× 1 +−0.020× 40 + 0.098× 20 = 0.76

As η = 0.76, we have our prediction that Bob agrees with the president. If we actu-
ally want probabilities that Bob Strongly Disagrees, Disagrees, Agrees, or Strongly
Agrees, we would have to back-transform using the inverse of the logit function and back-transform
calculate each probability using integral calculus. . . or we could just ask the com-
puter to do it for us:

BOB = data.frame(male="Men", white="White", age=40, ed=20)
predict(model.ol1, newdata=BOB, type="probs")

This gives the probabilities as

SD D A SA

0.0785 0.263 0.429 0.229

Thus, it is far from certain that Bob agrees (or strongly agrees) with the president,
although that probability is rather high: 0.429 + 0.229 = 0.658. ♦

Accuracy: Finally, let us look at the accuracy of the model. I leave it as an exercise
to show that the relative accuracy is 1.105, which indicates that the model is about
10.5% better than the null model (the modal category is “Agree”). This is not a
fantastic increase in accuracy, but we do know how certain demographics feel about
the president: Whites tend to disagree, Males tend to disagree, older people tend to
disagree, and lesser educated people tend to disagree.

Of course, we could have added in a quadratic education term to the model
to see if both the more-educated and the less-educated both support the president.
I also leave this as an exercise to show that there is no evidence of this. Thus, we
have no evidence that the relationship between education and presidential support
is anything other than linear.
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15.3: Extended Example: Cattle Feed

Now that we have been introduced to these two new types of regression, let us deal
with an example of each. This example tries to predict the feed type used for a cow.
Such a question would arise if there is missing data in your data file and you wanted
to estimate the missing value instead of throwing out the entire record.

Example 4

Previously, we attempted to model the weight of cattle based on a few factors.
Let us try something different. Let us predict the brand of food used by the
cattle based on the ranch, age, and weight.

Specifically, let’s first model feed type. Then, let’s say that the RUR
ranch sent a 21-year-old cow to slaughter at 1197 pounds. Which food brand
was most likely used? What are the probabilities of each brand being used?

Solution: Since the food brand is a nominal variable, we will use multinomial re-
gression. The data file is cattleData. Let’s load it and look at some summary
statistics on it.

library(nnet)
cowz = read.csv("http://rur.kvasaheim.com/data/cattleData.csv")
attach(cowz)

summary(cowz)

cor.test(weight,age)
table(ranch,feedType)

Note that there is (as expected) a strong correlation between age and weight. If we
are doing model selection, we will need to keep this in mind as this multicollinearity
will decrease the statistical significance of those two variables.

Note from the cross-tabulation that the EVA ranch only used Purina and the
TCL ranch only used Rangeland (in this sample). That fact would make it really
easy to predict the feed type for those ranches. The other ranches use a combination
of all of the brands.

With this information to guide us, we fit the model

cowModel = multinom(feedType ∼ weight + ranch + age)
summary(cowModel)
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The first line fits the model. Note that the model did converge, so we can pay atten-
tion to the results. If it had not converged, we should first change the link function,
then realize that the multicollinearity is a problem. Dropping one or more variables
would be an appropriate action in that case.

The results of the summary(cowModel) command gives some insight into
the relationships. First, note that the coefficient estimate for ranchEVA for estimat-
ing Purina is 20.37. This is extremely high, meaning it is almost guaranteed that a
cow from the EVA ranch will used Purina.

But, from the cross-tabulation above, we already knew this.

Similarly, the coefficient estimate for ranchTCL for Rangeland is a huge
22.32. This indicates a cow from the TCL ranch will most certainly use Rangeland
food. Again, we knew this from our cross-tabulation.

Note from the regression table that Accuration is missing. All feed mea-
surements are taken with respect to that level. This is important to keep in mind if
we do this by hand. It is just something to note if we are using the computer to do
our calculations.
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❧ ❧ ❧

So, let’s estimate the food used by our mystery cow. First, let’s define it:

mysteryMoo = data.frame(weight=1197, age=21, ranch="RUR")

Now, let’s predict the probabilities it used each of the feed types:

predict(cowModel, mysteryMoo, type="prob")

The results tell us that the mystery cow most likely used Steakmaker. In fact, the
probability it used Steakmaker was 79%. The second most likely feed type was
Accuration (13%). ♦

15.3.1 Graphics Let us talk about graphics for a bit. A two-dimensional scat-
ter plot looks at two numeric variables. We can therefore easily plot a prediction
curve when dealing with only a single dependent variable and single independent
variable.

If there is a second independent variable, we can plot several curves, one for
each level in that second independent variable.

Once we move beyond two independent variables, graphics are more difficult
to do. A simple regression model like the one above may require dozens of graphics
to illustrate each aspect.

However, we can simplify things by focusing on only a couple independent
variables at a time. The choice depends on the story you are trying to learn (or tell).

Graphic: Feed Type versus Weight: For this first graphic, I am consciously making
the decision to plot the predicted probability on the y-axis, the cattle weight on the
x-axis, and have a prediction curve for each feed type. This will allow me to see the
effect of weight on the predicted food type.

This means I need to select values for the other two independent variables.
For the numeric age, I would typically use its mean or median, whichever was the
“typical” age for these cattle.

For the selected value of the ranch, I would either select the ranch to which
the mystery cow belonged (to continue that story) or the most popular ranch (to try
to generalize the story). It is best to do separate graphics for all ranches so that you,
the researcher, can better understand the effect of ranch on the probabilities. It is
always better to do more to understand.

So, here is the code to create the predictions:
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theWeights = seq(1019,1579, length=1e4)
theAge = median(age)
prRUR = predict(cowModel, newdata=data.frame(weight=theWeights

, age=theAge, ranch="RUR"), type="probs")

The prRUR variable contains 10,000 rows (one for each weight) and 5 columns (one
for each feed type). The entries are the probabilities.

Now, we just plot the data and these predictions:

par(family="serif", las=1)
par(xaxs="i", yaxs="i")
par(mar=c(4,4,0,0)+0.5)
par(cex.lab=1.2, font.lab=2)

plot.new()
plot.window( xlim=c(1000,1600), ylim=c(0,1))

axis(1); axis(2)
title(xlab="Weight [lb]")
title(ylab="Probability at RUR Ranch")

lines(theWeights,prRUR[,1], col=1) # Accuration
lines(theWeights,prRUR[,2], col=2) # Purina
lines(theWeights,prRUR[,3], col=3) # Rangeland
lines(theWeights,prRUR[,4], col=4) # Steakmaker
lines(theWeights,prRUR[,5], col=5) # Wind and Rain

legend("topright", bty="n", col=1:5, lwd=2,
legend=c("Accuration","Purina","Rangeland","Steakmaker","Wind

and Rain")
)

Note that this graphic includes a legend that lets the reader know which probability
curve belongs to which feed type. Legends are rather important to include on a
graphic. Remember that graphics should be stand-alone with their caption. Because
a legend contains so much information, it requires a large function. To see all a
legend can do, run ?"legend" in R.

Figure 15.2 is the resulting graphic. Note that the predicted feed type tends
to be either Steakmaker, for light cows, or Purina, for heavy cows. When the weight
of the cow is middling, there is great uncertainty in which feed type it used.

It is interesting that this analysis gives us additional insight on how we can
create big cows for slaughter. This suggests we should use Purina brand. This con-
clusion, however, is based only on the RUR ranch and a middle-aged cow.

More importantly, this conclusion assumes that the data are representative
of the population of interest. As this data was originally collected in conjunction
with a dissertation in Animal Science, I tend to think it is representative.
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Figure 15.2: Graphic of the probability for each feed type at the RUR ranch. The proba-
bilities vary with the cow’s weight. The age is held at the median, 21.

From a strictly statistical standpoint, the additional insight is limited. How-
ever, if you are hired by RUR ranch to determine the best feed type, this graphic
would be very persuasive for you, the decision-maker.

While we could create a similar graphic for feed type against age, I am not
convinced it would be helpful. Age is not something one would like to optimize like
weight. In other words, I am not sure what story I would tell about it.

Note: Don’t make graphics just for fun. Make sure you create them knowing
how to interpret them.

462



15.4: Extended Example: The State University of Ruritania

A second example will try to model the level of the student given some information
about the student. Again, this may be interesting for imputation (filling in missing
data). impute

Example 5

Previously, we modeled the grade point average of students at the State Uni-
versity of Ruritania (Státnı́ Univerzita v Ruritánii). Let us turn this around
and model the student’s class (Freshman, Sophomore, Junior, Senior) given
only the gender and the current GPA of the student.

Let us also predict the class of Eliska, a female student with a 3.33
GPA.

Solution: As usual, the first step is to import the data and look at a summary, includ-
ing a cross-tabulation of our categorical independent variable and the dependent
variable:

library(MASS)

suvrData = read.csv("http://rur.kvasaheim.com/data/suvr.csv")
summary(suvrData)

Let us pause here. Note that the class variable is an ordinal variable. We need to
let R know this:

suvrData$class = ordered(suvrData$class, levels=c("Non-
Matriculated", "Freshman", "Sophomore", "Junior", "Senior")
)

summary(suvrData)

There we go, the levels for the class variable are in the right order. Let’s continue.

attach(suvrData)
table(gender, class)

Note that none of the non-matriculated students are female. This is just something
to know and remember as we get results.

Now, we can fit our model and look at the summary results:

suvrModel = polr(class ∼ gender + gpa, data=suvrData)
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summary(suvrModel)

A quick check that you have ordered the levels correctly is to look at the second tablecheck!
in the summary output. The rows should describe subsequent levels.

The AIC of this model is 1547. The AIC of the null model

suvrNullModel = polr(class ∼ 1, data=suvrData)
summary(suvrNullModel)

is 1566. Thus, our model is an improvement.

The model predicts that Eliska is a Junior (44.7%) or a Senior (36.5%):

eliska = data.frame(gender="Female", gpa=3.33)
predict(suvrModel, eliska, type="prob")

Here are the (abbreviated) raw results

Non-Mat Fresh Soph Junior Senior
0.00211 0.02356 0.16293 0.44656 0.36483

Thus, we do have an estimate for Eliska’s class level, but there is a second option
which is rather close. I’m not sure I would bet any money on where to put Eliska.

Regardless, it is highly unlikely for Eliska to be either non-matriculated or a
Freshman. Those probabilities, while non-zero, are very low. ♦
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�Warning: Beware! Remember that the data are not representative of the population. The
distribution of the classes is quite similar to the probabilities predicted for Eliska. This is
not surprising. The effect of the independent variables on the dependent variable are not
statistically significant. Thus, these probabilities are essentially the relative proportions
of the classes in the sample.

Graphic: Class against GPA: As for a graphic, we need our dependent variable
to be the probability of each class. Since there is only one numeric independent
variable, GPA, that will be the variable we graph along the x-axis.

The ultimate question is: What do we do with the gender variable?

One option is to plot the effect of gender on the same graphic. That means
we will have 5 × 2 curves on the same plot (the number of levels by the number
of genders recorded). That may be problematic as it may overwhelm the graphic.
Figure 15.3 is this figure. Note that it does allow us to compare everything at once.
However, you may find it overwhelming. . . or not.

For the higher GPA values, it is most likely that the student is a Junior, re-
gardless of the gender. At no place is it likely the student is either a Freshman or
non-matriculated. This is supported by the data, as the number of non-matriculated
students is just 2 and the number of Freshman is just 22 — out of a sample size of
n = 661.

We can also use this graphic to estimate the various probabilities for Eliska.
Remember she has a GPA of 3.33. Since Eliska is female, we look at the dashed lines.
Going to 3.33 on the x-axis and move vertically, we see that Eliska is most likely a
member of the cyan level — Junior — with a close second being the magenta level
— Senior. This conclusion agrees with our prediction above.
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Figure 15.3: Graphic of the probability for each class level for each gender. Note that the
non-matriculated and the Freshman levels uniformly have low probability. This is due to
the nature of the data; only 2 non-matriculated and 22 Freshmen are in the sample of size
n = 661. This limits what we can say about the population, unless the level distributions
are similar to the population.
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15.5: Conclusion

In this chapter, we examined the special issues behind fitting dependent variables
that are either nominal or ordinal. Nominal dependent variables are still basically
fit with a series of logistic (or other link) regressions. The alteration comes about
because we need to keep the same base category throughout in order to make our
results comparable.

The ordinal dependent variable can be fit using a technique similar to the
previous chapter: fit an underlying linear function, then create thresholds to divide
a constant function into an ordinal response.

In both cases, predictions in R follow the typical structure, with the addi-
tion of being able to just predict the outcome category or being able to predict the
probabilities associated with the case fitting in each bin.
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15.6: End-of-Chapter Materials

15.6.1 R Functions In this chapter, we were introduced to several R functions
that will be useful in the future. These are listed here.

Packages:

RFS This is a “book package,” that is not yet complete. In lieu of installing this
package and loading it with library(RFS), you will activiate all of its im-
portant parts by running
source("http://rfs.kvasaheim.com/rfs.R").

MASS This package is also a “book package,” a package created for a specific book.
Here, that book is “Modern Applied Statistics with S.”

nnet This package contains many functions dealing with neural networks. For this
chapter, we use it to fit multinomial models.

Statistics:

multinom() This modeling function allows you to fit nominal dependent variables.
Its structure is standard in that its main argument is the formula. In order to
use the multinom function, you must load the nnet library.

polr() This modeling function allows you to fit ordinal dependent variables when
there is an underlying linear function that drives the process. In order to use
the polr function, you must load the MASS package.

predict(model, newdata) As with almost all statistical packages, R has a predict
function. It takes two parameters, the model, and a dataframe of the inde-
pendent values from which you want to predict. If you omit newdata, then
it will predict based on the independent variables of the data itself, which can
be used to calculate residuals. The dataframe must list all independent vari-
ables with their associate new values. You can specify multiple new values for
a single independent variable.

set.base() This allows one to change the base category from which all other levels
are estimated. It is a member of the RFS package.
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15.6.2 Exercises This section offers suggestions on things you can practice from
this chapter.

1. In Section 15.1.1, we fit a multinomial model to the gssocc data. The base
used was ‘Blue Collar.’ Refit the model using ‘Craft’ as the base category.

2. Determine the AIC of the null model in Section 15.1.1.

3. As mentioned in Section 15.2.1, calculate the relative accuracy of the model
of Example 15.2.1.

4. As mentioned in Section 15.2.1, add a quadratic education term to the model
of Example 15.2.1 to see if both the highly educated and the lesser educated
both support the president.
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Appendix M:

TheAppendixofMatrices

Overview:

Before we can start talking about regression, we need
to cover the necessary mathematical background. For
this book, I expect that you have successfully complete a
course in matrix algebra.

This means that you can add and multiply matri-
ces, that you understand matrices are linear transfor-
mations, that you have worked with eigenvalues and
eigenvectors, and that you can calculate the rank and
the trace of a matrix.

All of these topics are important in better under-
standing the mathematics underlying linear models.
Thus, this appendix reviews some of the important parts
from your matrix algebra class, and adds some items
that you may not have had.

Forsberg, Ole J. (10 DEC 2024). “The Appendix of Matrices.” In
Linear Models and Řurità Kràlovstvı̀. Version 0.704442η(α).
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❧ ❧ ❧

The purpose of this appendix is to provide the necessary matrix background for this
book. Everything here is important at some point in this test. There will be new
things here, in which case you need to learn them. If nothing here is new, then you
merely need to review them to keep them fresh in your mind.

You should treat this appendix as necessary background knowledge. Gain it
now, if necessary. At the very least, know what is here so that you can refer to it as
you work through the main part of the text.

M.1: Matrix Basics

A matrix is just a rectangular array of scalars. It is used to simplify many mathemat-matrix
ical calculations. Throughout this book, I will use it in such a sense. The following
is an example of a matrix:

A =
[
3 5 2
a 1 18

]
(M.1)

Because a matrix is a rectangular array, it has a dimension. The matrix A above hassize
dimension 2×3 because there are 2 rows and 3 columns. We could also write this as

A ∈M2×3 (M.2)

This can be read as “A is a matrix with dimension 2×3” or as “A is an element of the
set of 2× 3 matrices.” Note that the symbol ∈ means “is an element of” andM2×3 is
“the set of all matrices of dimension 2× 3.”

Also note that the dimension order is very important and is always written
as “rows × columns.” M2×3 andM2×3 are entirely different sets of matrices.

A matrix is square if the number of rows equals the number of columns. Thatsquare
is, B is square if

B ∈Mn×n (M.3)
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for some number n ∈ Z+. If a matrix is square, the set is often denoted simply by
Mn. The matrix A above is not square because the number of rows does not equal
the number of columns.

Note: In applied statistics, think of the matrix as being the thing that contains
your data in the computer. The columns of a matrix represent the variables
(and their values). The rows represent the records (e.g., people). Thus, for
an applied statistician, an n× p matrix represents p variables measured for a
sample of size n.

M.1.1 Representation The next sections cover the algebra of matrices. To ease
the notation, let me show you two ways of representing matrices. First, here is matrix
A written out.

A =



a11 a12 a13 · · · a1c
a21 a22 a23 · · · a2c
a31 a32 a33 · · · a3c
...

...
...

. . .
...

ar1 ar2 ar3 · · · arc


(M.4)

Note that the subscripts can also use a comma to separate the values. That is only
done, however, when you get to double digits and ambiguity ensues. For instance,
does a242 represent a2,42 or a24,2? Perhaps it actually represents a2,4,2 in a tensor.
Who knows when ambiguity enuses?

Note: When we stick to single digits for the indices, commas are usually
dropped.
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Note that every element in the A matrix is represented by a lowercase a and its r, c
position in the matrix. This allows us to simplify representation at times:

A =
[
aij

]
(M.5)

Here, i is the row index and j is the column index.

Example 1

Create the data matrix where the first column contains heights in inches and
the second column contains favorite number. Measure these two variables
on three people.

Solution: My answer will probably differ from yours. Here is the matrix I obtained:

A =

 65 1
75 7
73 7

 (M.6)

Note that each row is a record corresponding to a different person. Thus, the first
person I asked was 65 inches tall and had a favorite number of 1.

Assuming I selected a random sample, the row-order does not matter. Thus,
this is the same data matrix:

A =

 75 7
65 1
73 7

 (M.7)

♦
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M.2: Addition

Matrix addition is closed. This means that the sum of two matrices will always give
you another matrix. . . as long as it makes sense to add two matrices. Two matrices
are can be added if they have the same dimension.1

Let A ∈Mr×c and B ∈Mr×c for some values of r and c. A and B are commen-
surate and can be summed. Matrix addition is done element-by-element (element-
wise) addition. Thus, elementwise

A + B =



a11 + b11 a12 + b12 a13 + b13 · · · a1c + b1c
a21 + b21 a22 + b22 a23 + b23 · · · a2c + b2c
a31 + b31 a32 + b32 a33 + b33 · · · a3c + b3c

...
...

...
. . .

...
ar1 + br1 ar2 + br2 ar3 + br3 · · · arc + brc


(M.8)

This can also be symbolized (shortened) as

A + B =
[
aij + bij

]
(M.9)

Matrix addition has a zero (additive identity). It is the commensurate matrix with zero
all elements equal to zero:

0 =
[
0ij

]
(M.10)

How does it work in addition? Just as you would expect:

A + 0 =



a11 + 0 a12 + 0 a13 + 0 · · · a1c + 0
a21 + 0 a22 + 0 a23 + 0 · · · a2c + 0
a31 + 0 a32 + 0 a33 + 0 · · · a3c + 0
...

...
...

. . .
...

ar1 + 0 ar2 + 0 ar3 + 0 · · · arc + 0


= A (M.11)

This can also be symbolized (shortened) as

A + 0 =
[
aij + 0

]
=

[
aij

]
(M.12)

I leave it as an exercise to prove A + 0 = 0 + A = A. exercise

Matrices also have an additive inverse. As with scalar arithmetic, a matrix
plus its additive inverse equals the zero matrix; that is, if B is the additive inverse of
A, then A + B = 0.

Two things about the additive inverse: First, it is commensurate with the
original matrix. Second, it is unique (just as in scalar arithmetic).

1When the matrices have the correct dimension to perform the mathematical operation, they
are called “commensurate.” For addition, commensurate matrices have the same dimension.
For multiplication, the requirement is much different (see M.3).
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To calculate the additive inverse of A, just negate each element of A. Thus,
if B =

[
−aij

]
then B is the additive inverse of A.

Finally, as with all elementwise operations, matrix addition is both commu-
tative and associative:

• A + B = B + A

• (A + B) + C = A + (B + C)

Note: Thus, in conclusion matrix addition behaves like scalar addition, as
long as the matrices are commensurate.
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M.3: Multiplication

There are many, many, many types of multiplication with matrices. The one selected
depends on the intention (the need). They include scalar product, matrix product,
Hadamard product (a.k.a. Schur product), and Kronecker product. As only the
first two are typically seen in an undergraduate linear models course, we will only
discuss those two here.

M.3.1 Scalar Product As in arithmetic, the scalar product arose from needing
to repeatedly add a matrix to itself. Thus, instead of writing A+A+A+A+A+A+A+A,
one could write 8A, where 8 is a scalar. This was quickly generalized to non-integer
values for the scalar multiple, just as 3 × a was quickly generalized to things like
4.25× a.

Scalar multiplication is defined as

cA =
[
caij

]
(M.13)

Scalar products are commutative. That is, if c is a scalar and A is a matrix, then commutative
cA = Ac. This will come in handy later, so be aware of it. Note that c does not need
to be a natural number.

Scalar products are also associative. That is, if c is a scalar, then the follow- associative
ing are equivalent:

• cAB

• (cA)B

• c (AB)

• AcB = ABc

Scalar multiplication is also distributive over matrix addition. Thus: distributive

c (A + B) = cA + cB (M.14)
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Figure M.1: A schematic designed to illustrate commensurability with matrix multipli-
cation. Note that the “inner” dimensions of the factors must be equal and that the product
dimension is the “outers” of the two factors.

M.3.2 Matrix Product The matrix product is the multiplication that is (usu-
ally) meant when one just says “matrix multiplication.” Its definition arises from
linear algebra and repeated linear transformations. It has many nice properties.
Calculation is not one of them.

Let us define two matrices A and B such that the number of columns of A
equals the number of rows of B. Their product is defined as

AB =
[
abij

]
=

∑
k

aikbkj

 (M.15)

where k ranges between 1 and the number of columns of A. The dimension of the
product is the number of rows of A by the number of columns of B. That is, let A ∈
Mr1×c1 and B ∈ Mr2×c2. Then, one can multiply A and B if c1 = r2. The dimension
of the product is r1× c2. Figure M.1 illustrates this.

Example 2

Here is an example of matrix multiplication. Let us define our two matrices
as

A =
[
1 2 3
4 5 6

]
(M.16)

and

B =

a b c
d e f
g h m

 (M.17)

Let us find the product AB.
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Solution: The first step is to check that multiplying these matrices can be done.
Do the number of columns of A equal the number of rows of B? Note that A ∈ commensurate
M2×3 and B ∈M3×3. Because the “inners” of AB are equal to each other, the matrix
multiplication AB makes sense.

Second, we determine the dimension of the product. It is the number of rows
of A by the number of columns of B: 2× 3, the “outers.”

Third, since we know the dimension of the product, we just have to fill in the
blanks in the matrix:

AB =
[
− − −
− − −

]
(M.18)

The top-right element in the product matrix is element 1,1. Thus, by our definition,
it equals

ab11 =

∑
k

a1kbk1

 (M.19)

= [a11b11 + a12b21 + a13b31] (M.20)

= [1a+ 2d + 3g] (M.21)

The top-middle element, ab12, is

ab12 =

∑
k

a1kbk2

 (M.22)

= [a11b12 + a12b22 + a13b32] (M.23)

= [1b+ 2e+ 3h] (M.24)

Note what is happening here. The elements of the “top-right” cell is the inner prod-
uct of the top row and the right column. Similarly, the bottom-center element is inner product
the inner product of the bottom row and the center column.

I leave it as an exercise for you to finish the multiplication. Here is the final exercise
product:

AB =
[
1a+ 2d + 3g 1b+ 2e+ 3h 1c+ 2f + 3m
4a+ 5d + 6g 4b+ 5e+ 6h 4c+ 5f + 6m

]
(M.25)

♦
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In scalar arithmetic, we have a multiplicative identity, multiplicative inverse, and
multiplication is commutative, associative, and distributes over addition. All of
these hold for matrix multiplication — except commutativity. In general, AB , BA,except
even when both of the multiplications make sense.

The multiplicative identity, which we will symbolize by I, has the propertyidentity
that AI = IA = A. Note that I is a square matrix.2

If a multiplicative identity exists, then a multiplicative inverse also exists in
this system. The inverse of a matrix A, denoted A−1, is a matrix that satisfies theseinverse
two requirements:

AA−1 = A−1A = I (M.26)

Not all matrices have inverses. Those that do not are called singular. Those that do
are called invertible.invertible

Only square matrices can be invertible. However, not all square matrices are
invertible. From linear algebra, a matrix is invertible if and only if it is square and
is of full rank.full rank

A consequence of this is that a matrix is invertible if its determinant is non-
zero. In general, the calculation of the determinant and the inverse are computa-determinant
tionally intensive. However, they are rather straight-forward for 2× 2 matrices.

Let A ∈ M2×2. Then, the determinant of A is detA = a11a22 − a12a21. Note
that the determinant is a scalar, not a matrix.

Example 3

Show that the matrix

A =
[
4 2
3 0

]
(M.27)

is full rank.

Solution: Later in this appendix, we will see the direct way to find the rank of the
matrix. However, since the determinant of A is not 0 (it is −6), we know A is full
rank. ♦

2Technically, this statement is only true if A is square. If it is not square, then the two I matrices
will have different dimension. We will restrict ourselves to square matrices. The “generalized
inverse” is beyond the scope of this text.
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Lemma M.1 (The 2× 2 Inverse). Let A be a 2× 2 invertible matrix. The inverse
of A is

A−1 =
1

detA

[
a22 −a12
−a21 a11

]
(M.28)

Proof. To prove this, we will show AA−1 = I and A−1A = I.

AA−1 =
[
a11 a12
a21 a22

]
1

detA

[
a22 −a12
−a21 a11

]
(M.29)

=
1

detA

[
a11 a12
a21 a22

][
a22 −a12
−a21 a11

]
(M.30)

=
1

a11a22 − a12a21

a11a22 − a12a21 −a11a12 + a11a12

a21a22 − a21a22 −a12a21 + a11a22

 (M.31)

=
1

a11a22 − a12a21

a11a22 − a12a21 0

0 −a12a21 + a11a22

 (M.32)

=
[
1 0
0 1

]
(M.33)

= I (M.34)

Thus, we have shown that AA−1 = I. This is one-half of the proof. I leave it as an
exercise for you to prove the second half: A−1A = I. exercise

Note: The reason I provide the mathematics for 2 × 2 matrices is that in our
study of simple linear regression, many of the important calculations will be
done with 2× 2 matrices. (See Chapter 3.)
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Note: Formulas exist for 3× 3 matrices, too. However, once we move beyond
that, hand calculations are time-prohibitive. At the end of this section, I pro-
vide some examples of performing these calculations in R.

Now that we have a mechanism to calculate a multiplicative inverse, let us see that
not all square matrices have one.

Example 4

Let A ∈M2×2 be defined as

A =
[
1 3
2 6

]
(M.35)

Calculate A−1.

Solution: Let us calculate A−1 using our formula,

A−1 =
1

detA

[
a22 −a12
−a21 a11

]
(M.36)

Applying this formula is straight-forward:

A−1 =
1
0

[
6 −3
−2 1

]
(M.37)

Yes, the determinant of A is detA = 1×6−3×2 = 6−6 = 0. Since the determinant is
0, the inverse does not exist (one cannot divide by 0). ♦singular

Note: What is it about the A matrix that makes it singular? Note that the
second column is just 3 times the first column (or the second row is twice the
first). This means the matrix is not full rank. The columns are not linearly
independent.independent

When we get to using these matrices with real data, we will interpret
this as the second column giving us no knowledge about the world that is
not already contained in the first column. The second column is redundant
information.redundant
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M.3.3 Rank Now that we have mentioned the rank of a matrix a few times, let
us formally define it.

Definition M.2. Rank

The rank of a matrix is the greatest number of columns that are linearly indepen-
dent.

So, to calculate rank, one must know what it means for a set of column vectors (a
matrix) to be linearly independent.

Definition M.3. Linearly Independent

A set of column vectors c1, c2, . . . , cr are linearly independent if

r∑
i=1

aici = 0 (M.38)

implies a1 = a2 = · · · = ar = 0.

Example 5

Show that the rank of A is 2.

A =

 1 2 3
2 5 7
9 3 12



Solution: To show that A has rank of 2, we first show it has rank of at most 2, then
show it has rank of at least 2.

Part 1. Note that the third column is the sum of the first two columns. Thus,

1c1 + −1c2 + −1c3 = 0 (M.39)
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Since the coefficients {1,−1,−1} are not all 0, we have shown that the rank of A is at
most 2.

Part 2. To show that the rank of A is at least 2, we can find a submatix that has a
non-zero determinant:

Ac =
[

1 2
2 5

]
The determinant of Ac is 1. Since this is not 0, we know that A has rank of at least 2.

Conclusion. Combining these two results proves that A has rank of 2. ♦

Note: Technically, you calculated the column rank in the previous example.
However, one important result from linear algebra is that the column rank,
the row rank, and the rank are all equal.

I leave it as an exercise for you to determine the values in the coeffi-
cient vector {a1, a2, a3} to show that the row rank is at most 2.
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So far, we have seen the multiplicative identity and the multiplicative inverse. It is
time to note that matrix multiplication is not commutative.

Theorem M.3.1

Matrix multiplication is not commutative. That is, there exist matrices A and
B such that AB , BA.

Note: If A and B are not square with the same dimension, then this statement
is trivially true.

Proof. The proof is simple. Since we need to prove existence, we simply need to
provide a counter-example. To wit, let

A =
[
3 1
2 7

]
(M.40)

and

B =
[
1 1
1 1

]
(M.41)

Note that AB , BA.

Since we have found a counter-example, we have shown that matrix multi-
plication is not commutative, in general.
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Note: While technically correct, this proof leaves us feeling a little empty. So
we found one counter-example. Cool beans. But we learned precious little
about commutativity with matrix multiplication. Let us explore a bit and see
if we can determine when (under what conditions) matrix multiplication is
commutative.

In doing this, we may learn something interesting.

First, let us assume A and B are square and commensurate. This ensures that AB
and BA can be calculated. For instance, let both be 2× 2 matrices. Then, AB is

AB =
[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
(M.42)

=

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

 (M.43)

and BA is

BA =
[
b11 b12
b21 b22

][
a11 a12
a21 a22

]
(M.44)

=

b11a11 + b12a21 b11a12 + b12a22

b21a11 + b22a21 b21a12 + b22a22

 (M.45)

=

a11b11 + a21b12 a12b11 + a22b12

a11b21 + a21b22 a12b21 + a22b22

 (M.46)

By comparing the two product matrices, AB and BA, we can determine an instance
where multiplication is commutative.

For instance, if a12 = a21 = 0 and b12 = b21 = 0, then the two product matrices
are the same. In other words, if both A and B are diagonal matrices, multiplication
will be commutative. That’s an interesting consequence we would have missed if we
just stopped with our proof.

In fact, it can be proven that multiplication of diagonal matrices is commu-
tative in general. Kewl!Cool beans!
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Theorem M.3.2

Let A and B be diagonal matrices of the same size. The product is commuta-
tive; that is, AB = BA.

Proof. Since A and B are diagonal and of the same shape, they can be represented as

A =



a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 0
...

...
. . .

...
0 0 0 · · · an


(M.47)

and

B =



b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 0
...

...
. . .

...
0 0 0 · · · bn


(M.48)

Their product is

AB =



a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 0
...

...
. . .

...
0 0 0 · · · an





b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 0
...

...
. . .

...
0 0 0 · · · bn


(M.49)

=



a1b1 0 0 · · · 0
0 a2b2 0 · · · 0
0 0 a3b3 0
...

...
. . .

...
0 0 0 · · · anbn


(M.50)
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Similarly, the product BA is

BA =



b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 0
...

...
. . .

...
0 0 0 · · · bn





a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 0
...

...
. . .

...
0 0 0 · · · an


(M.51)

=



b1a1 0 0 · · · 0
0 b2a2 0 · · · 0
0 0 b3a3 0
...

...
. . .

...
0 0 0 · · · bnan


(M.52)

Since scalar multiplication (in the cells) is commutative, we have

=



a1b1 0 0 · · · 0
0 a2b2 0 · · · 0
0 0 a3b3 0
...

...
. . .

...
0 0 0 · · · anbn


(M.53)

= AB (M.54)

Thus, we have shown AB = BA for two diagonal matrices of the same size.

❧ ❧ ❧

Finally, I leave it as an exercise for you to prove that matrix multiplication is asso-exercise
ciative (when the multiplication can be done). That is, if ABC can be calculated,

associative then it can be calculated as either (AB)C or as A (BC).
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M.4: Other Matrix Terms and Operations

There exist other helpful operations on matrices. Already, we have come across the
determinant as being especially helpful in determining if a matrix is invertible or
singular.

Another useful function is the trace. It is just the sum of the diagonal trace
elements. That is:

tr A =
r∑
i=1

aii (M.55)

The formula is simple. . . deceptively so. In fact, one may wonder what the trace
actually tells us about a matrix. Well, in general, you will need to revisit your matrix
algebra class notes. In linear models, however, the trace is used to calculate the
number of degrees of freedom (see Section 3.2).

The transpose of a matrix is just the matrix where the rows and columns are transpose
switched. Thus, if B is the transpose of A, then bij = aji . In symbols, we indicate the
transpose as

B = A′ (M.56)

A matrix is symmetric if it is equal to its transpose, A = A′ . symmetric[
aij

]
=

[
aji

]
(M.57)

Note that only square matrices can be symmetric. Symmetric matrices have some
nice properties with respect to calculations.

In all cases, A′A and AA′ both exist and are symmetric. Furthermore,

rank A′A = rank AA′ (M.58)

Also note that one can “symmetrize” any square matrix. That is, one can symmetrize
form symmetric matrix X from a square matrix A as

X =
A + A′

2
(M.59)

I leave it as an exercise to prove that X is symmetric. exercise
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One important feature of symmetric matrices is that they can be transformed into
a diagonal matrix. If A is symmetric, then there exists a Q such that AQ is diago-
nal. Why is this helpful? First, remember that multiplication of diagonal matrices
is commutative. Second, as you will see in the text, diagonal covariance matrices
indicate independence.

This means that any set of variables can be linearly transformed into a set
of independent variables. This fact is the basis for a procedure called “principal
component analysis.”

The j vector is a vector of 1s. It is used to calculate row sums (if pre-multiplying)j vector
or column sums (if post-multiplying). The matrix J is a matrix of 1s. It does what j
does, but puts the sums in a matrix.

The ei vector is a vector of 0s, with a 1 in the ith position. It is used in proofs,ei vector
as it can be used to select an individual row, column, or element of a matrix.

Example 6

What are j2, J2, and e1?

Solution: The first two are

j2 =
[

1
1

]
(M.60)

and

J2 =
[

1 1
1 1

]
(M.61)

The third depends on context for the actual length of the vector. Assuming we are
working in three dimensions, then we have

e1 =

 1
0
0

 (M.62)

♦

494



The eigenvalues of a matrix A are those values ξ that solve the equation Av = ξv. eigenvalue
The vectors v corresponding to each of the eigenvalues are called the eigenvectors.

Recall from your linear algebra course that the determinant of A is just the
product of its eigenvalues. Also, the trace of A is the sum of the eigenvalues.

Example 7

Determine the eigenvalues of

A =
[

4 2
1 3

]
(M.63)

Solution: The trace and determinant of A are 7 and 10, respectively. Thus, if ξ1 and
ξ2 are the two eigenvalues, we can solve the system of equations{

ξ1 + ξ2 = 7
ξ1 × ξ2 = 10 (M.64)

Thus, we see that the two eigenvalues are 2 and 5. ♦
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A matrix A is idempotent if AA = A. The trace of an idempotent matrix equals itsidempotent
rank. This is rather important in studying linear models, since the rank is also the
degrees of freedom.

Example 8

Show that this matrix is idempotent

A =
[

4 6
−2 −3

]
(M.65)

Solution: Because I already have R open, let’s use it to show it is idempotent:

A = matrix( c(4,-2,6,-3), ncol=2)

A %*% A

The output is the same as the matrix A, so we have shown it is idempotent.

Now that we have shown A is idempotent, what is its determinant?

det A

Thus, A is rank deficient and is singular (non-invertible). ♦

Note: Since determinants multiply, then for A to be idempotent, it must ei-
ther have determinant 0 or 1.

Why?
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Matrices A and B are orthogonal, A ⊥ B, if A′B = 0. That is, if the inner products of
the columns of A and B are orthogonal, then the matrices themselves are orthogonal.

A matrix P is a projection matrix if it is idempotent. The purpose of projec- projection matrix
tion matrices is to project a higher space onto a subspace. If P is also symmetric,
it is called an orthogonal projection matrix. This means it projects the larger space
orthogonally (perpendicularly) onto the subspace. Think of shining a flashlight on
a plant. If you put the flashlight directly over the plant, it will project the plant
orthogonally onto the floor. If you do it at an angle, then the projection is called
oblique. oblique projection

The key in both instances is that you are simplifying a complicated reality
(3-D object) onto a simpler model (2-D shadow).

M.4.1 Positive Definite Matrices This is an important section, so let us start
off with a definition.

Definition M.4. Positive Definite

A matrix A is a positive definite (pd) if q′Aq > 0 for all non-zero vectors q.

It is usually difficult to determine if a matrix is positive definite (pd). However, once positive definite
you know it is, there are some important properties, which we look at in the next
section (Sections M.5 and M.5.1).

Example 9

Determine if this matrix is positive definite (pd).

A =
[

2 3
2 1

]
(M.66)
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Solution: Often, it is easier to prove it is not. So, a few quick checks.

• Are the diagonal elements all positive?
If so, then it may be pd. Otherwise, it cannot be.

• Is the determinant positive?
If so, then it may be pd. Otherwise, it cannot be.

Since A passes the first check, but not the second, it is not pd.

Directly applying the definition is also an option. In fact, it is the only option
if A passes all easy checks.

q′Aq =
[
q1 q2

] [
2 3
2 1

] [
q1
q2

]
(M.67)

=
[

2q1 + 2q2 3q1 + 1q2

] [
q1
q2

]
(M.68)

= (2q1 + 2q2)q1 + (3q1 + 1q2)q2 (M.69)

= 2q2
1 + 5q1q2 + q2

2 (M.70)

This is not necessarily positive. For instance, if q1 = 1 and q2 = −1, then the polyno-
mial equals −2.

Thus, we have directly shown that A is not pd; that is, we have determined a
vector q such that q′Aq ≤ 0. That matrix is

q =
[

1
−1

]
(M.71)

In fact, we have shown that it is not even positive semi-definite (psd). ♦

Definition M.5. Positive Semi-Definite

We say that a matrix is positive semi-definite (psd) if q′Aq ≥ 0 for all non-zero
vectors q.
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M.5: Consequences

With these definitions, there are a lot of consequences. Many of which are important
in the study of linear models. This section covers many of them.

First, when taking the transpose of a product, you switch the order of the
multiplication: (AB)′ = B′A′ . A similar result holds with inverses. The only differ-
ence is that all three inverses must exist: (AB)−1 = B−1A−1.

Lemma M.6. For any matrix X, the matrix X′X is symmetric.

If you know the determinant of a matrix, you can easily calculate the determinant
of a scalar multiple of that matrix.

Lemma M.7. If c ∈R and A ∈Mn, then detcA = cndetA.

There is a similar result with the trace of a matrix.

Lemma M.8. If c ∈R and A ∈Mn, then tr cA = c tr A.
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M.5.1 Positive Definite Matrices Positive definite matrices are very important
in applied statistics. So, let us break these results into a separate subsection.

Lemma M.9. The diagonal elements of a pd matrix are all positive. That is, let
A ∈Mn be positive definite, then aii > 0, ∀i ∈

{
1,2, . . . ,n

}
.

This can easily be shown by letting the q vector be ei. The quadratic form q′Aq
would therefore equal the diagonal element at position i. Since A is positive definite,
that element must be greater than 0.

Note that the converse is not true. Just because the diagonal elements are all
positive does not mean that the matrix is positive definite. For an example, note

A =
[
1 1
1 1

]
(M.72)

is not positive definite. To see this, let q′ be the vector [1 − 1]. Then

q′Aq = [1 − 1]
[
1 1
1 1

] [
1
1

]
(M.73)

= [0 0]
[
1
1

]
(M.74)

= 0 (M.75)

Since this is not greater than 0, A is not positive definite.

Note that the determinant of this A is 0. This suggests a second consequence:
The determinant of a positive definite matrix is positive. This means all pd matrices
are invertible. Similarly:

Lemma M.10. The inverse of a pd matrix is also pd. That is, if A is positive
definite, then so is A−1.

To see this, ask yourself: What is the determinant of the inverse of a matrix? Howthoughts
can you use that to show that the inverse of a positive definite matrix is also positive
definite?

All of the eigenvalues of a pd matrix are positive. And, since all of the diag-
onal elements of a pd matrix are positive, then the trace is positive.
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Lemma M.11. If X is a full column rank matrix, even if not square, X′X is positive
definite.

How would you prove this? It requires understanding what it means to be full col-
umn rank. Sketch out a proof here:

❧ ❧ ❧

And, most importantly, the covariance matrix is positive definite if the design matrix, covariance
X, is full rank. Otherwise, it is positive semi-definite and has a determinant of zero.
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M.6: Statistics in Matrices

In this section, we rewrite some of the equations you learned in your previous statis-
tics course in terms of matrices. This section is useful for matrix practice and for fig-
uring out what the computer is actually doing (it always operates using matrices).
In all of the following, let Y be a column vector of length n.

Lemma M.12. The sample mean using matrices: Y = 1
n j′Y.

Proof.

1
n

j′Y =
1
n

[1 1 1 · · · 1 ]



Y1
Y2
Y3
...
Yn


(M.76)

=
1
n

(1Y1 + 1Y2 + 1Y3 + · · ·+ 1Yn) (M.77)

=
1
n

n∑
i=1

Yi (M.78)

= Y (M.79)
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Lemma M.13. The sum of squared values using matrices: Y′Y.

Proof.

Y′Y = [y1 y2 y3 · · · yn ]


y1
y2

y3
...

yn

 (M.80)

= (y1y1 + y2y2 + y3y3 + · · ·+ ynyn) (M.81)

=
n∑
i=1

y2
i (M.82)

Lemma M.14. The sample variance using matrices:

s2y =
1

n− 1
(Y− y j)′ (Y− y j) (M.83)

Proof.

1
n− 1

(Y− y j)′ (Y− y j) (M.84)

=
1

n− 1
[y1 − y , y2 − y , y3 − y , · · · , yn − y , ]


y1 − y
y2 − y
y3 − y
· · ·

yn − y

 (M.85)

=
1

n− 1
(y1 − y )(y1 − y ) + (y2 − y )(y2 − y ) + · · ·+ (yn − y )(yn − y ) (M.86)

=
1

n− 1

n∑
i=1

(yi − y )2 (M.87)
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Lemma M.15. The sample covariance using matrices:

sxy =
1

n− 1
(Y− y j)′ (X− x j) (M.88)

Proof. This proof echoes the previous proof.

1
n− 1

(Y− y j)′ (X− x j) (M.89)

=
1

n− 1
[y1 − y , y2 − y , y3 − y , · · · , yn − y , ]


x1 − x
x2 − x
x3 − x
· · ·

xn − x

 (M.90)

=
1

n− 1
(y1 − y )(x1 − x ) + (y2 − y )(x2 − x ) + · · ·+ (yn − y )(xn − x ) (M.91)

=
1

n− 1

n∑
i=1

(yi − y )(xi − x ) (M.92)

Note that this notation leads to the synonym s2y = syy . It also leads to a nice proofsynonym
that the covariance matrix is symmetric.

Definition M.16. The Variance-Covariance Matrix

Let Y be a random vector (a column vector whose elements are random variables).
The quantity V [Y] is called the variance-covariance matrix of Y. It is often
called just the covariance matrix of Y.

504



With this definition, we have the following lemmas that you may wish to prove:

Lemma M.17. Let Y ∈Mr,c. If Y′ = [Y1, Y2, Y3, · · · ,Yr], then the elements of V [Y] are[
σij

]
, where σij is the covariance between Yi and Yj and σi,i is the variance of Yi .

Lemma M.18. Covariance matrices are symmetric.

Lemma M.19. Correlation matrices are symmetric.

Lemma M.20. If Y is a random vector and X is not, then V [X′Y] = X′V [Y]X, assuming
the multiplication makes sense (i.e., that the matrices are commensurate).
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M.7: End-of-Appendix Materials

M.7.1 Exercises

1. Prove A + 0 = 0 + A = A.

2. Prove matrix addition is commutative.

3. Prove matrix addition is associative.

4. Prove that scalar multiplication is associative.

5. Prove that scalar multiplication is distributive over addition.

6. Using a counterexample, prove that matrix multiplication is not commutative
when only one of the matrices is diagonal (thus showing that both must be
diagonal).

7. Let A be any square matrix. Show that 1
2 (A + A′) is symmetric.

8. Determine the determinant of J10.

9. Determine the rank of J10.

10. Prove that j10 j′10 is not positive definite.

11. Prove that j′10 j10 is positive definite.

12. Prove Lemma M.6.

13. Prove Lemma M.7.

14. Prove Lemma M.8.

15. Prove Lemma M.17.

16. Prove Lemma M.18.

17. Prove Lemma M.20.
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Appendix R:

ExperimentingwithR

Overview:

One of the keys to gaining a better understanding of
statistics and randomness is to experiment with them.
This chapter shows how to utilize the R Statistical Envi-
ronment to perform simulations that allow you a glimpse
into the wonder that is statistics.

Forsberg, Ole J. (10 DEC 2024). “Experimenting with R.” In Lin-
ear Models and Řurità Kràlovstvı̀. Version 0.704442η(α).
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R.1: Installing R

The first step in using R is to install it on your computer. The process is relatively
straight-forward. You download the installation program, then run the installation
program.

You can find the installation program at the CRAN website:

https://cran.r-project.org/

Once there, download the appropriate installation program for your specific type of
computer. Once it is downloaded, find the installation program and run it. Selecting
all of the default options is fine. It’s what I do.

The specifics are dependent on the type of computer operating system, so I
will not get into the specifics. Let me point you in the direction of an Internet search
engine and/or a site with a lot of videos. Learning how to access the information in
these sites is a skill in itself.

So, enjoy the exploration and the learning.

Some prefer to install both R and and integrated developer environment (IDE) called
R Studio. I do not. Except when doing certain niche projects, none of which we are
doing in this book, R Studio just provides nothing (at best) or worse.
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R.2: R Packages

While the base R that you installed has many statistical features, it is important to
learn how to extend that base R installation. One way to do this is to install and load
packages.

This book relies heavily on these packages:

• car

• lawstat

• lmtest

• MASS

• randtests

• snpar

Note that this book is not a part of the so-called tidyverse. Perhaps a future
edition will be, but not now.

R.2.1 Installing Packages The overall scheme for installing packages is the
same for each operating system. The specifics are slightly different to take advantage
of what the operating systems allow. That scheme is

1. Run the install.packages function

2. Select a place to download the package from

3. ????

4. Profit

For instance, if I want to install the car package, I would run the following code in
the Console window

install.packages("car")

Running this will download the car package from the Internet (the mirror site you
selected) and install it on your computer. [If you have already specified the mirror
site, then step two will not happen.]

It will also download all packages that are needed to run the car functions
(called “dependencies”). You can see what other packages are installed by watching
the Console window.1

1The script window is where you type your analysis script. . . it is where you “show your work.”
The Console window is used for the quick work that is not a part of your analysis. Things like
help queries and one-time-only work is done in the Console window.
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R.2.2 Loading Packages The installation needs to be done just once for your
computer. However, if you need to use the package in a script, you will need to load
it into the working memory. Since this is something tied to the script, you should
have this line in your script if you are using the car package:

library("car")

Once that line is run, R is able to access all functions (and/or data) in the package.
Usually, there are a lot of functions in a package. To see what is available in the
package, run this in the Console window:

help(package="car")

After running this, a page will pop up showing all available functions and links to
their help pages. This particular package has a lot of functions associated with it.
Some other packages have just a couple. The number of functions depends on the
purpose of the package.
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R.3: R Functions

There are a plethora of functions available in R. The key is to use functions to become
familiar with them. Also, because you will always need to use new functions, it is
very important to be familiar with the R help files for the functions.

R.3.1 Basic Functions The following are basic functions in R. You will use these
frequently.

• source run external R script

• head show top 6 elements

• tail show last 6 elements

• length number of elements

• seq sequence of numbers

• summary six-number summary

• mean arithmetic average

• median median

• sum sum

• sd standard deviation

• var variance

Please know what each does. If necessary, use the help file for the given function.
The more you familiarize yourself with the help files, the more they will tell you.
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R.3.2 Matrix Functions R can also do arithmetic on matrices. Since the internal
computer calculations are all based on matrices, it is important to be familiar with
matrix operations to make sure you know what R is doing (can check the output).

Element-wise Functions:

• + usual matrix addition

• * Hadamard product (element-wise multiplication)

• ∧ element-wise exponentiation

Additional Matrix Functions:

• %*% usual matrix product

• t matrix transpose

• solve matrix inverse

R.3.3 Probability Functions At the core of statistics is probability and proba-
bility distributions. These will be important in helping you better understand the
effects of randomness on the estimates. . . and the effects of violating procedure re-
quirements on those estimates.

• set.seed specify random number seed

• sample random sample from a vector
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Probability Function Naming Logic: Each probability function in R can be parsed
into two parts, the stem and the prefix. The stem specifies the probability distribu-
tion, whereas the prefix specifies what aspect of the distribution you wish to access.

This is an exhaustive list of the prefixes:

• d
specifies the likelihood value. If the distribution is discrete, then this will also
be the probability, otherwise it is the density.

• p
specifies the cumulative probability, P [X ≤ x]. This prefix will rarely be avail-
able for multivariate functions.

• q
specifies the quantile, the value of x that produces the probability. This prefix
will rarely be available for multivariate functions.

• r
specifies a random variate. In simulation, this is the most important prefix, as
it produces a random sample of a given size from the specified distribution.

The second part is the stem. This specifies the distribution involved. Here is a list of
some of the more interesting stems available:

• binom
Binomial distribution. One needs to specify the number of trials, size, and
the success probability, prob.

• cauchy
Cauchy distribution. Optionally, one can specify the location and the spread.
The default is the standard Cauchy with location of 0 and scale of 1.

• exp
Exponential distribution. One needs to specify the rate, λ.

• f
Snedecor’s F distribution. One needs to specify both degrees of freedom, with
the numerator preceding the denominator degrees of freedom, df1 and df2.

• gamma
Gamma distribution. One needs to specify the shape parameter, α. The rate
parameter has a default value of σ = 1.

• norm
Normal (Gaussian) distribution. Optionally, one can specify the mean m and
standard deviation s of the Normal. The default is mean 0 and standard de-
viation 1.

• pois
Poisson distribution. One needs to specify the expected value, lambda.
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• t
Student’s t distribution. One needs to also specify the number of degrees of
freedom, df.

• unif
Continuous Uniform distribution. Optionally, one can specify the minimum
and maximum value. The default is the standard Uniform with min of 0 and
max of 1.

R.3.4 Testing Functions Because R is a statistical program, it is able to perform
all of the basic statistical tests and procedures. These are the related functions.

• aov Analysis of Variance procedure

• lm OLS regression

• summary.lm summary of a linear model

• summary.aov summary of an ANOVA

• residuals calculated residuals from a model

• confint confidence interval for estimated parameters

• predict estimation and prediction of a value

• runs.test the runs test

• hetero.test univariate test of heteroskedasticity

• fligner.test test of heteroskedasticity across groups

• bptest Breusch-Pagan test of heteroskedasticity

R.3.5 Control Functions

• for for-loops

• if if-then logic

• numeric creates a vector in memory

R.3.6 Graphical Functions R is a full-fledged graphical system. In fact, this is
what set R apart from its competitors (and still does!). Every pixel of a graphic can
be modified in RṪhs book relies on the basic R graphic engine. There are two other
graphical engines (metaphors): grid and ggplot2. Base-R graphics will always
serve you. ggplot2 is the modern graphics engine for Rİt serves as a wrapper for
the basic graphics, making some graphics much easier to create.

515



• qqnorm Q-Q plot for a Normal target

• qqline plots the diagonal line in a Q-Q plot

• barplot bar chart

• boxplot box plot

• hist histogram

• histogram histogram that can be more easily modified

• overlay histogram with a overlaid density function

• plot basic scatter plot

• par specifies a graphical parameter

• plot.new starts a new plot

• plot.window specifies the viewing window

• axis draws an axis

• title writes a title on the graphic

• lines draws lines

• points draws points
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R.4: Programming Practice

This section provides a series of practical examples to help you apply statistical
concepts using the RStatistical Environment, one of the most versatile programming
languages for statistical analysis and data visualization. Ris particularly well-suited
for solving a wide range of statistical problems, from basic descriptive statistics to
advanced modeling techniques. As you progress through these examples, you will
gain hands-on experience with R’s powerful functions, libraries, and data structures,
enabling you to approach statistical challenges with confidence.

I designed each example in this section to demonstrate the practical appli-
cation of key statistical methods while also showcasing the capabilities of R. To help
you fully understand the solutions, each example includes clear explanations, an-
notated code snippets, and discussions of the outputs. Even if you are new to R, the
examples are structured to quickly build your proficiency with the language.

By working through these examples, you will not only deepen your under-
standing of statistical methods but also start developing a toolkit of practical Rskills.
Whether you aim to analyze data for research, business, or personal projects, these
examples will equip you with the knowledge and techniques needed to leverage
Reffectively. Take your time to experiment with the code, explore variations, and
see how the results change — this active learning approach will enhance both your
statistical intuition and your programming expertise.

Note that there is a lot of white space in this section. It is there so that you
can take notes directly on the examples.

Example 1

Produce a basic density plot of a Cauchy distribution between -3 and +3,
where the Cauchy is centered at x = 2 and has an IQR of 3.

Solution: Since we are working with a probability distribution, let us refer to Sec-
tion R.3.3. The function to calculate the density of the Cauchy centered at 2 with
IQR 3 is dcauchy(x,2,1.5). Thus, some code to produce a basic plot between -3
and +3 is

x = seq(-3,3,length=1000)
y = dcauchy(x, locataion=2, scale=1.5)
plot(x,y)
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With a little bit of work, you can make a graphic like Figure R.1. The fill color is the
green in a pallette of three colors designed to be safe for those with the usual color
blindness, #1b9e77. When possible, it is best to accommodate those with color
blindness and those who print out the graphic in shades of grey. ♦

The three safe colors are Green (#1b9e77), Orange (#d95f02), and Blue (#7570b3).
These colors are from the colorbrewer2.org site.

Extension: Plot the pdf of a standard Normal distribution from -3 to +3 on the same
graphic as a standard Cauchy. Looking at the two distributions, which has a higher
variance?

Figure R.1: The probability density function (pdf) of a Cauchy(2,1.5) distribution.
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Example 2

Estimate a density graph of the volume of a cylinder with radius following a
standard Uniform distribution and a height following a Normal distribution
with mean 10 and standard deviation 0.1.

Solution: Since we are working with a probability distribution, I again refer you to
Section R.3.3.

radius = runif(n=1e6)
height = rnorm(n=1e6, m=10, s=0.1)
volume = pi * radiusˆ2 * height

hist(volume)

This is an example where using simulation easily obtains the approximate distribu-
tion. After using my R skills, I obtained the histogram in Figure R.2. See how close
you can come to this. ♦

Figure R.2: The estimated probability density function (pdf) of the volume of a cylinder.
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Example 3

Determine the effect of rounding on the appropriateness of the one-sample
t-test.

Rounding can significantly affect statistical decisions because it alters the precision
of numerical data (the inputs), which can lead to changes in calculated values such
as means, variances, or p-values (the outputs). In hypothesis testing, for instance,
rounding may cause a test statistic to fall on the border of a critical value, poten-
tially shifting the conclusion about rejecting or failing to reject the null hypothesis.
Similarly, in regression analysis, rounding predictor or response variables can affect
the accuracy (and precision) of parameter estimates and the overall model fit.

These impacts are particularly pronounced in datasets with small sample
sizes or values that are close to decision thresholds. Therefore, careful consideration
of rounding practices is essential to ensure that statistical conclusions remain valid
and reliable. This example explores the effects of rounding on the one-sample t-test.

Solution: This leaves a lot of decisions to us. The one-sample t-test requires data
being generated from Normal distribution. So, let’s generate data from a N (5,1)
distribution. We need to round the data, so we will need to use the round function.
Finally, we will need to determine if the distribution of the resulting p-values is
standard Uniform (Section S.6.1).

The following code does this.

pval = numeric()

for(i in 1:1e4) {
x = rnorm(10, m=5, s=1)
y = round(x)
pval[i] = t.test(y, mu=5)$p.value
}

ks.test(pval,"punif")
binom.test(sum(pval<0.05), n=length(pval), p=0.05)

The Kolmogorov-Smirnov test indicates that the distribution of the p-values is not
standard Uniform. Thus, rounding in this situation breaks the t-test. Note that if we
only care about α = 0.05, we would use the Binomial test results. Given that p-value,
I would still conclude that I should not use the t-test in this situation.

What about increasing the sample size from 10 to 50? The Kolmogorov-
Smirnov test still indicates that the test is no longer acceptable. Note that if all we
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care about is α = 0.05, then the t-test does appear to be appropriate under these
conditions.

What about increasing the variability in the data? Having a wider spread to
the data may make the rounding less important. Let’s change the standard deviation
from 1 to 10 (and return the sample size to 10). From my run, the distribution of
the p-value is still not standard Uniform, but the rejection rate for α = 0.05 is close
enough to 0.05.

What if we increase the sample size back to 50? In this situation, the distri-
bution of the p-values is close enough to standard Uniform that the rounding does
not affect the quality of the t-test conclusions. ♦
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Example 4

If the inter-arrival time is Exponentially distributed with average time of 20
minutes, then what is the distribution of people who show up in an 8 hour
period?

Algorithmic thinking is crucial in statistics as it enables a structured approach to
solving complex problems by breaking them into smaller, logical steps. This mind-
set is particularly valuable when designing workflows for data analysis, from data
preprocessing and visualization to modeling and interpretation. By thinking al-
gorithmically, statisticians can systematically address challenges such as cleaning
messy data, optimizing computational efficiency, or automating repetitive tasks.

Moreover, algorithmic thinking facilitates the translation of statistical con-
cepts into code, allowing for reproducibility, scalability, and adaptability in analysis.
In a field increasingly reliant on computational tools, developing this skill ensures
that statisticians can efficiently tackle problems and adapt to new methods or tech-
nologies. This example illustrates algorithmic thinking to arrive at an interesting
result.

Solution: This is a tough question but let’s break it down into its parts, then simulate
it.

The inter-arrival time is the time between arrivals.

iat = rexp(100, rate=3) ### ’iat’ is in hours

The total time between the first and 20th arrival would be the sum of 20 of those
inter-arrival times.

iat = rexp(100, rate=3)
sum(iat[1:20])

On the other hand, the number of arrivals in an hour would be

iat = rexp(100, rate=3)
iatCS = cumsum(iat)
max(which(iatCS <= 1))

So, the number of arrivals in eight hours would be

iat = rexp(100, rate=3)
iatCS = cumsum(iat)
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max(which(iatCS <= 8))

To get the distribution of those “number of arrivals in eight hours,” you just need to
repeat the code many times, saving the number of arrivals each time:

arrNum = numeric()

for(i in 1:1e6) {
iat = rexp(100, rate=3)
iatCS = cumsum(iat)
arrNum[i] = max(which(iatCS <= 8))

}

The histogram (Figure R.3) shows the estimated distribution of the number of cus-
tomers arriving in those 8 hours.

Closely examining the histogram and deeply thinking about the distributions
you should have already learned, it is clear that the number of arrivals in 8 hours
follows this distribution

Number of Arrivals ∼ P (λ = 24) (R.1)

To make it even more manifest, overlaying the histogram with a graph of that Pois-
son distribution illustrates this, Figure R.3.

hist(arrNum, freq=FALSE, breaks=seq(1,50)-0.5)
points(1:50, dpois(1:50, lambda=24), pch=16)

Again, I used some R programming skills to obtain the graphic at the bottom. ♦

Note that this is not proof of the relationship between the two distributions. It
merely suggests the relationship. Your probability theory course will give you the
tools to actually prove the relationship.
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Extension 1: Change all of the time measurements in the previous example from
hours to minutes. Make sure that the conclusions are the same.

Extension 2: Change the inter-arrival time to 10 minutes. What is the distribution
of the number of arrivals in three hours? Show it using the histogram.

Figure R.3: The estimated probability mass function (pmf) of the number of customers
arriving in eight hours. Note that it closely follows the P (λ = 24) distribution. Using the
techniques of probability theory, one can prove this relationship.
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Example 5

A flashlight uses five batteries. The lifetime of each battery is independent
and follows a Gamma distribution with mean 50 days and standard devia-
tion 5 days (shape = 100, scale = 0.5). The flashlight will show light until
the first battery dies.

What is the expected time the flashlight will work after receiving five
new batteries?

If we know the distribution of the lifetimes of each component, does this mean we
know the distribution of the minimum lifetime? Sometimes. Note that sometimes
we may be curious about the distribution of a function of random variables. . . which
is also a random variable.

But, it goes beyond simple curiosity. Calculating the distribution of func-
tions of random variables is essential because it allows us to understand how trans-
formations or combinations of random variables behave and how their uncertainty
propagates. This knowledge is fundamental in many applications, such as deriv-
ing the sampling distribution of an estimator, which forms the basis for hypothesis
testing and constructing confidence intervals. Additionally, understanding the dis-
tribution of these functions enables probabilistic modeling in scenarios where direct
distributions are unavailable, such as in operations research or risk management. It
also helps in determining the likelihood of complex events, optimizing decision-
making, and evaluating reliability in systems involving random inputs. By study-
ing these distributions, statisticians can make more accurate predictions and draw
meaningful inferences in both theoretical and applied contexts.

Solution: This is a great place for you to think through the problem (algorithmic
thinking). What is the first step modeling this physical event? What is the second?
Etc.? Use the next page to write out the steps. . . and the code. If done correctly, you
will obtain the graphic at the bottom of the page, Figure R.4.
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The question actually asked for the expected lifetime of the flashlight. The expected
lifetime (mean) of the flashlight is 44.3 days, with a standard deviation of 3.1 days
(sd). It is nice to know that 90% of the flashlights survive between 39.1 and 49.2
days (quantile).

♦

Figure R.4: The estimated probability density function (pdf) of the lifetime of a flashlight.
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Example 6

A sample n = 10 counts is drawn from a population with unknown distri-
butional characteristics. From the collected data, estimate a 95% confidence
interval for the population mean.

4,3,4,5,4,4,1,4,9,8,3

The bootstrap is a powerful and versatile tool in statistics because it provides a non-
parametric method for estimating the sampling distribution of a statistic without
requiring strong assumptions about the underlying population distribution. By re-
peatedly resampling with replacement from the observed data, the bootstrap allows
statisticians to approximate the variability of estimators, construct confidence inter-
vals, and conduct hypothesis tests.

This approach is especially valuable when theoretical distributions are diffi-
cult to derive, such as with complex estimators or small sample sizes. Furthermore,
the bootstrap is widely applicable across diverse statistical methods, making it a
critical tool for robustness and flexibility in real-world data analysis. Its ability to
leverage computational power to provide insights where traditional methods may
falter has made the bootstrap indispensable in modern statistics.

Solution: Note that the sample size is small in this example. As such, we cannot rely
on the Central Limit Theorem to assume the sample mean is Normally distributed.
We do not even know if the population has a finite variance. The only thing we know
is that we collected that particular sample. Thus, we will use the bootstrap.

That is, we will treat the sample as being representative of the population.
Without this assumption, there is absolutely nothing we can do. With that assump-
tion, we can effectively (or essentially) “recreate” the population as being an infinite
repetition of this data. Then, to estimate the variability in the population, we simply
redraw a sample of the same size from that population.

This is called the non-parametric bootstrap because it does not assume a
specific (named) distribution of the data.
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Here is the code to accomplish this once.

theData = c(4, 3, 4, 5, 4, 4, 1, 4, 9, 8, 3)

newData = sample(theData, replace=TRUE)
mean(newData)

This will give us one more sample mean. It takes thousands of them to understand
the distribution (centers and variabilities). Thus, the non-parametric bootstrapping
code will be

theData = c(4, 3, 4, 5, 4, 4, 1, 4, 9, 8, 3)
newMeans = numeric()

for(i in 1:1e6) {
newData = sample(theData, replace=TRUE)
newMeans[i] = mean(newData)

}

mean(newMeans)
sd(newMeans)
quantile(newMeans, c(0.025,0.975))

From this code, I estimate the population mean is 4.45, with an estimated 95% con-
fidence interval from 3.27 to 5.82. ♦

The non-parametric bootstrap is used when all you know about the population is
that you randomly selected the sample. It is a very flexible procedure that should be
a part of your statistical toolbox.

However, statistically, it tends to be of low power (confidence intervals are
too wide; p-values are too high). The reason for this lower power is that you are
making fewer assumptions on the population. If you know more about the popu-
lation and are able to use it, then that procedure will have higher power (all things
being equal).

Figure R.5 shows the histogram of the sample means from the simulation.
The triangle on the x-axis represents the mean of these sample means. The thick bar
along the axis represents the estimated 95% confidence interval.

528



Figure R.5: The estimated probability density function (pdf) of the sample means from
the unknown population. The mean of the sample means is denoted by the triangle on the
axis; the 95% confidence intervals, thick bar on the axis.
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Example 7

How good is the non-parametric bootstrap in terms of covering the pop-
ulation mean? For this investigation, let’s assume the population really is
standard Normal.

Solution: The first step is to draw a sample of size n = 10 from that population, then
do the non-parametric bootstrap, then determine how frequently the population
mean is in the confidence interval. It should happen 95% of the time.

Here is the code:

estLCL = numeric()
estUCL = numeric()

for(j in 1:1e6) { # The loop testing the NPB

theData = rnorm(10)
newMeans = numeric()

for(i in 1:1e6) {
newData = sample(theData, replace=TRUE)
newMeans[i] = mean(newData)

}

estLCL[j] = quantile(newMeans,0.025)
estUCL[j] = quantile(newMeans,0.975)
}

Note that this will take quite some time to run. There are a total of 1,000,000,000,000
iterations taking place. On a new laptop, one should probably expect it to run
overnight. On an older one, it may take an entire day. However, the results will
be rather precise.

Let me take this opportunity to (re-) introduce you to a measure of the qual-
ity of a confidence interval: coverage. Coverage is defined as the proportion of the
time that the confidence interval contains the true mean.

For our example, the true mean is 0. So, the coverage will be the proportion
of the time that 0 is between the two estimated confidence bounds.

mean( 0>estLCL & 0<estUCL )
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When I run this, I obtain 0.896, which is quite different from the hoped-for 0.95. It
means I am rejecting at a rate of 10.4% instead of the claimed 5%. This is not good.
♦

Having too low of a coverage (as here) is problematic because it increases the risk
that the true parameter value lies outside the confidence interval or prediction range.
Coverage probability reflects the proportion of intervals that, over repeated sam-
pling, are expected to contain the true value. If the coverage is too low, it means that
the interval is overly narrow or poorly calibrated, leading to an underestimation of
uncertainty. This can result in overconfidence in statistical conclusions, which may
cause critical errors in decision-making or policy formulation, particularly in fields
like medicine, finance, or engineering where risks are high.
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Appendix S:

TheAppendixofStatistics

Overview:

This appendix covers most of the things you need to re-
member from your introductory statistics course — and
more. Treat this as more than just a review. It includes
all you need from your statistics course, plus some addi-
tional items that you may find helpful. Starred sections,
as usual, are optional for understanding linear models
at a basic level.

Note that I do include a section on moment gener-
ating functions (MGFs) and a proof on the Central Limit
Theorem (CLT). Neither tend to be included in introduc-
tory statistics courses. Also, neither proof is overly im-
portant for this course. Both are offered up on the altar
of “this is kinda interesting.”

Forsberg, Ole J. (10 DEC 2024). “The Appendix of Statistics.”
In Linear Models and Řurità Kràlovstvı̀. Version 0.704442η(α).
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❧ ❧ ❧

At the very center of statistics. . . and of understanding statistics. . . is the random
variable. There are many ways of defining a random variable. This is important, be-rv
cause the random variable is central to our understanding of probability and statis-
tics. The “official” definition of a random variable is

Definition S.1. Random Variable

A random variable X : Ω → E is a measurable function from a set of possible
outcomes Ω to a measurable space E.

While this definition has the advantage of being mathematically precise, it is not
necessarily helpful in terms of understanding what a random variable really is. For
me, a random variable is just an unknown outcome of an experiment.

The “variable” you were introduced to in high school algebra is a value that
is unknown until more information is available. A random variable is a value that is
unknown until that experiment is performed. Repeated experiments may produce
different values.

Here, I am using the term “experiment” broadly. It is any action, including
simple observation. Thus, my height right now is not a random variable. However,
my height in three years is a random variable. I will not know its value until I
perform the experiment (measure it in three years).

Random variables have distributions. Nothing else has a distribution in the
sense we are using it here — nothing else. Since random variables have distributions,
they also have expected values, variances, minimums, maximums, medians, and
many other measures on the variable.

Samples are drawn from random variables to better understand how they
behave (a.k.a. their distribution, Section S.5). Thus, if I want to understand the rela-
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tionship between engine displacement (a fixed/set variable) and mileage (a random
variable) for automobiles in general, I would measure engine displacements and
mileages from a sample of automobiles. That sample would give me information
about the relationship between those two variables.

Note: There is a difference between the variable (what we measure) and
the values (results from our measurements). The values constitute our sam-
ple. This means that the engine displacement is a variable and some val-
ues are {1.76,2.25,1.8,2.5,0.75} liters. Similarly, mileage is a variable and
{25.3,17.8,34.4,14.5,30.5} are some values.

To help with notation, I try to follow these rules: Observations (data, values) are
denoted with lowercase Latin letters like x, y, and z; random variables (unobserved),
with uppercase Latin letters like X, Y , and Z; population parameters in need of
estimating, with Greek lowercase letters like µ, σ , and π; and the set of possible
parameter values, with Greek uppercase letters like M, Σ, and Π.

S.1: Importantly Confusing Points

So, here is something that is extremely confusing because we use the same word to
mean/imply different things. A set of numbers has a variance. A sample from a
random variable has a variance. A distribution has a variance.1 All three measures
are termed “variance;” however, they mean different things.

Here is a set of numbers I specify (i.e., they are not randomly generated):
{1,2,3,4,5,6,7}. They have a mean and a variance. The mean is 4. The variance is
4.667. Those measures only tell me about the numbers I specified. Since they are
not realizations of a random variable, it does not make sense to use those values for
anything other than mathematical calculations on those particular values.

Here is a set of numbers generated from a Poisson distribution (see Sec- observations
tion S.4.3) with mean λ = 1: {1,2,1,2,0}. These values (this sample) also have a
mean (µ = 1.20) and a variance (σ2 = 0.70). Since these numbers are a realization of
(an observation from) a random variable, these two values can be called “statistics”
(descriptive or sample statistics). They are functions of observed random variables. statistics
Because they are statistics, the mean should be close to the expected value of the
random variable, and the variance should be close to the variance of the random
variable.

1One can also say that a random variable has a variance. While a random variable is not
a distribution (it follows one, however), we will often conflate the random variable and its
distribution.

535



Since these statistics are functions of a random sample, those statistics are
also random variables. As such, they have distributions. In fact, understanding
and knowing the distribution of sample statistics is one of the goals of statistics.
This study led you to confidence intervals and test statistics back in your previous
statistics course.

Here is a Chi-square distribution with parameter “4 degrees of freedom”:population
χ2
ν=4. It has an expected value (µ = 4) and a variance (σ2 = 8). These are (population)

parameters and are not a function of a sample (hence they are represented withparameters
lowercase Greek letters). These are genuine numbers that have no distribution.2

They are also numbers that we do not know when we are applied statisti-
cians. These are, however, numbers that we want to know — or at least obtain a
good estimate of. To get those estimates, we obtain a sample from the distribution
and measure the corresponding sample statistics. While the sample statistics will
not (usually) exactly equal the population parameters, they will tend to be close.
How close depends on the sample size and the statistic measured.

Note: This “issue” with the variance is not unique to the variance. The lesson
to take away from this is that you need to be aware of the symbols and what
they mean. This is especially true when it comes to values, random variables,
and distributions.

2They have no distribution because they do not vary. Our understanding of them may vary, but
the value does not.
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S.2: Sample Statistics

A statistic is a function of the data. Because the data are random variable, so are
statistics. There are several sample statistics that you should have seen in your pre-
vious statistics course. Here are the definitions of those important to linear models.

S.2.1 Sample Mean The sample mean is the usual “average” that we have calcu-
lated many times in the past. If we want to use just one number to summarize the
data, the mean is the usual value.

Definition S.2. Sample Mean

Let Yi be a random sample from a distribution. The sample mean is defined as

Y =
1
n

n∑
i=1

Yi (S.1)

Note that this definition is equivalent to

n∑
i=1

Yi = nY (S.2)

This form is useful in many proofs, and you will see one later. Before we get to
that, however, here is an elementary property of the sample mean that needs to be
provided.

Lemma S.3. The sample mean is a linear functional.

Proof. This means we have to show that the mean of (aY + b) is aY + b for scalars a
and b. The proof is rather straight forward. We just find the mean of aY + b using
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the definition.

aY + b =
1
n

n∑
i=1

(aYi + b) (S.3)

=
1
n

n∑
i=1

aYi +
1
n

n∑
i=1

b (S.4)

= a
1
n

n∑
i=1

Yi +
1
n
nb (S.5)

= aY + b (S.6)

Thus, through the transitive property, the expected value of a linear combination of
the variable is just a linear combination of the expected values.

Note: You should go through each of the steps in the previous proof and give
a reason the step is mathematically correct. This will give you some practice
in the mathematics underlying linear models.

❧ ❧ ❧

Now, we show that the average deviance from the mean is zero.

Lemma S.4 (The Mean Deviance Lemma). Let Yi be a sample of size n from a
random variable.

n∑
i=1

(
Yi − Y

)
= 0

I leave the proof as an exercise.exercise

While it seems as though this lemma is not important, you will see its appli-
cation over and over again. It will serve you well to learn it by sight as quickly as
possible.

S.2.2 Sample Variance If we use the mean to summarize the entire data set
using a single number, the measure of spread is used to see how well that number
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represents each element of the data. There are many measures of spread that you
probably have come across. These include the variance, standard deviation, and
interquartile range. Here we will focus on the variance.

Definition S.5. Sample Variance

Let Yi be a random sample of size n from a distribution. The sample variance is
defined as

S2
y =

1
n− 1

n∑
i=1

(
Yi − Y

)2
(S.7)

Here are some elementary properties of the sample variance that need to be pro-
vided.

Lemma S.6. The sample variance is a quadratic functional.

Proof. This means we need to show that the variance of (aY + b) is a2S2
y . This is also

a relatively straight forward application of the definition.

Thus, let Yi be a random sample of size n from a distribution. With this, we
have the following

S2
aY+b =

1
n− 1

n∑
i=1

(
(aYi + b)− (aY + b)

)2
(S.8)

=
1

n− 1

n∑
i=1

(
aYi + b − aY − b

)2
(S.9)

=
1

n− 1

n∑
i=1

(
aYi − aY

)2
(S.10)

=
1

n− 1

n∑
i=1

(
a(Yi − Y )

)2
(S.11)

=
1

n− 1

n∑
i=1

a2
(
Yi − Y

)2
(S.12)

= a2 1
n− 1

n∑
i=1

(
Yi − Y

)2
(S.13)
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= a2 S2
y (S.14)

Note: Proofs S.3 and S.6 both exemplify one important method for proving
statements: substitute and simplify. It also provides to us an important result.
Go over it a few times. Realize the importance of the scalar multiple on the
variance, as well as the scalar addend on the variance.

Also, think about why it makes sense for a translation to have no effect
on the variance, but a scale change to have a significant effect.

What is so important about the previous lemma? Think about the variance of heights
of students in this room. First, measure in feet, then in inches, then in centimeters.
Why does the variance change in the three measurements?

Now, have everyone stand on the same chair while measuring them in inches.
Why does the variability when measured to the floor does not depend on whether
they are standing on the chair or not?
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S.2.3 Sample Covariance The variance measures the variability of a single value.
The covariance measures the variability of the relationship between two numeric
variables.

Definition S.7. Sample Covariance

Let Xi be a random sample from a distribution. Let Yi be a random sample from a
distribution (same as X or different). The sample covariance is defined as

SX,Y =
1

n− 1

n∑
i=1

(
Xi − X

)(
Yi − Y

)
(S.15)

The covariance is also denoted by Cov [X,Y ]. However, using this symbol may lead
to confusion about whether you are talking about a sample or a population. It is
safer to stay with SX,Y as the symbol.

Here are some elementary properties of the sample covariance.

Lemma S.8. SX+Y ,Z = SX,Z + SY ,Z .

Proof. This proof is also a direct application of the definition and of the proof style
of Theorem S.3.3

SX+Y ,Z =
1

n− 1

n∑
i=1

(
(Xi +Yi)− (X − Y )

)(
Zi − Z

)
(S.16)

=
1

n− 1

n∑
i=1

(
Xi − X +Yi − Y

)(
Zi − Z

)
(S.17)

3Remember that proving things is important. As you work through this material, you need to
be able to prove things mathematically. In statistics, however, not all things can be proven
mathematically. Some things need simulation to give provisional results. However, proving
things mathematically is preferred.
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=
1

n− 1

n∑
i=1

(
Xi − X

)(
Zi − Z

)
+

1
n− 1

n∑
i=1

(
Yi − Y

)(
Zi − Z

)
(S.18)

= SX,Z + SY ,Z (S.19)

I leave the following as exercises for you.exercises

Lemma S.9. SX,Y = SY ,X

Lemma S.10. SaX,bY = ab SX,Y

Lemma S.11. SX,X = S2
X
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S.2.4 Sample Correlation Like the covariance, the correlation measures the
strength of the relationship between two numeric variables. However, where the
covariance cannot be meaningfully compared across variables, the correlation can.
A correlation value of 0.25 indicates the same exact thing whether you are looking
at the relationship between height and weight or between population and GDP. A
covariance of 100 means something different if one is looking at the relationship be-
tween height and weight or if one is looking at the relationship between population
and GDP.

Definition S.12. Sample Correlation

Let Xi be a random sample of size n from a distribution with finite variance. Let
Yi be a random sample from a distribution (same as X or different) with finite
variance. The sample correlation is defined as

RX,Y =

∑n
i=1

(
Xi − X

)(
Yi − Y

)√∑n
i=1

(
Xi − X

)2 ∑n
i=1

(
Yi − Y

)2
(S.20)

The correlation is also symbolized using Cor [X,Y ]. However, this may be confusing
as this symbol is also used for the population correlation.

Alternate formulas for the correlation include:

RX,Y =
SX,Y√
S2
X S

2
Y

(S.21)

RX,Y =
SX,Y
SX SY

(S.22)

I leave the following as exercises for you. exercises

Lemma S.13. RX,Y = RY ,X

Lemma S.14. RaX,Y = RX,Y

Lemma S.15. RaX+b,Y = RX,Y

Lemma S.16. −1 ≤ RX,Y ≤ 1

Note: The Lemma S.15 result is very important. Do not just think about them
in terms of the mathematics. Think about what these mean in terms of the
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reality: If we apply a linear transformation to the two variables, how does
that affect the correlation? What does that really mean?

The Lemma S.16 result is also important. Why? It gives a meaning to the correlation
that can be compared across data sets.

❧ ❧ ❧

In each of the above definitions, the numeric divisor is chosen to ensure that the sam-
ple statistic is an unbiased estimator of the population parameter. In other words,bias
we divide by n− 1 so that this equation is true:

E [statistic] = parameter (S.23)

It is interesting that those denominators are the “degrees of freedom” for that statis-
tic. This gives one helpful “definition” for the term degrees of freedom.df
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S.3: Population Parameters

Let us spend a section examining population parameters. A population parameter
is a measurement on the population, analogous to the sample statistic being a mea-
surement on the sample.

Note that it is the population parameters we seek to know. The sample statis-
tics are only used to give us information about them. Some usual population param-
eters of interest are the mean, variance, covariance, and correlation.

S.3.1 Population Mean The population mean is a measure of center (or “typi-
calness”) for the entire distribution (or random variable). It is known by a few dif-
ferent names: population mean, expected value, and first moment. It is represented
by either µ or E [Y ].

If the distribution is discrete, the formula for the expected value is

E [Y ] =
∑
i∈S

yi P [Y = yi] (S.24)

If the distribution is continuous, the formula for the expected value is

E [Y ] =
∫
S
y f (y) dy (S.25)

Note the similarities between the two formulas. The difference is due solely to the
mathematics underlying Equation S.25. Those mathematics tend to be covered in an
undergraduate real analysis course.

Note: Another interpretation of the expected value is the “long-run average”
of the outcomes. I frequently find this useful in checking that my results
match my expectations.
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Example 1

Let Y be the number of heads in one flip of a fair coin. What is the expected
number of heads?

Solution: The random variable Y is discrete with sample space S =
{
0,1

}
. Thus, the

formula for the expected value gives us

E [Y ] =
∑
i∈S

yi P [Y = yi] (S.26)

= 0 P [Y = 0] + 1 P [Y = 1] (S.27)

= 0(0.500) + 1(0.500) (S.28)

Thus, the expected number of heads is E [Y ] = 0.500. ♦

Note: The expected value of a random variable does not need to be an element
of the sample space (as here). Thus, the interpretation as a long-run average
helps in understanding the mean.

Example 2

Let Y be the time I spend at a stoplight. If the light has a 120-second cycle,
spending 55s on green, 5s on yellow, and 60s on red, calculate the expected
time I wait, given that I have to stop.

Solution: The random variable Y is continuous with sample space S = [0,60]. With-
out any information beyond knowing that there is a lower and an upper bound, we
should assume the random variable follows a Uniform distribution.4

4For those interested in understanding why the Uniform is the distribution, please read up on
“maximum entropy distributions.”
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Thus, the formula for the expected value gives us

E [Y ] =
∫
S
y f (y) dy (S.29)

=
∫ 60

0
y

1
60

dy (S.30)

=
1

60

∫ 60

0
y dy (S.31)

=
1

60
y2

2

∣∣∣∣∣∣60

y=0

(S.32)

=
1

60

(
602

2
− 02

2

)
(S.33)

= 30 (S.34)

Thus, the expected time I spend at the stop light is E [Y ] = 30 seconds. Why does
that not surprise me? ♦
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Example 3

Let Y be the time I spend at a stoplight. If the light has a 120-second cycle,
spending 55s on green, 5s on yellow, and 60s on red, calculate the expected
time I wait.

Solution: This is quite different from the previous example. There, we knew the
light was red. Now, we do not know if it is green (no time stopped), yellow (no time
stopped), or red.

One can follow the above procedure to solve the problem. However, I would
like to use a more helpful procedure. To motivate the procedure, note that the mean
has been calculated as the sum of each value times its probability (Eqn. S.24). Thus,
we could calculate the expected time to wait as

E [wait] = P [green]E [green] +P [yellow]E [yellow] +P [red]E [red]

=
55

120
0 +

5
120

0 +
60

120
30

=
1800
120

Thus, without the additional information that I actually stopped at the stoplight, the
expected wait time is only 15s. ♦

Now that we have gone through the calculations, make sure that the logic makes
sense.

❧ ❧ ❧

With formulas S.24 and S.25 above, one can find the expected value of any function
of a random variable, too. For instance, E

[
Y 2

]
is the expected value of the square of

the random variable. It is calculated as

E

[
Y 2

]
=

∑
i∈S

y2
i P [Y = yi] (S.35)
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or, if Y is continuous,

=
∫
S
y2
i f (y) dy (S.36)

This will come in handy in terms of notation.

Example 4

Let Y ∼ Bern(π = 0.500). Calculate E [Y ], E
[
Y 2

]
, and E

[
Y 3

]
.

Solution: Recall that the probability mass function for Y is given by

f (y) =
{

0.500 y = 0
0.500 y = 1 (S.37)

Thus, we have

E [Y ] =
∑
y∈S

p(y) y (S.38)

= (0.500) 0 + (0.500) 1 (S.39)

= 0.500 (S.40)

and

E

[
Y 2

]
=

∑
y∈S

p(y) y2 (S.41)

= (0.500) 02 + (0.500) 12 (S.42)

= 0.500 (S.43)

and

E

[
Y 3

]
=

∑
y∈S

p(y) y3 (S.44)

= (0.500) 03 + (0.500) 13 (S.45)

= 0.500 (S.46)

Clearly, that these three moments are equal is a feature of the Bernoulli distribution.
Such will not necessarily be true for any other distribution. ♦
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Lemma S.17. If Y ∼ Bern(π), then E [Y n] = π for any positive, finite-valued n.

Proof. Recall that the probability mass function for Y is given by

f (y) =
{

1−π y = 0
π y = 1 (S.47)

Thus, we have

E [Y n] =
∑
y∈S

p(y) yn (S.48)

= (1−π) 0n + (π) 1n (S.49)

= (1−π) 0 + (π) 1 (S.50)

= π (S.51)

Thus, it is proven.

Note: When discussing the random variable, one will tend to refer to E [Y ].
When discussing the distribution of the random variable, one will tend to
refer to µ. Since random variables “follow” (or “have”) a distribution, the two
terms tend to be treated as being interchangeable, especially since E [Y ] = µ.

Formula S.25 for the expected value is the one we all see in our introductory statistics
course. There is another formula that may be useful to know. Given F(y) is the
cumulative distribution function (CDF) for Y , this is true:

E [Y ] =
∫ ∞

0

(
1−F(y)

)
dy (S.52)

Note that this formula only works if the support of the random variable is non-
negative.

Example 5

Let Y be the time I spend at a stoplight. If the light has a 120-second cycle,
spending 55s on green, 5s on yellow, and 60s on red, calculate the expected
time I wait, given that the light is red.
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Solution: This is the same problem as above (S.3.1). However, let us use equation
S.52. We know that the CDF for the above Uniform is

F(y) =


0 y ≤ 0

y/60 0 < y ≤ 60
1 y > 60

(S.53)

Thus, E [Y ] is

E [Y ] =
∫ ∞

0

(
1−F(y)

)
dy (S.54)

=
∫ ∞

0

(
1− y/60 0 < y ≤ 60

0 y > 60

)
dy (S.55)

=
∫ 60

0
1− y/60 dy (S.56)

. . .

I leave the rest as an exercise for you. ♦ exercise
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S.3.2 Population Variance The population variance is a measure of uncertainty
(or of spread or uncertainty) for the distribution. It is symbolized as σ2 and as V [Y ].
When discussing the random variable, one will tend to refer to V [Y ]; however, when
discussing the distribution of the random variable, one will tend to refer to σ2, as
above.

The typical population variance formulas are

V [Y ] =
∑
i∈S

(yi −µ)2
P [Y = yi] (S.57)

=
∫
S

(yi −µ)2 f (y) dy (S.58)

Note that these are merely
V [Y ] = E

[
(Y −µ)2

]
(S.59)

In other words, the variance is defined as the second central moment.moment

This last definition may be more helpful in our understanding of the vari-
ance, especially as it leads to a different formula for the variance:

E

[
Y 2

]
= σ2 +µ2 (S.60)

Lemma S.18. Let Y be a random variable with finite mean and variance.

E

[
Y 2

]
= V [Y ] +E [Y ]2

Proof. The proof follows from the definition and algebra:

V [Y ] = E

[
(Y −E [Y ])2

]
(S.61)

= E

[
Y 2 − 2YE [Y ] +E [Y ]2

]
(S.62)

= E

[
Y 2

]
− 2E

[
Y E [Y ]

]
+E

[
E [Y ]2

]
(S.63)
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Since E [Y ] is a population parameter, it is its own expected value. It is also inde-
pendent of the random variable. These two facts give us

V [Y ] = E

[
Y 2

]
− 2E [Y ]E [Y ] +E [Y ]2 (S.64)

= E

[
Y 2

]
−E [Y ]2 (S.65)

Using familiar symbols, this is just

σ2 = E

[
Y 2

]
−µ2 (S.66)

Rearranging the terms gives our result

E

[
Y 2

]
= V [Y ] +E [Y ]2 (S.67)

And, this is what we wished to prove.

Note: While this proof is worded in terms of population parameters, it also
works with sample statistics:

µ′2 = s2 + y 2 (S.68)

where
µ′2 =

1
n

∑
i

y2
i (S.69)

Note that the subscript of ‘2’ indicates the second moment and the prime
indicates it is the sample version. Thus, µ′2 is the second sample moment, and
µ2 = E

[
Y 2

]
is the second population moment.

This is not important for the mathematics underlying linear models.
However, you may find it interesting that statisticians really are trying to
make our symbols follow consistent rules.
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Another Variance Formula: The variance formulas given above in Equations S.57
and S.58 are the typical ones provided in undergraduate statistics. They depend
on the probability mass (or density) function (pmf or pdf). There is a formula for
the population variance that relies on the cumulative distribution function (CDF)
instead. Here it is.

σ2 = 2
∫ ∞

0
y
(
1−F(y)

)
dy −

(∫ ∞
0

(
1−F(y)

)
dy

)2

(S.70)

Note that this formula only works for a non-negative random variable. . . that is, for
random variables whose possible values must be positive. Also note that this for-
mula should only be used if the CDF is easier to work with than the pdf. This is a
rare event, which illustrates why few see this formula.

Example 6

Show that the variance of a standard Uniform distribution is

V [Y ] =
1

12

Use both the pdf and the CDF method.

Solution: I leave this as an exercise for you. ♦
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S.3.3 Population Covariance and Correlation The formula for the population
covariance is

σxy = E

[
(X −µx)(Y −µy)

]
(S.71)

Note this reduces to V [Y ] = Cov [Y ,Y ] and σ2
y = σyy .

The formula for the population correlation is

ρxy =
σxy
σxσy

(S.72)

The Greek letter ρ is “rho.” It is not a “p.”

Example 7

What is the covariance between a variable and a constant?

Solution: I leave this as an exercise for you. ♦

Example 8

What is the covariance between two constants?

Solution: I leave this as an exercise for you. ♦
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S.4: Probability Distributions

There are several distributions you will have experienced in the past. They include
the Binomial, Poisson, Normal, Chi-square, Student’s t, and F distributions. Each of
these distributions either arises in nature or as a consequence of needing to test a
hypothesis. The next several sections covers these distributions — and more.

S.4.1 Bernoulli Arguably, the Bernoulli is the grandfather of all discrete dis-
tributions.5 It models a random variable that has two possible outcomes, which we
call “failure” and “success,” or 0 and 1. This is its “sample space,” the set of all
outcomes with non-zero probability,sample space

S =
{
0,1

}
(S.73)

The Bernoulli has a single parameter, π, which is the probability of the randomparameter
variable being 1.

The probability mass function for the Bernoulli ispmf

f (y) =


1−π y = 0
π y = 1
0 otherwise

(S.74)

Technically, the probability mass function must return a value for every real y. Thus,
the third line in the definition of the Bernoulli pmf. With that being said, it is
frequently left off and assumed. Thus, we will often see it as

f (y) =
{

1−π y = 0
π y = 1 (S.75)

without any loss of understanding.

Its cumulative distribution function of the Bernoulli distribution isCDF

F(y) =


0 y < 0
1−π 0 ≤ y < 1
1 1 ≤ y

(S.76)

Similarly, this will frequently be written as

F(y) = 1−π for 0 ≤ y < 1 (S.77)

without confusion.

The mean (expected value) of a Bernoulli random variable ismean

5The standard uniform distribution, which can be used to generate Bernoulli random vari-
ables, is the source of all distributions.
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E [Y ] =
∑
i∈{0,1}

yi f (yi) (S.78)

= 0× (1−π) + 1× (π) (S.79)

= π (S.80)

Its variance is variance

V [Y ] =
∑
i∈{0,1}

(yi −µ)2 f (yi) (S.81)

= (0−π)2 × (1−π) + (1−π)2 × (π) (S.82)

= π2(1−π) +π(1−π)2 (S.83)

= π2 −π3 +π − 2π2 +π3 (S.84)

= π(1−π) (S.85)

The skew of a Bernoulli is skew

γ3(Y ) = E

[(Y −µ
σ

)3]
(S.86)

=
∑
i∈{0,1}

(yi −µ
σ

)3
f (yi) (S.87)

=
(

0−π
π(1−π)

)3

× (1−π) +
(

1−π
π(1−π)

)3

× (π) (S.88)

. . . some algebra . . .

=
1− 2π√
π(1−π)

(S.89)

Here, we are defining skew as the “third standardized moment.” Other definitions
are available, including the Hildebrand ratio, which you may have learned in your
introductory statistics course: Hildebrand

H =
Y − Ỹ
S

(S.90)
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Example 9

What is the Hildebrand ratio for a Bernoulli distribution?

Solution: Because the median of the Bernoulli is not a smooth function, let us break
this proof into three cases. Note, we will assume π ∈ (0,1). If π = 0 or π = 1, the
statistics are not interesting.

Case 1 (π > 0.500). Let Y ∼ Bern(π). Let π > 0.500. From the probability mass
function and the definition of the Hildebrand ratio, we have the following:

H =
Y − Ỹ
S

(S.91)

=
π − 1
π(1−π)

(S.92)

= − 1
π

(S.93)

Since this is always negative, we know that the Bernoulli is negatively skewed if
π > 0.500.
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Case 2 (π > 0.500). As previously, we have the following:

H =
Y − Ỹ
S

(S.94)

=
π − 0
π(1−π)

(S.95)

=
1

1−π
(S.96)

Since this is always positive, we know that the Bernoulli is positively skewed if
π < 0.500.

Case 3 (π = 0.500). As previously, we have the following:

H =
Y − Ỹ
S

(S.97)

=
π −π
π(1−π)

(S.98)

= 0 (S.99)

Thus, the Bernoulli is symmetric only when π = 0.500. ♦

In the previous example, I required π < {0,1}. This is not a restriction for applied
statistics. Why? What does it mean if π = 0 or π = 1? When would such a thing
happen? Why would we need to study it?

❧ ❧ ❧
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The kurtosis of a Bernoulli iskurtosis

γ4(Y ) = E

[(Y −µ
σ

)4]
(S.100)

=
∑
i∈{0,1}

(yi −µ
σ

)4
f (yi) (S.101)

=
(

0−π
π(1−π)

)4

× (1−π) +
(

1−π
π(1−π)

)4

× (π) (S.102)

. . . some algebra . . .

=
1− 3π(1−π)
π(1−π)

(S.103)

Here, we are defining kurtosis as the “fourth standardized moment.”

The usual measure is called the “excess kurtosis.” This is just the kurtosis
minus 3. Why 3? The kurtosis of the Normal distribution is 3. Thus, the excess kur-
tosis measures how its kurtosis differs from the Normal. Thus, the excess kurtosis
of the Bernoulli is

1− 6π(1−π)
π(1−π)

(S.104)

Note: While the Bernoulli distribution is heavily used only in Chapter 12, it
is a simple distribution that serves as a basis for better understanding other
probability distributions.
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S.4.2 Binomial The Binomial distribution arises from modeling independent
repeated trials where the variable is the number of successes out of a known number
of trials.

Definition S.19. Binomial Random Variable

Let Yi
iid∼ Bern(π). If we define X =

∑n
i=1Yi , then X ∼ Bin(n,π).

Here, the symbol iid∼ indicates the random variables are independent and identically iid
distributed; they are iid. In other words, they constitute a random sample.

Interpreting the above definition gives us the following five requirements for
a random variable to follow a Binomial distribution:

1. The number of trials, n, is known.

2. Each trial has two possible outcomes: failure (0) and success (1).

3. The probability of a success, π, does not change from trial to trial.

4. The trials are independent.

5. The random variable is the number of successes in those n trials.

If your random variable follows all five of these conditions, then it follows a Bino-
mial distribution with parameters n and π. The sample space of a Binomial random
variable is S = {0,1,2, . . . ,n}

The probability mass function (pmf) of a Binomial random variable is

P [Y = y; n,π] =
(
n
y

)
πy (1−π)n−y (S.105)

The Binomial distribution is symmetric only when π = 0.500. If π < 0.500, then it
is skewed right. Otherwise, it is skewed left. The sample space for the Binomial
distribution is S =

{
0,1, . . . ,n

}
. The expected value is E [Y ] = nπ and the variance is

V [Y ] = nπ(1−π).

Under certain circumstances, the Binomial distribution can be approximated
with the Normal distribution. This arises from the Central Limit Theorem (Sec-
tion S.6.4). This is especially important if we are examining the distribution of a CLT
proportion instead of a count.
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Lemma S.20. Let Y ∼ Bin(n, π). The distribution of the number of successes is

Y ·
∼ N

(
nπ, nπ(1−π)

)
(S.106)

Here, the symbol ·∼ indicates the distribution is approximate. As one would expect,
the approximation improves as the sample size, n, increases. This is due entirely to
the Central Limit Theorem (Section S.6.4) and the fact that a Binomial random vari-
able is the sum of independent and identically distributed (iid) Bernoulli random
variables.

Also, the approximation improves if any of a variety of “continuity correc-
tions” are used.

Lemma S.21. Let Y ∼ Bin(n, π). The distribution of the sample proportion,
P := Y

n is

P ·∼ N
(
π,

π(1−π)
n

)
(S.107)

As one would expect (Section S.6.4), the approximation improves as the sample size,
n, increases.

Proof. This proof proceeds from approximating the distribution of X with a Normalexercise
distribution (Lemma S.20), then using the characteristics of the Normal distribution
to obtain the answer. I leave this as an exercise.
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S.4.3 Poisson The Poisson distribution arises from counting the number of suc-
cesses over a time period or an area. Contrast this with the Binomial, where the count
successes were counted over the number of trials.

The probability mass function of the Poisson distribution is

P [Y = Y ; λ] =
e−λλy

y!
(S.108)

The expected value is E [Y ] = λ, and the variance is V [Y ] = λ. The sample space is
S =

{
0,1,2, . . .

}
. It is skewed right, regardless of the value of λ, however that skew

goes to zero as λ→∞. If the skew is defined as the standardized third moment, we
can “easily” show that skew

γ3 = E

[(Y −µ
σ

)3]
= λ−1/2 (S.109)

Similarly, if we define the kurtosis as the standardized fourth moment, we know the
excess kurtosis converges to zero as λ→∞: kurtosis

excess kurtosis = E

[
(X −µ)4

σ4

]
− 3 = λ−1 (S.110)

These previous results show that the Poisson distribution becomes more and more
Normal as λ→ 0.

Note: The Poisson distribution is an example of an “infinitely divisible” dis-
tribution. This means that any Poisson distribution is the sum of two other infinitely

divisiblePoisson distributions. This characteristic is rare, but it also holds for the Nor-
mal distribution. It is important because the Central Limit Theorem applies
to sums of random variables. Since the Poisson distribution is a sum of other
Poisson distributions, the CLT tells us that the Poisson distribution converges
to the Normal distribution (as λ→∞).

The Poisson distribution is the number of successes over a time period or an area.
This suggests that the Poisson distribution arises as a limiting case of the Binomial
distribution when n → ∞, and nπ is a constant value. We prove this in the next
theorem.
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Theorem S.4.1

If Yn ∼ Bin (n,π), then
lim
n→∞

Yn ∼ P (λ) (S.111)

as long as nπ = λ remains constant.

Proof. This proof heavily relies on Sterling’s approximation, n! ≈
√

2πn
(
n
e

)n
, which

you could have seen in your calculus course.

P [Y = y; n,π] =
(
n
y

)
πy (1−π)n−y (S.112)

=
n!

(n− y)! y!
πy (1−π)n−y (S.113)

≈

√
2πn

(
n
e

)n(√
2π(n− y)

(
n−y
e

)n−y)
y!

πy (1−π)n−y (S.114)

=
√

n
n− y

nne−y

(n− y)n−y y!
πy (1−π)n−y (S.115)

Now, let n→∞ to give us

= 1
nne−y

(n− y)n−y y!
πy (1−π)n−y (S.116)

and holding nπ = λ (i.e., π = λ/n), we have

P [Y = y; n,π] =
nn e−y

nn−y
(
1− y

n

)n−y
y!

(λ
n

)y (
1− λ

n

)n−y
(S.117)

=
λy

(
1− λ

n

)n−y
e−y(

1− y
n

)n−y
y!

(S.118)
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As n→∞, we have n− y ≈ n. This gives

P [Y = y; n,π] ≈
λy

(
1− λ

n

)n
e−y(

1− y
n

)n
y!

(S.119)

Remember from calculus that n → ∞ means
(
1− y

n

)n
→ e−y , by definition. Now,

applying this limit, we have

P [Y = y; n,π] =
λye−λe−y

e−y y!
(S.120)

This simplifies to

P [Y = y; n,π] =
λye−λ

y!
(S.121)

This is the probability mass function of the Poisson distribution.

Thus, we have shown that the Poisson distribution is the limiting distribution of a
Binomial distribution when the number of trials goes to infinity and the expected
value remains constant (the probability of success goes to zero).

Stop and think about why this fact suggests that the Poisson can model suc-
cesses over time or space.

Note: The reason for understanding the Poisson distribution is that it is used
to model counts (number of successes over time or space). It is the focus of
count regression of Chapter 14.
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S.4.4 Normal The Normal distribution, also known as the Gaussian distribu-
tion and the Gauss-Laplace distribution, is ubiquitous in statistics. This is due toGaussian
the Central Limit Theorem (see § S.6.4), which states that the distribution of the
sample sum (or sample mean) approaches a Normal distribution, regardless of how
the original variable is distributed (as long and the variance is finite and the sample
is random).i.i.d.

The probability density function of the Normal is

f (y; µ,σ ) =
1

√
2πσ2

exp
[
−1

2
(y −µ)2

σ2

]
(S.122)

The Normal distribution is symmetric, has expected value E [Y ] = µ, variance V [Y ] =
σ2, and sample space S = R, all real values.

Example 10

Calculate the skew of the Normal distribution.

Solution: There are several ways to show that the Normal is symmetric (skew = 0).
Here are three.

Method 1: Math. The mathematical definition of symmetry is that f (y) is symmetric
about the vertical line µ if f (µ− y) = f (µ+ y). Here is the proof:

f (µ− y) =
1

√
2πσ2

exp
[
−1

2
(µ− y −µ)2

σ2

]
(S.123)

=
1

√
2πσ2

exp
[
−1

2
(−y)2

σ2

]
(S.124)

=
1

√
2πσ2

exp
[
−1

2
(y)2

σ2

]
(S.125)

and

f (µ+ y) =
1

√
2πσ2

exp
[
−1

2
(µ+ y −µ)2

σ2

]
(S.126)

=
1

√
2πσ2

exp
[
−1

2
(y)2

σ2

]
(S.127)
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Thus since f (µ− y) = f (µ+ y), we have shown f (y) is symmetric about µ.

Method 2: Hildebrand. We can also use the Hildebrand rule to show that the Nor-
mal distribution is symmstric:

H =
Y − Ỹ
S

(S.128)

=
µ−µ
σ

(S.129)

= 0 (S.130)

Thus, since H = 0, the Normal distribution is symmetric about µ.

Note that I skipped over the part where I prove Ỹ = µ. I leave that for later
(Lemma S.22).

Method 3: Third Standardize Moment. We can also use the third standardized
moment to show that the Normal distribution is symmetric:

f (y) =
1

√
2πσ2

exp
[
−1

2
(y −µ)2

σ2

]
(S.131)

γ3 = E

[(Y −µ
σ

)3]
(S.132)

=
∫
R

f (y)
(y −µ
σ

)3
dy (S.133)

I leave it as an exercise to expand the cube, separately calculate E

[
Y 2

]
and E

[
Y 3

]
,

and do the integration. There is a lot of algebra, but not much more than that if you
are careful. ♦

There is a wealth of information on the Normal distribution. Arguably, it is the
most studied distribution in statistics. It is also the most important distribution in
statistics because of the Central Limit Theorem. For these reasons, I offer little to
say about it beyond beyond the CLT (§ S.6.4).
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Lemma S.22. The median of a Normal distribution is µ.

Solution: By definition for a continuous distribution, the median is the value ỹ such
that F(ỹ) = 0.500. Thus, this proof reduces to a “mere calculation:”

F(µ) =
∫ µ

−∞

1
√

2πσ2
exp

[
−1

2
(y −µ)2

σ2

]
dy (S.134)

Since this equals 0.500, we have shown that µ is the median of a Normal distribution.
♦

568



S.4.5 Chi-square The Chi-square distribution arose from multiple areas. One
was the need to model the variation of the sample. A second was in examining cate-
gorical variables. It is used in the Chi-square goodness-of-fit test and the Chi-square
test of independence. In both of those cases, the test statistic only approximately fol-
lows a Chi-square distribution.

If you want it (and I’m not entirely sure why you would), here is the proba-
bility density function of the Chi-square distribution based on its one parameter, ν,
the “number of degrees of freedom:”

f (y; ν) =
1

2ν/2 Γ
(
ν
2

)yν/2−1e−y/2 (S.135)

where 0 < ν and the gamma function is defined as gamma function

Γ (y) :=
∫ ∞

0
ty−1e−t dt (S.136)

Note: The Chi-square distribution is actually the distribution of the second
fraction in the exponent in the Normal probability density function. That is,
if Y ∼ N (µ, σ2), then Mahalanobis

(Y −µ)2

σ2 ∼ χ2
ν=1 (S.137)

The square root of this fraction is called the “Mahalanobis” distance. The
Mahalanobis distance is unitless, scale-invariant, and takes into account the
correlations of the data set. One sees it in data science applications, especially
in clustering and outlier detection.
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When you read probability papers from around the turn of the 20th century, you
may see χ as a variable of interest. Originally, it was just a curvey x used to illustrate
that the Normal distribution could approximate the Binomial distribution:

χ =
x −nπ√
nπ(1−π)

(S.138)

With this, χ ·
∼ N (0, 1).

At the start of the 20th century, statisticians were able to turn this equation
into a definition for the Chi-square distribution:

Definition S.23. The Chi-square Distribution

Let Zi be a random sample of size ν from a standard Normal distribution, that is

Zi
iid∼ N (0, 1), then

ν∑
i=1

Z2
i ∼ χ

2
ν (S.139)

In this definition, ν (pronounced “nu”) is the number of degrees of freedom, the
number of those Normal distributions that are independent.

It is this definition that is most helpful in determining what is (and what is not) a
Chi-square random variable.

The expected value of a Chi-square distribution is ν. The variance is 2ν.
The sample space is S = (0,∞). It is always positively skewed (

√
8/ν), although that

skew goes to zero as ν →∞. Its excess kurtosis also goes to 0 as ν →∞ (ex.kurt. =
12/ν). If the number of degrees of freedom are 2 or less, then the probability density
function is strictly decreasing (its first derivative is always less than zero). Among
other things, this means that the mode is zero if ν ≤ 2.
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Figure S.1:
William Sealy Gosset (1908).

S.4.6 Student’s t Arguably, most of the previ-
ous distributions arise from Nature. The Student’s
t distribution arises from a need to test certain hy-
potheses. This distribution is named after its cre-
ator, William Sealy Gosset (as pictured in the figure
to the right).

Gosset worked for Guinness Brewery as a
master brewer (and statistician) near the end of the
19th century. He applied the well-known statisti-
cal techniques in his job, but found that these tech-
niques had major flaws. Apparently, he felt that he
was rejecting far too many bushels of grain based on
current statistical techniques.

Specifically, Gosset determined that the test
statistic z-score

Z =
Y −µ
s/
√
n

(S.140)

did not follow a standard Normal distribution as expected, when the sample size
was small. In fact, it was not even “sufficiently” close.

Figure S.2:
Ronald Aylmer Fisher (1913).

The problem was that Gosset was working
with small samples of barley, while most statistics at
the time were concerned with large samples. In my
opinion, this is Gosset’s greatest contribution: pay-
ing attention to small-sample properties of estima-
tors. finite samples

While Guinness supported him, they did not
want a repeat of a previous employee who published
trade secrets in a scientific journal. Thus, to get his
discoveries out there, Gosset had to publish under a
pseudonym. He chose “Student.”
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The following is Gosset’s definition of his Student’s t distribution.

Definition S.24. Student’s t Distribution

Let Z ∼ N (0, 1) and V ∼ χ2
ν with Z and V independent. Define the following

ratio:
T =

Z
√
V /ν

(S.141)

The random variable T follows a Student’s t distribution with ν degrees of freedom.

If you care to see it (and some do like the mathematics), this is the probability den-
sity function calculated by Fisher:

f (y; ν) =
Γ
(
ν+1

2

)
√
νπ Γ

(
ν
2

) (1 +
y2

ν

)− ν+1
2

(S.142)

Again, Γ (·) is the gamma function.

The mean of the t distribution is E [Y ] = 0 if ν > 1. The variance is V [Y ] = ν
ν−2

if ν > 2,∞ if ν ∈ (1,2], and undefined elsewhere. It has zero skew. Its sample space is
S = R. As ν→∞, the Student’s t distribution converges to the Normal distribution.6

Note: While the t-distribution was formulated by Gosset to deal with the
distribution of a test statistic, it was actually first seen as a posterior distribu-
tion a couple decades earlier. However, as Bayesian inference and frequentistBayes
statistics were rarely aware of each other, the results by Helmert and Lüroth
remained unknown to Gosset and Fisher.

6The proof of this is an excellent exercise in exponentials and Stirling’s approximation. I leave
it as an exercise for you.
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S.4.7 Cauchy The Cauchy distribution is named after Augustin-Louis Cauchy,
a French mathematician who specialized in complex analysis and abstract algebra.
It is originally (and most helpfully) defined as

Definition S.25. Cauchy Distribution

Let Z1 ∼ N (0, 1), Z2 ∼ N (0, 1), and Z1 and Z2 be independent. Then, the ratio

Y :=
Z1

Z2

follows a standard Cauchy distribution.

Note that this is just a t distribution with one degree of freedom. As such, the prob- exercise
ability density function for the standard Cauchy is

f (y) =
1

π (1 + y2)
(S.143)

Figure S.3: Baron Augustin-
Louis Cauchy (1901).

Regardless of the fact that the standard Cauchy is
symmetric with median 0, neither its mean nor its
variance exist. I leave this proof as an exercise for
you. exercise

The standard Cauchy can be generalized to
different medians (locations) and spreads (scales):

f (y; η,γ) :=
1

πγ
(
1 +

(
y−η
γ

)2
) (S.144)

Again, neither the mean nor the variance exist, how-
ever the median and mode are now η (“eta”) and
the interquartile range is 2γ (“gamma”). [I have you
prove this later.]

Finally, its cumulative distribution function
(CDF) is CDF

F(y; η,γ) =
1
π

arctan
(
y − y0

γ

)
+

1
2

(S.145)

As befits the magical world of mathematics, the Cauchy distribution pops up
in many places. For me, the most interesting place is as the Witch of Agnesi.

I find it very interesting to see how frequently mathematical equations find
their way into many different areas of mathematics and science. The key, as I see
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it, is to understand how the mathematical expressions came into being, then see
what applies to the current probability/statistics problem. A trip through history
may suggest that there is “no progress in the history of [mathematical] knowledge
— merely a continuous and sublime recapitulation” (Umberto Eco, The Name of the
Rose, 1980).

Note: The Cauchy distribution is one of the most helpful distributions avail-
able. Its first (and above) moments are not finite. This means the Central
Limit Theorem does not apply to it. As such, it is frequently used to illustrate
the importance of finite variances.

S.4.8 Snedecor’s F The F distribution, developed by George W. Snedecor (Calcu-
lation and Interpretation of Analysis of Variance and Covariance, 1934) and named for
Fisher, is frequently used for testing compound hypotheses, notably in the analysis
of variance (ANOVA) procedure (see page 64).

Definition S.26. Snedecor’s F Distribution

Let X1 ∼ χ2(ν1), X2 ∼ χ2(ν2), and X1 and X2 independent (i.e., X1 ⊥ X2). Define
the following ratio:

F =
X1/ν1

X2/ν2
(S.146)

The random variable F follows Snedecor’s F distribution with ν1 and ν2 degrees of
freedom.

If ν2 > 2, then the mean of the F distribution is

E [F] =
ν2

ν2 − 2
(S.147)

When ν2 > 4, its variance is

V [F] =
2ν2

2 (ν1 + ν2 + 2)
ν1(ν2 − 2)2(ν2 − 4)

(S.148)

If ν2 ≤ 2, then the expected value is infinite. If ν2 ≤ 4, then the variance is infinite.
The distribution (function) is always right-skewed. The support set is S = (0,∞).
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If you want it, here is its probability density function. Note, however, that
the definition of the F distribution is much more helpful.

f (y; ν1,ν2) =
1

y B
(
ν1
2 ,

ν2
2

)
√

y
ν1 νν1

1 νν2
2

(y ν1 + ν2)ν1+ν2
(S.149)

In this formula, B(·, ·) is the beta function, defined as

B(x,y) =
∫ 1

0
tx−1(1− t)y−1 dt (S.150)

Interesting. . . There seems to be some relationship between the beta function and
the Binomial distribution.

By the way, if you would prefer writing the beta function in terms of the
gamma function,

B(x,y) =
Γ (x) Γ (y)
Γ (x+ y)

(S.151)

Most likely, you will have seen the gamma function in your calculus class. If not,
there is nothing to worry about, since the computer will be performing the calcula-
tions for you. Focus on how these distributions arise (i.e., their actual definition)
and how they are used.
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S.5: Distributions of Sample Statistics

Now, let us combine the previous two sections. It is knowing the distributions of the
sample statistics that the power of statistics first shows itself. It allows us to draw
conclusions about the population parameter based solely on the sample statistic.

S.5.1 Sample Mean The distribution of the sample mean is one of the first
sampling distributions you would have come across in your introductory statistics
course. It usually serves as the link between the Normal distribution and confidence
intervals.

Theorem S.5.1

If Yi ∼ N (µ, σ2), and we collect an independent and identically distributed
(iid) sample of size n, then

Y ∼ N
(
µ,
σ2

n

)
(S.152)

Proof. This proof proceeds in three parts. The first part notes that a linear combi-
nation of independent Normal random variables is also a Normal random variable.
(The proof of this can be found at Corollary S.37.)

Since the Normal distribution has two parameters, mean and variance, the
second and third parts determine the expected value and variance of that random
variable.

E

[
Y

]
= E

1
n

n∑
i=1

Yi

 (S.153)

=
1
n

n∑
i=1

E [Yi] (S.154)

=
1
n

n∑
i=1

µ (S.155)

=
1
n
nµ (S.156)
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Thus, the expected value of Y is µ. Now for the variance:

V

[
Y

]
= V

1
n

n∑
i=1

Yi

 (S.157)

=
1
n2V

 n∑
i=1

Yi

 (S.158)

Since the Yi values are independent, we can pass the variance operator through the
summation:

=
1
n2

n∑
i=1

V [Yi] (S.159)

=
1
n2

n∑
i=1

σ2 (S.160)

=
1
n2nσ

2 (S.161)

=
σ2

n
(S.162)

Putting these parts together gives us our conclusion.

Note: Notice the procedure in the previous proof. The first step is to de-
termine the distribution. The remaining steps determine the values of the
distribution’s parameters. We needed to determine the values of µ and σ2

because the Normal distribution uses both as parameters.
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S.5.2 Sample Variance The distribution of the sample variance is rarely covered
in introductory statistics. However, it is needed when determining some important
test statistics.

Theorem S.5.2

If Yi
iid∼ N (µ, σ2), and we collect a random sample of size n, then

(n− 1)S2

σ2 ∼ χ2
ν=n−1 (S.163)

Proof. Since we need to show that it follows a Chi-square distribution, we simply
use the definition of that distribution, performing some algebra to ensure it is in the
right form.

First, since we will need it in the future of this proof, please recall

S2
y =

1
n− 1

n∑
i=1

(
Yi − Y

)2
(S.164)

This is equivalent to

(n− 1)S2
y =

n∑
i=1

(
Yi − Y

)2
(S.165)

Now, remember the definition of a Chi-square random variable:

n∑
i=1

(Yi −µ
σ

)2
∼ χ2

n (S.166)

Note that this is very similar to our definition of S2. The difference is the presence
of µ. So, for reasons that will become obvious later, let us subtract and add Y to the
numerator of S.166, then expand the square:

χ2
n ∼

n∑
i=1

(
Yi − Y + Y −µ

σ

)2

(S.167)

=
n∑
i=1

(
(Yi − Y ) + (Y −µ)

σ

)2

(S.168)
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=
n∑
i=1

(
Yi − Y
σ

)2

+
n∑
i=1

(
Y −µ
σ

)2

+ 2
n∑
i=1

(
(Yi − Y )(Y −µ)

σ

)
(S.169)

Note that the third term is zero:

2
n∑
i=1

(
(Yi − Y )(Y −µ)

σ

)
= 2

(
(Y −µ)
σ

) n∑
i=1

(Yi − Y ) (S.170)

= 2
(

(Y −µ)
σ

)
0 (S.171)

= 0 (S.172)

With that, we have:

χ2
n ∼

n∑
i=1

(
Yi − Y
σ

)2

+
n∑
i=1

(
Y −µ
σ

)2

(S.173)

=
∑n
i=1(Yi − Y )

σ2 +n
(
Y −µ
σ

)2

(S.174)

=
(n− 1)S2

σ2 +n
(
Y −µ
σ

)2

(S.175)

And: χ2
n ∼

(n− 1)S2

σ2 +
(
Y −µ
σ/
√
n

)2

(S.176)

The second term is the square of a standard Normal distribution; that is, it follows a
χ2

1 distribution. Since the sum of two Chi-square distributions is another Chi-square
distribution (with ν being the sum of the degrees of freedom), we have our result:

(n− 1)S2

σ2 ∼ χ2
n−1 (S.177)

Note: Do you remember from Section S.4.5 that the expected value of a Chi-
square random variable is ν? Use that to see why we needed to divide by n−1
in the formula for the sample variance to ensure S2 is unbiased for σ2. That
is, you should be able to prove E

[
S2

]
= σ2. exercise

By the way, there is another proof using algebra, but it gives little
insight into probability. Because of this, I forgo it. However, it is a really nice
exercise in high school algebra and statistics definitions.
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S.6: Other Topics

This section holds some topics that I do not know where to put otherwise. You will
have discussed the effects of multiple comparisons on the legitimacy of statistical
conclusions (Section S.6.2). That is why you had to use analysis of variance instead
of multiple t-tests for comparing more than two population means.

Next, I am introducing the runs test here (Section S.6.3). The runs test is im-
portant in testing the claim that the model systematically fits the observed data. Theconsistently
logic behind it is very straight-forward, being based on a Binomial random variable.

Finally, I provide a proof of the Central Limit Theorem. You will most cer-CLT
tainly have heard of the Central Limit Theorem in your earlier statistics course but
not seen its proof. However, the work below with moment generating functions
is provided solely for those who are interested in how to prove the Central Limit
Theorem (Section S.6.4).

S.6.1 Check for Skewness There are several tests for skewness, and for estimat-
ing the level of skew in a distribution. However, most are beyond the scope of this
book. In lieu of these, let us use the Hildebrand Rule as a good Rule of Thumb for
determining if the data are “sufficiently” skewed (Hildebrand 1986).

For the sample, the ratio is defined as

H =
x − x̃
s

(S.178)

According to Hildebrand, if this ratio is greater than 0.20, then the data (or pop-
ulation) are positively skewed. If this ratio is less than −0.20, then the data (or
population) are negatively skewed. Otherwise, there is no significant skew.

Of course, this is just a Rule of Thumb that completely ignores the sample
size and precision of the estimate. However, it is not terrible. If, however, the skew
of the data is important, one should use a genuine statistical test.
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S.6.2 Multiple Comparisons Remember from your previous statistics class the
problem with multiple comparisons. When performing multiple tests, one needs to
adjust the value of the p-value to ensure that you do not reject true null hypotheses
at too high a rate (α).

The first part illustrates why. The second part introduces the Bonferroni
adjustment. Note that the Bonferroni always “works,” but it tends to be rather con-
servative. That is, it controls the Type I error rate, but at the expense of reducing the
power of the test (higher Type II error rate, β). power

Multiple Testing: To start this section, recall the meaning of α. It is the proportion
of the time we wrongly reject a true null hypothesis (i.e., commit a Type I error).
Since we are basing our statistical inference on our selected value of α, we want to
ensure that we are rejecting at the right frequency (or with the right probability). At
the very least, we want to ensure that we do not reject too frequently. If we reject too
frequently, we are biasing our conclusions towards rejecting null hypotheses when
we should not.7

To see the effect of multiple tests on the probability of rejecting a true null
hypothesis (committing a Type I error), let us look at the following two examples.

Example 11

Let the null hypothesis be true. Let us also collect a sample and test the null
hypothesis using that sample. What is the probability we reject the true null
hypothesis if we state our accepted Type I error rate is α?

Solution: By definition, as long as the test is appropriate for the null hypothesis, the
probability of wrongly rejecting the null hypothesis is α. ♦

7If we reject too infrequently, then we will fail to reject the null hypothesis too often. This
could also be a bad thing. It really depends on the penalty for being each type of wrong.
In the framework of the traditional hypothesis testing, we wish to avoid rejecting the null
hypothesis too frequently. This leads to the focus on ensuring we reject the null hypothesis at
the α rate or less. Chapter 12 explores consequences of only controlling α.
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Example 12

Let the null hypothesis be true. Let us collect a sample and test the null
hypothesis using that sample. Let us now collect a second, independent,
sample and test the null hypothesis. What is the probability we reject the
true null hypothesis in either sample if we state our Type I error rate is α?

Solution: By definition, for an appropriate test of the null hypothesis, the probabil-
ity of wrongly rejecting the null hypothesis in each test is α.each

Let us define Y as the number of samples for which the test rejects the null
hypothesis. Clearly, if the tests are independent (if the samples are independent),
then Y ∼ Bin(2,α), and we need to calculate P [Y ≥ 1].

As such, the probability is

P [Y ≥ 1] = 1−P [Y = 0] (S.179)

= 1−
(
2
0

)
α0(1−α)2 (S.180)

If α = 0.05, then P [Y ≥ 1] = 0.0975. In other words, we claim the Type I error rate is
0.05, but it is really 0.0975. . . almost twice as much!! ♦

Allow me to repeat that result: If we test the null hypothesis twice, then the actual
Type I error rate is almost twice what we claim. This is very problematic, espe-
cially for hypotheses that require several sub-tests to fully test, or for times we test
multiple hypotheses using the same data.

Bonferroni Adjustment: One of the first ways for ensuring that the real Type I
error rate is not larger than the claimed is the Bonferroni adjustment (Bonferroni
1936; Dunn 1958; Dunn 1961). While the Bonferroni adjustment always controls
the Type I error rate, it is only the best option when nothing else is available; it
reduces the power of the test (increases the probability of a Type II error).

582



Theorem S.6.1

Let the target Type I error rate be α, with k tests being performed. To ensure
that the experimentwise Type I error rate is no greater than α, each test should
be rejected at the α/k level.

Proof. If we reject each test at the α/k level, the experiment-wise error rate for the k
tests is

EWER = P

 k⋃
i=1

I{Pi≤ αk }

 (S.181)

≤
k∑
i=1

P

[
Pi ≤

α
k

]
(S.182)

=
k∑
i=1

α
k

(S.183)

= k
α
k

= α (S.184)

Note that I{Pi≤ αk } equals 1 when Pi ≤ α
k and 0 otherwise. The function I{·} is called

the “indicator function” for this very reason. It ‘indicates’ if the condition in the indicator
braces is true. (What is the distribution of the indicator function?)

Also note that Pi is the p-value for each test. If the test is appropriate, then
the p-value follows a standard uniform distribution.

With those reminders, the rest is just algebra.

Note: Note the inequality. Under what circumstances is it an equality?

The Bonferroni adjustment always “works.” In other words, applying the Bonferroni
adjustment always ensures that the Type I error rate for the entire battery of tests
is at most α. However, it is usually a poor adjustment in that it over-corrects for
multiple comparisons.
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To see this, let us make the assumption that the tests are independent. This
additional information allows us to create a tighter adjustment.

Theorem S.6.2

Let the target Type I error rate be α, with k independent tests being per-
formed. To ensure that the experiment-wise Type I error rate is no greater
than α, each test should be rejected at the 1− (1−α)1/k level.

Proof. If we reject each test at the 1− (1−α)1/k level, the experiment-wise error rate
for the k tests is

EWER = P

 k⋃
i=1

I{Pi≤1−(1−α)1/k}

 (S.185)

By De Morgan’s Laws, this is

= 1−P

 k⋂
i=1

I{Pi>1−(1−α)1/k}

 (S.186)

By independence, this is

= 1−
k∏
i=1

P

[
Pi > 1− (1−α)1/k

]
(S.187)

= 1−
k∏
i=1

(
1−P

[
Pi ≤ 1− (1−α)1/k

])
(S.188)

= 1−
k∏
i=1

(
1−

(
1− (1−α)1/k

))
(S.189)

Finishing with algebra

EWER = 1−
k∏
i=1

(1−α)1/k (S.190)

= 1−
(
(1−α)1/k

)k
(S.191)

= 1− (1−α) (S.192)

= α (S.193)

Thus, if we know that the tests are independent, we can create a smaller multiplier.
This will still protect the Type I error rate, while not affecting the Type II error rate
as much.

584



Lemma S.27. The original Bonferroni adjustment is a larger divisor (smaller mul-
tiplier; lower power) than the adjustment that assumes independence among the
tests. In other words,

α
k
≤ 1− (1−α)1/k (S.194)

I leave this proof as an exercise. exercise

Theorem S.6.1 shows that we can adjust any case of multiple testing. However, The-
orem S.6.2 and Corollary S.27 show that additional information (or assumptions)
can help make adjustments that affect the test’s power less.

In other words, additional information can help. We should not throw any-
thing out.
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Note: This section explored the need for adjusting the α to ensure that the
claimed Type I error rate is no larger than the true Type I error rate. This
is extremely important in inferential statistics. It is not, however, the only
thing that needs to be examined. Power (the probability of rejecting a false
null hypothesis) is also quite important. Because of this, while the Bonferroni
adjustment always works, it may reduce the power of the test to unaccept-
able levels. As such, understanding the relationships between and among the
various tests is important in creating a superior adjustment.

S.6.3 Runs Test This section introduces the runs test (Bradley 1968; Mood 1940;
Wald and Wolfowitz 1940). While you will not have seen it in your introductory
statistics course, it is based on elementary concepts.

To begin, let us define a couple of terms.

Definition S.28. Run

A run is a sequential set of values all either above or below zero.

Definition S.29. Run Length

The length of a run is the number of elements in that run.

Example 13

Let the following be residuals from a model.

1.2,3.5,−0.5,8.9,−1.2,−1.6,−4.5,0.6,1.5,−7.9

Let us calculate the number of runs.

586



Solution: The first run is of length 2:
{
1.2,3.5

}
. The second run is of length 1:{

− 0.5
}
. The third run is also of length 1:

{
8.9

}
. The fourth through sixth runs are{

− 1.2,−1.6,−4.5
}
,
{
0.6,1.5

}
, and

{
− 7.9

}
.

Thus, there are six runs in those 10 residuals. ♦

Before continuing, remind yourself of Figures 5.4 and 5.5. In both graphics, the
residual is colored blue if it is positive and pink otherwise. In Figure 5.4, there are
long unbroken streaks (runs) of blue and pink. There are just three runs. run

In Figure 5.5, the length of those runs is much reduced and the number is
increased. There are now 12 runs in the 20 residuals.

Figure S.4: Abraham Wald.

Since the distribution of the residuals is as-
sumed/required to be Normal, the probability of
each residual being above the line e = 0 is π =
0.500. . . a Binomial random variable! Because we Eureka!
know the distribution of the number of residuals
above the e = 0 line, we know everything about the
distribution of residuals, including the distribution
of the number of runs. Too few runs indicates that
one positive residual will tend to be followed by an-
other. This usually suggests the model is misspec-
ified. In Figure 5.4, the number of runs was just
three. In the properly specified model of Figure 5.5,
the number of runs is 12.

A statistician will pay attention to the num-
ber of runs as well as the distribution of the number of runs under the null hypothesis.
In other words, what is the distribution of the number of runs? frequentist

The following estimates that distribution. Working through the code may
help you better understand the runs test, the test statistic, and its distribution.

resids = 20

calculateRuns = function(r) {
n = length(r)
x = sign(r)
y = x[-n]-x[-1]

runs = 1+sum(y!=0)
}

numRuns = numeric()
for(i in 1:1e5) {

x = rnorm(resids)
numRuns[i] = calculateRuns(x)
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}

par(mar=c(2,1,1,1))
par(yaxt="n")
par(family="serif")
barplot(table(numRuns), col=rgb(0.85, 0.37, 0.01))
abline(h=0)

The first line specifies the number of residuals. Since I will be using this dis-
tribution to analyze the residuals from Section 5.2, I set the number to 20. The
calculateRuns function calculates the number of runs in a sequence of values.
The for-loop repeatedly generates values from the null hypothesis and calculates
the number of runs.

The last chunk of code plots the histogram, which is shown in Figure S.5.
Note that it is bell-shaped. This should give you an insight into how we can create
an approximate test statistic based on the Normal distribution, which is what the
functions do.

From this, the probability of having 7 or more runs is 95%. So, we would
claim too few runs if we observed 6 or fewer runs in our 20 residuals. The p-value
for observing 3 runs is 0.0003. Since this p-value is less than α = 0.05, we reject
the null hypothesis that the residuals are randomly distributed about the zero line.
Thus, we would conclude that the relationship is not linear.

The following lines calculated the critical value and the p-value for the runs
distribution.

quantile(numRuns, 0.05) ## critical value
mean(numRuns<=3) ## p-value

Normal Approximation*: In addition to the simulation experiment above, Wald
and Wolfowitz (1940) provided a Normal approximation that did not require sim-
ulation. They concluded that the number of runs, R, approximately follows the
following distribution:

R ·
∼ N

(
2N+N−

N
+ 1;

(µ− 1)(µ− 2)
N − 1

)
(S.195)

In these, N+ is the number of positive values, N− is the number of negative values,
and N is the number of values. As with any “Normal approximation,” the approxi-
mation improves as the sample size increases.

The Exact Distribution*: While Wald and Wolfowitz (1940) did create an approxi-
mate distribution for the number of runs, we can also provide the exact distribution
that preceded them using the hypergeometric distribution. All that we need is to
remember combinatorics and the “choose” (or nCr or binomial coefficient) function.
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Figure S.5: Distribution of the number of runs with 20 residuals.

Under the null hypothesis, the probability of having exactly r runs, given a
sample size of N , of which N+ are positive values and N− are negative, is

P [R = r] = 2

(
N+ − 1
m− 1

) (
N− − 1
m− 1

)
(
N
N+

) (S.196)

if r is even and r = 2m, and

P [R = r] =

(
N+ − 1
m

) (
N− − 1
m− 1

)
+
(
N− − 1
m

) (
N+ − 1
m− 1

)
(
N
N+

) (S.197)

if r is odd and r = 2m+ 1.

Those look rather “simple” to calculate. Remember, however, that p-values
are cumulative probabilities. Thus, to calculate p-values, one would need to calcu-
late P [R ≤ r], which means a lot more calculation.

Computers are awesome!
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The R Functions: Instead of going through the above steps every time to obtain
p-values and critical values, the function is implemented in a couple packages in
R. First, it is implemented in the lawstat package as the function runs.test. It
takes just one piece of information: the residuals in the order of the independent
variable. It is also implemented in the randtests and snpar packages, as well as
the RFS add-on.

Note that order matters. Thus, you will need to order the residuals based
on each independent variable separately. That is, if you have three independent
variables, you will need to run the runs test three times, once for each independent
variable.
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S.6.4 The Central Limit Theorem The Central Limit Theorem (CLT) is one of
the most important theorems in statistics. It explains why we can rely so heavily on
the Normal distribution for inferential statistics, even if the data do not arise from a
Normal process.

Theorem S.6.3: The Central Limit Theorem

Let X be a random variable with finite variance σ2. Let
{
X1,X2, . . . ,Xn

}
be a

random sample of size n from this distribution. Finally, define T as

Tn :=
n∑
i=1

Xi (S.198)

As n→∞, the distribution of Tn converges to the Normal distribution.

Note that this theorem requires that the random variable has a finite variance and
that the sample is a random sample (independent and identically distributed). If
either of these two conditions is not met, then this version of the Central Limit The-
orem does not hold.

Other versions exist for some different types of dependent sampling. How-
ever, even those require the variance be finite.

In your previous statistics course, you may remember the Central Limit The-
orem as saying something about the distribution of the sample mean. Well, that is
actually a corollary of the CLT.

Corollary S.30. Given the conditions of the Central Limit Theorem, define X as

X n :=
1
n

n∑
i=1

Xi (S.199)

The distribution of the sample mean, X n, converges to the Normal distribution.

To use the Central Limit Theorem, we need to ensure the data are randomly gener-
ated from a distribution with a finite variance. We also need to ensure that we are
trying to describe the sample total or sample mean. If those conditions are met, then
we can use the CLT.

How would we prove the Central Limit Theorem? To do that, we need to
introduce something called “moment generating functions.” This we do in the next
section. Continue, if you wish. Proving the Central Limit Theorem is beyond the
scope of this type of course.
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S.6.5 Moment Generating Functions* This section introduces moment gener-
ating functions. You most certainly did not experience these in your previous statis-
tics course. For us, they are used solely to prove the Central Limit Theorem (Theo-
rem S.6.6) and to prove that a linear combination of Normally distributed random
variables is also a Normally distributed random variable (Theorem S.37).

A moment generating function is a function that can be used to generate all
of the moments of a distribution. We have already experienced moments.moments

Definition S.31. Definition

The kth (raw) moment is E
[
Xk

]
.

Definition S.32. Definition

The kth central moment is E
[
(X −µ)k

]
, where µ = E [X].

Definition S.33. Definition

The kth standardized central moment is E

[(
X−µ
σ

)k]
, where µ = E [X] and σ =

V [X].

Thus, by definition, the first raw moment is E [X]. This is just the mean. The second
central moment is E

[
(X −µ)2

]
. This is just the variance. Similarly, the third central

moment is the skew (when standardized by the cube of σ ), and the fourth central
moment is the kurtosis (when standardized by the fourth power of σ ).

Prove to yourself that the first central moment is always 0, as long as E [X]exercise
exists. (Note that this is a problem from your first Math-Stat course.)

❧ ❧ ❧
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Moments are interesting in their own right. However, the following theorem makes
them important in the realm of probability theory.

Theorem S.6.4

If two distributions have all moments the same, then the two distributions are
equal, with probability 1.

The “with probability 1” clause is added to take into consideration the inherent is- with probability 1
sues with continuous distributions. [It also clearly specifies the difference between
probability (and statistics) and mathematics that some mathematicians may not ap-
preciate.]

Here is an example of that inherent issue. Let us define two distributions X
and Y . Let f (x) = 1 for x ∈ (0,1). Let f (y) = 1 for y ∈ [0,1]. The random variables X
and Y are not the same. The support for Y includes the entire support of X as well
as the values 0 and 1. Thus, they are mathematically not the same distribution.

However, they are the same with probability 1. In other words, you would
spend the rest of your life (and the life of the universe and the life of the multiverse)
drawing samples from Y and never obtaining 0 or 1. Thus, for all intents and pur-
poses, X and Y are the same. In probability, we would say X = Y with probability 1,

symbolized as X
wp1
→ Y . In symbols, we would write P [X ≤ x] = P [Y ≤ y].

With this theorem, it becomes clear that if two distributions have the same
moment generating function, then those distributions are the same (with probability
1).

And so, at this point, we now what a moment is and what we can use them
for. We know that if two distributions have all the same moments, then the two
distributions are identical. This led to us knowing that if two distributions have the
same moment generating functions, then the two distributions are the same. All
that remains is to define a moment generating function (MGF).

Definition S.34. Moment Generating Function

Let X be a random variable. Define the function Mx(t) as

Mx(t) := E

[
eXt

]
(S.200)

Then Mx(t) is called the moment generating function for X.
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Why is it called a “moment generating function”? It generates the raw moments.
The kth raw moment of X is calculated from

E

[
Xk

]
=
dk

dtk
Mx(t)

∣∣∣∣∣∣
t=0

(S.201)

Note that the moment generating function must be defined in a small neighborhood
of 0 for us to apply this formula.ε-neighborhood

Example 14

Let X be a Bernoulli random variable with success probability π. What is its
moment generating function?

Solution: The moment generating function is defined as Mx(t) := E

[
eXt

]
. Since X

is a discrete random variable, the MGF is a sum weighted by the probability mass
function.

E

[
eXt

]
=

∑
i

ext P [X = xi] (S.202)

=
1∑
x=0

ext πx(1−π)1−x (S.203)

= e0t π0(1−π)1−0 + e1t π1(1−π)1−1 (S.204)

= 1 · 1 · (1−π) + et ·π1 · 1 (S.205)

And, simplification gives us the MGF for a Bernoulli random variable:

E

[
eXt

]
= (1−π) +π et (S.206)

Now, with that, we can calculate the mean of X:

E

[
X1

]
=
d1

dt1
Mx(t)

∣∣∣∣∣∣
t=0

(S.207)

=
d
dt

(
(1−π) +π et

) ∣∣∣∣∣
t=0

(S.208)

= π et
∣∣∣
t=0

(S.209)
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= π e0 (S.210)

= π (S.211)

It should come as no surprise that the expected value of a Bernoulli random variable
is the success probability. The second moment is

E

[
X2

]
=
d2

dt2
Mx(t)

∣∣∣∣∣∣
t=0

(S.212)

=
d2

dt2

(
(1−π) +π et

) ∣∣∣∣∣∣
t=0

(S.213)

=
d
dt

(
π et

) ∣∣∣∣∣
t=0

(S.214)

= π et
∣∣∣
t=0

(S.215)

= π (S.216)

This is the second raw moment. Recall that E
[
X2

]
= σ2 +µ2. Thus, we can calculate

the variance of X as

V [X] = E

[
X2

]
−µ2 (S.217)

= π −π2 (S.218)

= π(1−π) (S.219)

Thus, we have obtained our usual variance formula for a Bernoulli random variable.
♦
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Example 15

Next, let us determine the moment generating function for a Binomial ran-
dom variable with parameters n and π.

Solution: By our definition of the Binomial random variable, we know that it is just
the sum of n independent Bernoulli random variables. Let us use that to make the
calculations easier.

Thus, let Xi be a series of Bernoulli random variables and Y :=
∑n
i=1Xi be the

resulting Binomial random variable. The moment generating function of Y is

My(t) = E [exp[Y t]] (S.220)

= E

exp

 n∑
i=1

Xi t


 (S.221)

= E

 n∏
i=1

exp[Xi t]

 (S.222)

Since the Xi are independent and identically distributed, this is

=
n∏
i=1

E [exp[Xi t]] (S.223)

Note that E [exp[Xi t]] is just the MGF for a Bernoulli random variable. Thus, this
becomes

=
n∏
i=1

(
(1−π) +πet

)
(S.224)

and the MGF for a Binomial random variable is

My(t) =
(
(1−π) +πet

)n
(S.225)

With that, we can calculate the various moments, should we desire.

♦
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Lemma S.35. Let X and Y be two independent random variables. Define
Z := X + Y . The moment generating function of Z is the product of the moment
generating functions of X and Y :

Mz(t) =Mx(t) My(t) (S.226)

Proof. The proof is simply an exercise in definitions and algebra:

Mz(t) := E

[
etZ

]
(S.227)

= E

[
e(X+Y )t

]
(S.228)

= E

[
eX eY

]
(S.229)

= E

[
eX

]
E

[
eY

]
(S.230)

=Mx(t) My(t) (S.231)

Note that we needed the assumption of independence in the fourth line (S.230),
where we split the expected value.

Lemma S.36. The moment generating function for the Normal distribution is

Mx(t) = exp
[
µt +

1
2
σ2t2

]
(S.232)

I leave this proof as an exercise. It is a simple application of the definition of moment
generating function (Definition S.34) and the probability density function of the
Normal (Equation S.122).

With that last theorem, we are able to prove that a linear combination of
independent Normal random variables also is a Normal random variable.

Lemma S.37. Let X ∼ N
(
µx, σ

2
x

)
and Y ∼ N

(
µy , σ

2
y

)
. Let X and Y be indepen-

dent; that is, X ⊥ Y . If a, b, and c be scalars, then

aX + bY + c ∼ N
(
aµx + bµy + c, a2σ2

x + b2σ2
y

)
(S.233)
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Proof. As expected, the proof relies on moment generating functions. First, the mo-
ment generating function of aX + bY + c is the product of the MGFs of aX, bY , and c
because they are independent. So, let us examine the MGFs of each.

Max(t) =Mx(at) (S.234)

= exp
[
µx(at) +

1
2
σ2
x (at)2

]
(S.235)

Mby(t) =My(bt) (S.236)

= exp
[
µy(bt) +

1
2
σ2
y (bt)2

]
(S.237)

Mc(t) =M(ct) (S.238)

= exp[ct] (S.239)

Putting these together gives

Max+by+c(t) = exp
[
µx(at) +

1
2
σ2
x (at)2

]
· exp

[
µy(bt) +

1
2
σ2
y (bt)2

]
· exp[ct] (S.240)

= exp
[
µx(at) +

1
2
σ2
x (at)2 +µy(bt) +

1
2
σ2
y (bt)2 + ct

]
(S.241)

= exp
[(
aµx + bµy + c

)
t +

1
2

(
a2σ2

x + b2σ2
y

)
t2

]
(S.242)

Note that this is the moment generating function of a Normal distribution with
mean aµx+bµy +c and variance a2σ2

x +b2σ2
y . Thus, we have proven this theorem.

Note: We are not quite done; there is one missing piece. How can we have
a moment generating function for the scalar value c? Aren’t MGFs only for
random variables? Well, there is a distribution called the “degenerate distri-degenerate
bution” that takes on a single value with probability 1. Think of a two-headed
coin. The probability mass function for a degenerate distribution is δ(X − c),
where δ(·) is the Dirac delta function (Calculus I), X is the random variable,
and c is the only possible value of x.P [X = c] = 1

If you have taken a course in differential equations, you will certainly
have come across the Dirac delta function. If not, then you may not have. In
my experience, I saw δ(·) in Calculus I.

The take-away is that there is a lot of statistics that you have not even
seen. You have just caught little glimpses. Sometimes, you have seen proba-
bility without actually noticing it. For instance, the probability density func-
tions you have seen are just solutions to certain differential equations.

Astounding!
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Note: Alright, I’m not done with that. If you do not like thinking about
the degenerate distribution as an actual distribution, think of it as a limiting
distribution. For instance, define

fs(x; µ) :=
1

√
2πs2

exp
[
−1

2
(x −µ)2

s2

]
(S.243)

The limit of this (Normal) distribution as s→ 0 is the degerate distribution at
the point x = 0.

Neat-o skeet-o!

Note that the previous distribution showed that the sum of two Normally-distributed
random variables also has a Normal distribution. The converse, that a Normally-
distributed random variable can only be decomposed into the sum of two other
Normally-distributed random variables is much more difficult to prove. It is the
purpose of Cramér’s Theorem.

In other words, Cramér’s Theorem states that if Z = X + Y and if Z follows a
Normal distribution, then both X and Y must also follow Normal distributions. The
proof can be found in Cramér (1936).
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S.6.6 Proof of the Central Limit Theorem* And so, with all of this prepara-
tion, we are now ready to prove the Central Limit Theorem.

Theorem S.6.5: The Central Limit Theorem

Let X be a random variable with expected value µ and finite variance σ2. Let{
X1,X2, . . . ,Xn

}
be a random sample of size n from this distribution. Finally,

define Tn as

Tn :=
n∑
i=1

Xi (S.244)

Then,

Tn
d→ N

(
nµ, nσ2

)
(S.245)

as n→∞.

Here is an overview of this proof: This proof of the Central Limit Theorem relies on
moment generating functions and Taylor’s theorem. It starts with the distribution
of T , which we need to determine. It then creates two subsequent distributions,
Yn and Zi , to help with the calculations. The moment generating function for Zi is
approximated using Taylor’s theorem. From that, the moment generating function
for Yn is determined. That provides us the approximate distribution of Yn, which is
N (0, 1). With that, we determine the approximate distribution of T , as required.

With that overview, let us start the actual proof.

Proof. LetX be a random variable with mean µ and finite variance σ2. Let
{
X1,X2, . . . ,Xn

}
be a random sample from X. The sum Tn :=

∑
Xi has mean nµ and variance nσ2.

Define the random variable Yn as

Yn :=
Tn −nµ√
nσ2

(S.246)

In other words, the Yn random variable is just the Tn random variable standardized.

Note that this definition is equivalent to

Yn =
n∑
i=1

Xi −µ√
nσ2

(S.247)

Eventually, we will show that the distribution of Yn converges to standard Normal
as n→∞. For now, we use it as an intermediate between T and Zi . Define Zi asz-score
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Zi :=
Xi −µ
σ

(S.248)

which is the z-score for the Xi random variable. It is useful, because we can now see

Yn =
n∑
i=1

1
√
n
Zi (S.249)

This link between Zi and Yn will be exploited later, when we finally approximate the
distribution of Zi and use it to approximate the distribution of Yn.

With that literary foreshadowing, note that the moment generating function
of Yn, in terms of the Zi , is

My(t) =

Mz

(
t
√
n

) n (S.250)

This result relies on the Zi being independent and identically distributed. The mo-
ment generating function for Z1 (or any of the Zi) can be approximated by using
Taylor’s theorem (expanded around t = 0): Taylor

Mz

(
t
√
n

)
=
∞∑
i=0

(
t
√
n

)i M(i)
Z (0)
i!

(S.251)

=
(
t
√
n

)0 M
(0)
Z (0)
0!

+
(
t
√
n

)1 M
(1)
Z (0)
1!

+
(
t
√
n

)2 M
(2)
Z (0)
2!

+ · · · (S.252)

= 1
1
0!

+
t
√
n

E [Zi]
1!

+
(
t
√
n

)2
E

[
Z2

]
2!

+ · · · (S.253)

= 1 +
t
√
n

0
1!

+
(
t
√
n

)2 1
2!

+ · · · (S.254)

= 1 + 0 +
t2

2n
+ · · · (S.255)

If we include the remainder term from Taylor (the · · · above), then we have this
conclusion

Mz

(
t
√
n

)
≈ 1 +

t2

2n
+ ξ

t3

6n3/2
+ o

(
t3

n3/2

)
(S.256)

The last two terms are the remainder. Here, ξ is a constant and o
(
t3

n3/2

)
is “little-o”

notation indicating that the remainder (whatever it is) goes to 0 faster than t3

n3/2 (as
t→ 0).

Now, we return to Yn. It was defined as
∑n
i=1

1√
n
Zi , where the Zi were inde-

pendent and identically distributed. This means the moment generating function of
Yn is

My

(
t
√
n

)
≈

1− t
2

2n
+ ξ

t3

6n3/2
+ o

(
t3

n3/2

) n (S.257)
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The third term goes to 0 as n → ∞, as does the fourth term. The remaining two
terms are

My

(
t
√
n

)
≈

(
1− t

2/2
n

)n
; n→∞ (S.258)

Note that this is just the definition of the exponential function e
1
2 t

2
. This means we

have the MGF for Yn:

My

(
t
√
n

)
≈ e

1
2 t

2
(S.259)

. . . and this is just the moment generating function for a standard Normal distribu-
tion,N (0, 1). Thus, Yn will approachN (0, 1) as n→∞.

Finally, using our definition of Yn (Eqn S.247), we can conclude that the dis-
tribution of Tn converges in distribution toN (µ, σ2) as n→∞.

❧ ❧ ❧

And so, in this final section of the appendix, we were finally able to prove the Central
Limit Theorem. To do so, we needed to learn about moment generating functions.

Again, the only purpose of moment generating functions for this course of
study is to be able to prove the Central Limit Theorem. I included the proof of the
Central Limit Theorem simply because many have asked for it in the past.

Et voilà!
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S.7: End-of-Appendix Materials

S.7.1 R Functions In this chapter, we were introduced to several R functions
that will be useful in the future. These are listed here.

Packages:

RFS This is a “book package,” that is not yet complete. In lieu of installing this
package and loading it with library(RFS), you will activiate all of its im-
portant parts by running
source("http://rfs.kvasaheim.com/rfs.R").

Statistics:

runs.test(r, order=x) The runs test tests if the residuals r, as ordered by x, are suf-
ficiently distributed around the zero line. This is the version in the RFS pack-
age.
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S.7.2 Exercises

1. Prove Lemma S.4.

2. Prove Lemma S.9.

3. Prove Lemma S.10.

4. Prove Lemma S.14.

5. Prove Lemma S.15.

6. Prove Lemma S.13.

7. Prove that the Cauchy distribution is equivalent to the Student’s t distribution
with 1 degree of freedom.

8. Prove that the Normal distribution is equivalent to the Student’s t distribution
as ν→∞.

9. Prove that the interquartile range of the standard Cauchy is 2.

10. Prove E

[
S2

]
= σ2 when Y ∼ N (µ,σ2).

11. Prove that the first central moment is always 0, as long as E [X] exists.

12. Prove that the third central moment (skew) for the Normal distribution is
zero.

13. Use moment generating functions to determine when the Binomial distribu-
tion has zero skew.

14. Calculate the moment generating function for the Poisson distribution. Check
that it generates the first two moments. Use it to determine the variance of a
Poisson random variable.

15. Prove Theorem S.36.

16. Use the moment generating function of the Bernoulli distribution to deter-
mine the moment generating function of the degenerate distribution.

17. Use moment generating functions to calculate the variance of a degenerate
distribution (see page 598).
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Index

Applications

ANCOVA, 158

approval, 456

binomial regression, 381, 392

cattle feed, 458

coins, 347

crime, 153

differential invalidation, 392

geography, 243

GLM, 319, 322

heteroskedasticity, 246

imputation, 463

lifetime, 291

logistic regression, 381, 392

median regression, 267

nominal regression, 447

occupation, 447

ordinal regression, 456, 458, 463

physics, 246

Poisson regression, 426

property crime, 267

South Sudan, 209

terrorism, 426

time series, 241

voting, 166, 195, 209, 250, 319

wealth, 200, 322

R data

cattleData, 458

coinflips, 348

cows, 166, 167, 195, 319

crime, 153, 266, 418

fakepoisson, 410

gdpcap, 322

gdp, 200

gssocc, 447, 456

ocanada, 381

rur2013parl, 251

sri2010pres, 392

summary.aov, 175

suvr, 463

terrorism, 426

xsd2011referendum, 209

R functions

- (drop), 211

AIC, 364

BIC, 365

I, 430

ROC, 357

&&, 133, 134

accuracy, 352, 355

anova, 388

aov, 160, 388

attach, 153

no, 210

autocor.test, 241

barplot, 587

binom.test, 118

bptest, 131, 132, 154

cbind, 383

col, 242

confint, 133, 134, 157, 165, 247,
248

cor.test, 168, 458

c, 140, 247, 248
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data.frame, 178, 197, 201, 323,
418, 460, 464

exp, 410

fligner.test, 161

for-loop, 117, 119, 133, 134, 154,
587

function, 587

glm.nb, 424, 428

glm.nb,offset, 428

glm, 319, 348, 383, 418, 428

glm,family, 320, 322

glm,link, 320, 322

glm,offset, 428

glm,quasipoisson, 422

head, 112

hetero.test, 160

hist, 110, 121

ks.test, 118

legend, 461

length, 122

library, 125, 266

lines, 213

lm, 116, 117, 121, 131, 136, 140,
153, 162, 201, 211, 231

lm,weights, 248, 252

logistic, 195, 197

logit.inv, 195

logit, 195

make.link, 320, 322, 323, 344

matrix, 355

mean, 136, 184

multinom, 450, 458

ordered, 463

overlay, 110, 153, 159

plot, 122, 131, 154

points, 157

polr, 456, 463

predict, 136, 157, 165, 178, 197,
201, 212, 323, 349, 418, 450,
457, 460, 464

predict,se.fit, 212

qchisq, 420

qqline, 108

qqnorm, 108

quantile, 203

rcauchy, 120

rchisq, 120

read.csv, 153, 167, 266, 458

residuals, 122, 153, 159, 241,
388

rexp, 109, 119

rnorm, 108, 116, 117, 121, 122,
125, 131, 133, 134, 587

row, 242

rq, 265, 266, 266, 267, 269, 270

rt, 114

runif, 125

runs.test, 125, 154, 159, 388,
590

sample, 154, 355

seq, 122, 131, 133, 134, 140

set.base, 162, 452

set.seed, 112, 117, 122, 125, 136,
140, 410

shapiroTest, 111, 113, 115, 153,
159

sort, 410

source, 107, 125, 153, 167

subset, 418, 424

summary.aov, 158, 161

summaryHCE, 217
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summary, 116, 117, 121, 153, 160,
319

tail, 113

vif, 141, 176

which, 211

R packages

Epi, 357

MASS, 424, 456, 463

RFS, 111, 125, 195, 217, 352, 452,
590, 603

car, 141, 176

lawstat, 125, 153

lmtest, 131, 153

nnet, 450, 458

quantreg, 265

accuracy, 351, 355, 452, 457

AUC, 356

maximum, 353

rate, 351

relative, 352

additive model, 140, 159, 176

AIC, 320, 321, 364, 387, 412, 452, 464

alpha-testing, 116, 119, 120

ANCOVA, 158

ANOVA, 64, 160, 574

effects model, 69, 70

means model, 68

table, 158

toy example, 28

ANOVA table, 173

appropriate test, 117

AR(1), 242

AUC, 356

autocorrelation, 241, 242

back-transform, 197, 206, 349

base category, 162, 452

bias, 34, 51, 81, 125, 127, 299, 544

bias-variance trade-off, 426, 433

BIC, 365, 387, 412

bijection, 295

Binomial test, 118

boolean, 133

bounds, 192

one, 200

two, 192, 193

others, 206

Breusch-Pagan test, 129, 154, 161

canonical link, 312, 314, 317, 342, 416

CDF, 344, 554

center of gravity, 31

centering, 53

Central Limit Theorem, see CLT

classical linear model, see CLM

CLM, 152, 190, 232, 240, 294, 308, 309

CLT, 115, 120, 561, 591, 600

coefficient of variation, 167

conditional distribution, 311, 341, 379,
382, 416

confidence band, 100, 212, 355

confidence interval, 86, 94, 95, 99, 135,
157, 165, 266, 344

confusion matrix, 355

correlation, 168, 169, 543, 555

population, 555

sample, 543

symmetric, 543

covariance, 52, 82, 83, 503, 504, 541,
555

population, 555

609



sample, 541

symmetric, 542

covariance matrix, 309

coverage, 133, 136

cumulative distribution

Cauchy, 573

cumulative distribution function, see
CDF

data matrix, see design matrix

degrees of freedom, 496

design matrix, 54, 107

deviance, 538

differential invalidation, 209, 250, 392

directional hypotheses, 166

electoral forensics, 209, 250, 392

estimator, 48

exponential class, 313, 379

exposure, see offset

extrapolation, 27

factor analysis, 143

Fligner-Killeen test, 161

function

absolute value, 262

beta, 575

exponential, 202

gamma, 569, 572, 575

identity, 422

logarithm, 200, 413

logistic, 194, 197, 337

logit, 193, 314, 337

functional form, 122, 128, 154, 159, 315

Gaussian process, see normality

generalized least squares, see GLS

generalized linear model, see GLM

geographic regression, 243

GLM, 309, 310

vs CLM, 309

assumptions, 315

components, 310, 332, 339, 341,
348, 413

distribution, 311

exponential class, 313

linear predictor, 310

link function, 312, 318

GLS, 240

grammar of forumlas, 171

graphics, 155, 163, 179, 182, 460, 465

R philosophy, 212

hat matrix, 57, 237

heteroskedasticity, 133, 217, 309, 335,
409

adjustment, 216

bulge, 134

effects, 125, 133, 135

funnel, 134

modeling, 230

none, see homoskedasticity

trumpet, 133, 136, 414

heteroskedasticity test, 160, 161

Hildebrand, 557

Hildebrand Rule, 155, 447, 580

homoskedasticity, 78, 129, 154, 160,
229, 340

Huber-White, 216

iid, 78, 80, 229, 566

independent, 80, 230, 295

independent and identically
distributed, see iid
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influential point, 267, 419

inner product, 483

interaction model, 158, 171, 173

interaction term, 431

interpolation, 27, 155

interpretation, 135, 182, 209, 254, 320,
452, 461

of logarithm, 202

of logit, 196

Kingdom of Ruritania, see Ruritania

Kolmogorov-Smirnov test, 118, 119–121

kurtosis, 560, 563, 570, 592

latent variable, 336

likelihood, 285, 287, 291

log-likelihood, 289, 291

likelihood ratio test, 365, 387

line of “best” fit, 18, 282

linear, 78

linear predictor, 310, 337, 341, 350, 379,
381

link function, 312, 320, 341, 359, 380,
382, 416, 446

canonical, 312, 342, 379, 416

cauchit, 344

complementary log-log, 344, 359

identity, 317, 422

log-log, 344, 361

logarithm, 415

logit, 314, 337, 341, 344, 347, 446,
450, 457

probit, 344

logistic regression, 332

machine epsilon, 138

matrix, 476

addition, 479

additive identity, 479

additive inverse, 479

adjacency, 244

associative, 480, 481, 492

commensurate, 479, 482

commutative, 480, 481, 489

confusion, 355

covariance, 229, 240, 309, 501, 504

determinant, 484

diagonalization, 494

dimension, 476

distributive, 481

eigenvalue, 495

eigenvector, 495

hat, 237

idempotent, 57, 496

inner product, 483

inverse, 67, 73, 484

invertible, 484

multiplication, 482

multiplicative identity, 484

multiplicative inverse, 484, 499

orthogonal, 57, 62, 497

positive definite, 240, 497, 500

projection, 58, 497

rank, 67, 484, 496, 501

representation, 477

sample covariance, 504

sample mean, 502

sample variance, 503

singular, 138, 484

square, 476

symmetric, 57, 244

symmetrize, 493
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trace, 493

transpose, 73, 493, 499

maximum likelihood estimation, see
MLE

mean, 313, 413, 502, 537

distribution of, 576

linear, 537

population, 545

sample, 537

mean squared error, see MSE

median regression, 18, 266, 267

MGF, 592–597

minimum-width interval, 95

vs central, 95, 96, 97

MLE, 18, 285, 287, 288, 294, 312, 446

bias, 292

function of, 292

of β0, 294

of β1, 297

of σ2, 299

uniqueness, 292

model selection, 171, 174, 195, 362, 429

AIC, 364

BIC, 365

likelihood ratio test, 365

model specification, 128

model stability, 446

moment, 592

central, 592

raw, 592

standardized, 592

moment generating function, see MGF

Monte Carlo, 181, 197, 203, 355

MQLE, 420, 422, 429

MSE, 36, 84, 95, 238

multicollinearity, 49, 64, 138

approximate, 138

CS, 138

fix, 142

indications, 140

logic, 139

super, 138, 139

test, 141

multiple comparisons, 581

Bonferroni adjustment, 582

nominal regression, 449

norm, 265

L1, 265

L2, 265

Normality, 108

normality, 78, 81, 153, 159

nuisance parameter, 314

null model, 38, 452, 464

Occam’s Razor, 158

odds ratio, 196, 199

offset variable, 427

OLS, 19, 190, 229

assumptions, 34, 50, 77, 152, 176,
190, 229

b0, 22, 82, 127

b1, 22, 24, 32, 33, 35, 82, 125

derivation, matrix, 46–48

derivation, scalar, 20–22

matrix, 229

matrix model, 46

scalar, 229

scalar model, 20

toy example, 25, 53

OLS assumptions, 122
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ordinary least squares, see OLS

overdispersion, 384, 415, 420, 428

adjustment, 421

causes, 420

effects, 420

test, 420

p-value, 117

parameter, 536, 545, 556

point estimate, 183

Poisson regression, 410

PRE, 386

definition, 38, 63, 352

R2, 38, 141, 170

R
2
, 39

pseudo-R2, 40, 63, 319, 351

preamble, 167

precision, 88

prediction interval, 89, 99, 99, 157, 165

principal component analysis, 143

probability distribution

Bernoulli, 339, 556, 594

Binomial, 561, 596

binomial, 283, 284, 377

bivariate normal, 301

Cauchy, 120, 573

Chi-square (χ2), 536, 569, 578

chi-square (χ2), 84, 91, 95, 120

degenerate, 598

exponential, 119, 290

F, 574

gamma, 423

Gaussian, 316, 566

multinomial, 442

multivariate, 300

multivariate normal, 301

Negative Binomial, 413, 423

Normal, 566, 576, 597

Poisson, 286, 288, 413, 423, 563

Snedecor’s F, see F

Student’s t, see t

t, 91, 94, 95, 114, 571

uniform, 116, 583

proportional reduction in error, see PRE

Q-Q plot, 108

QMLE, 312

quantile function, 344

quantile regression, 18, 269

quasi maximum likelihood estimation,
see MQLE

quasi-likelihood, 385, 420

random variable, 181, 534

regression table, 154, 162, 179

rejection rate, 121, 135

representative sample, 447

residuals, 122, 240

residuals plot, 122, 124, 160

ROC curve, 355

Rule of Thumb, 142, 170, 453, 580

runs test, 123, 159, 586

Ruritania, 2

currency, 3

drugs, 5

economics, 5

geography, 3

government, 3

kraj, 4, 243

Rudolph II, 3

stát, 4
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US embassy, 6

US relations, 6

Valné Shromážděnı́, 287

Vlajka (1954), 3

sample space, 556

sensitivity, 355

Shapiro-Wilk test, 113, 153, 159

skew, 109, 557, 563, 570, 580, 592

specificity, 355

standard form, 313, 316, 417

statistics experiment, 108, 116, 119,
120, 133, 135, 140, 203, 204,
355, 410

Sxx, 24, 82, 88

systematic error, 122

test statistic, 91, 94, 135

testing systematic error, 122

threshold, 337, 353

time series, 242

Type I error, 116, 121, 135, 357, 581

Type II error, 116, 132, 135, 357

variability, 167

variable type

binary, 332

count, 409

dichotomous, 332

nominal, 442

ordinal, 454

variance, 314, 503, 504, 535, 538, 552

distribution of, 578

population, 552

quadratic, 539

sample, 538

variance inflation factor, see VIF

VGLM, 398

VIF, 141, 170, 176

voting, 236

weighted least squares, see WLS

WLS, 230

estimator, 235

matrix, 230

Working-Hotelling, 100

bands, 213
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